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Abstract: Our societal needs for greener, economically viable products and processes have grown
given the adverse environmental impact and unsustainable development caused by human activities,
including chemical releases, exposure, and impacts. To make chemical processes safer and more
sustainable, a novel sustainability-oriented control strategy is developed in this work. This strategy
enables the incorporation of online sustainability assessment and process control with sustainability
constraints into chemical process operations. Specifically, U.S. Environmental Protection Agency
(EPA)’s GREENSCOPE (Gauging Reaction Effectiveness for the ENvironmental Sustainability of
Chemistries with a multi-Objective Process Evaluator) tool is used for sustainability assessment
and environmental release minimization of chemical processes. The multivariable GREENSCOPE
indicators in real time can be represented using a novel visualization method with dynamic radar
plots. The analysis of the process dynamic behavior in terms of sustainability performance provides
means of defining sustainability constraints for the control strategy to improve process sustainability
aspects with lower scores. For the control task, Biologically Inspired Optimal Control Strategy
(BIO-CS) is implemented with sustainability constraints so that the control actions can be calculated
considering the sustainability performance. This work leads to a significant step forward towards
augmenting the capability of process control to meet future demands on multiple control objectives
(e.g., economic, environmental, and safety related). The effectiveness of the proposed framework
is illustrated via two case studies associated with a fermentation system. The results show that
the proposed control strategy can effectively drive the system to the desired setpoints while meeting
a preset sustainability constraint and improving the transient sustainability performance by up to
16.86% in terms of selected GREENSCOPE indicators.

Keywords: sustainability indicators; GREENSCOPE; dynamic sustainability analysis;
sustainability-oriented control strategy; advanced process control

1. Introduction

In recent years, integrating sustainability into the decision-making process in the chemical industry
has become increasingly important. This fact can be attributed to the growing environmental and social
awareness that makes consumers and stakeholders care about not only product quality and cost but also
products and processes that minimize the environmental impact and that conserve natural resources.
Fortunately, in the last decade, significant progress has been made in recognizing and understanding
the challenges in sustainable development and sustainability evaluation of a specific process/product. In
particular, the advances in the development of sustainability tools help the engineers and scientists with
designing and improving the chemical processes in terms of sustainability. The available sustainability
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assessment tools can be mainly grouped in two main categories: metric-oriented methods [1,2]
and life cycle assessment (LCA) [3]. For the metric-oriented methods, the focus is on translating
the holistic concept of sustainability into well-defined indicators in economic, environmental, and
social aspects within predefined boundaries. For example, several key sustainability indices developed
by the American Institute of Chemical Engineers (AIChE) [4,5] and UK Institution of Chemical
Engineering [6] include environmental impact, safety, product stewardship, innovation, and societal
measures. Once quantified, such developed indicators are typically aggregated based on weights
defined by decision makers. A recent tool developed by the US Environmental Protection Agency (EPA),
GREENSCOPE (Gauging Reaction Effectiveness for the ENvironmental Sustainability of Chemistries
with a multi-Objective Process Evaluator) [7–9], proposed about 140 indicators in environmental,
energy, efficiency, and economic aspects to evaluate a product or process in terms of sustainability.
Although many of these indicators have boundaries that do not consider the full life cycle, they
provide comprehensive assessment of a process operation and can be normalized by a functional unit
(e.g., production rate or total profit). LCA methods intend to quantify the environmental impact of
a selected product or process within its life cycle “from cradle to grave.” Both method categories are
useful and complementary for sustainability assessment. Previous work has reported the progress on
developing a comprehensive sustainability assessment tool for defining life cycle inventory (LCI) and
sustainability indicators [10]. In this work, the focus will be on applying sustainability indicators to
assess process-transient operations.

Given the available sustainability assessment tools and methods, many contributions have been
made with regards to integrating sustainability into supply chain, process design, and multi-objective
optimization at different scales. For example, literature on sustainable supply chain management
showed the progress of taking into consideration environmental and social impacts by integrating
sustainability into the developed framework [11,12]. Along the same lines, sustainable process design
and multi-objective optimization (MOO) methods have been demonstrated on a variety of applications
at different scales, from molecular chemistry [13] to ecosystems [14]. However, studies concerning
the sustainability of real-time process operations are still at the early stages despite the fact that
control techniques and theory have evolved significantly in the last two decades [15]. For instance,
advanced nonlinear model predictive control (NMPC) techniques can control nonlinear, large-scale
chemical processes effectively and safely even in the presence of disturbances and uncertainties. In
particular, advanced features of control techniques have been under development in academia, such as
economic MPC [16], stochastic MPC [17], and safeness-index based MPC [18]. However, to this day,
the primary focus of the process control area is to improve the economic or safety-related performance
of the process, regardless of environmental and social costs. There are only a few reported studies
on process operations employing sustainability-oriented control strategies. A recent review [19]
described the challenges of incorporating sustainability goals into process control and stated that
sustainability will be a major driver for controller development in the future due to the pressure of
taking the sustainable principles into account during process operations. In Reference [20], a method
was proposed to integrate deterministic dynamic optimization with optimal control for addressing
the sustainability of a batch reactor. Another application of deterministic optimal control strategies
was reported to improve energy efficiency in manufacturing processes [21]. In these two studies,
only utilities-related environmental impacts were considered. As described in the literature [19],
the scarcity of studies on sustainable process control can be attributed to the lack of strategies that can
effectively integrate process sustainability aspects into the advanced controller framework, considering
the conflicting nature of sustainability indicators (e.g., economic vs. environmental aspects).

As a step forward to contributing to the field of process control for sustainability, in this article,
the previously developed framework [22] that integrated an advanced process control strategy with
sustainability assessment tools is enhanced. In the previous work, process control was employed
to take the system to different operating conditions. Then, an offline sustainability assessment was
used to comprehensively evaluate the reached steady-state alternatives. An improved steady-state
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sustainability performance was then obtained after the controller implementation, without considering
the process performance during transience. In the proposed framework in this article, the dynamic
sustainability assessment during transience is incorporated using a novel visualization method with
dynamic radar plots. With the better understanding of the process dynamic behavior in economic,
environmental, and social aspects, sustainability constraints can be defined and directly embedded into
the control strategy so that the control action can be calculated considering the system sustainability
performance. The effectiveness of the proposed framework is demonstrated via the case study of
a fermentation process for bioethanol production. The outline of the rest of this paper is as follows:
Section 2 presents the background on the fermentation process model and the sustainability assessment
tools. In Section 3, the proposed sustainability-oriented framework and the advanced controller for
sustainability are described. Section 4 introduces the visualization method for dynamic sustainability
performance with an example. In Section 5, the proposed framework is applied to the fermentation
process to demonstrate the controller’s effectiveness. Finally, the paper is closed with conclusions and
considerations for future work.

2. Background

2.1. Fermentation Process

Ethanol derived from renewable resources provides a more sustainable way to decrease greenhouse
gas emissions as well as the dependence on fossil fuels. Fermentation processes, as one of the traditional
technologies, are widely used in the industry for ethanol production from corn and beets. Ethanol
fermentation process is carried out with living microorganisms, including bacteria and yeast. For
example, the yeast Saccharomyces cerevisiae is one of the most popular in current fermentation industry
due to its tolerance to low pH and high ethanol concentration, while the bacterium Zymomonas
mobilis is known for the higher product yield from glucose/sucrose. In this work, a continuous
fermentation process with Zymomonas mobilis is considered for ethanol production from glucose
solution. Specifically, a homogeneous, perfectly mixed continuous stirred tank reactor (CSTR) is used
for ethanol production. This reactor is equipped with an ethanol-selective removal membrane and
a cooling jacket for temperature control. The schematic of the ethanol fermenter studied in this work is
shown in Figure 1. With the in situ ethanol-removal membrane, ethanol can be removed to prevent
end-product inhibition and to improve the productivity and efficiency of the fermentation process.
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These process dynamics have been studied in a previous work [22], including the challenging
characteristics of steady-state multiplicity and oscillatory behavior. To accurately describe this process,
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a mathematical model that includes mass and energy balances is developed. This model covers
the mass balances of the concentrations of key component (Ce), substrate (CS), biomass (CX), product
from fermenter side (CP), and product from membrane side (CPM), as well as energy balances of
fermenter temperature (Tr) and cooling water temperature (T j). Overall, a set of seven ordinary
differential equations (ODEs) for mass and energy balances and two algebraic equations for inlet
dilution rate (Din) and membrane dilution rate (Dm,in), is expressed by the following equations:

dCe

dt
= (k1 − k2CP + k3C2

p)
CSCe

(KS + CS)
+ DinCe,0 −DoutCe (1)
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dt
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)
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= D j

(
Tw,in − T j

)
+

KTAT·
(
Tr − T j

)
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Dout = Din −
α·(CP −CPM)

VF·ρr
(8)

Dm,out = Dm,in +
α·(CP −CPM)

VM·ρr
(9)

in which the variable descriptions are available in the Nomenclature section. For more
detailed information on model development, please refer to Reference [22]. Table A1 provides
the parameter values of the model and the initial operating conditions used in this Zymomonas mobilis
fermentation process.

2.2. Sustainability Assessment Tool

Many sustainability tools have been developed for process performance assessment. However,
most of the available sustainability tools are not comprehensive enough for evaluating the operating
performance of chemical processes. A suitable tool should be able to meet the following requirements:
(1) quantify the process impact on social, environmental, and economic pillars of sustainability;
(2) describe the assessment results in a transparent and standard way; and (3) extend traditional
sustainability analysis to assess process dynamic performance. GREENSCOPE, as a sustainability
evaluation and design tool, can provide a holistic sustainability performance analysis for chemical
processes that meets these requirements and helps the process designers and decision-makers
with comparing multiple processes or locating areas for analyzing the optimal trade-offs in terms
of sustainability.

To quantitatively describe process sustainability performance, GREENSCOPE employs a set of
sustainability indicators in four areas: efficiency (26 indicators), economics (33 indicators), environment
(66 indicators), and energy (14 indicators). Specifically, efficiency indicators describe the process
performance in terms of mass transfer operations by connecting material input and output with
the desired product. Economic indicators are based on the profitability criteria for a commercial
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chemical process considering raw material cost, utility cost, capital, and labor costs. For the
~66 environmental indicators, environmental, health, and safety (EHS) potential risks are measured
according to the involved input materials, operating conditions, and potential impact of releases. For
the energy indicators, two different thermodynamic methods (energy and exergy) have been used to
characterize the thermodynamic efficiencies of the process. More detailed information on the indicator
definitions, calculations, and applications are available in the literature [7–9]. In GREENSCOPE, all
the sustainability indicators are described by dimensionless scores between the worst- and best-case
using Equation (10):

Percent Score (PS) =
|Actual−Worst|
|Best−Worst|

× 100% (10)

in which the best case represents 100% sustainable while the worst case 0% sustainable for each
indicator. The best and worst case values of the selected sustainability indicators in this work
are either based on GREENSCOPE default values or obtained following GREENSCOPE guidelines.
Some guidelines on how to select the best/worst case values for GREENSCOPE can be found in
the literature [7–9,23]. For example, the best-case value for the Reaction Yield (RY) indicator is 1,
while the worst-case value is always 0 for all the reactions. Other indicators without absolute values
can have their best- and worst-case values determined based on the amount and composition from
the process input and output streams (e.g., waste release, production rate, and utility consumption).
The normalized indicators offer some advantages for applying GREENSCOPE to different scenarios.
Moreover, the dimensionless indicators can be lumped or aggregated for process optimization or
control studies based on a user-selected weighting method. Finally, the dimensionless indicator scores
enable visualization of the multidimensional sustainability performance using radar plots. A novel
visualization technique for analyzing process sustainability performance during transience is described
in Section 4.

3. Process Control for Sustainable Process Operation

3.1. Integrated Control Strategy for Sustainability

The proposed control framework in this paper is built as an integrated approach that includes
nonlinear process control and online sustainability assessment, as shown in Figure 2. The role of
the online sustainability assessment part is to monitor the impact of the control action in terms
of sustainability and to provide information to the controller on the thresholds for the selected
sustainability indicators. Sustainability concerns/policies can then be successfully translated to process
control actions to improve the process sustainable performance.
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3.2. BIO-CS (Biologically Inspired Optimal Control Strategy) Controller

An in-house control toolbox for BIO-CS [24] developed in MATLAB (available upon request)
is implemented to address the control task. BIO-CS is an optimal control approach that combines
the ants’ rule of pursuit idea with multiagent concepts. The resulting agent-based control framework
allows each follower agent to update its path toward the set point based on the leader agent’s feasible
trajectory. As the number of agents progresses, the trajectories converge to an optimal solution.
The developed algorithm employs gradient-based optimal control solvers (e.g., dynopt optimization
toolbox [25]) in the toolbox for solving the constrained/unconstrained nonlinear optimization problems.
The effectiveness of the BIO-CS control algorithm has been illustrated via applications associated
with a fermentation processes [26], a hybrid energy system [27], and a coal-fired power plant [28].
In this work, the capability of integrating sustainability into the BIO-CS formulation is explored.
The sustainability-oriented BIO-CS is formulated as follows:

min
u(t)

J =
∫ τs

τi

(∣∣∣∣∣∣y(τ) − ysp
∣∣∣∣∣∣2

w1 +
∣∣∣∣∣∣u(τ) − u−(τ)

∣∣∣∣∣∣2
w2

)
dτ (11a)

s.t.
.
x(t) = f (u(t), x(t), y(t) , p, t) (11b)

SIi ≥ SIth (11c)

x(t) ∈
[
x(t)lb, x(t)ub

]
(11d)

u(t) ∈
[
u(t)lb, u(t)ub

]
(11e)

in which u(t), x(t), and y(t) are the input, state, and output variables, respectively, and τ stands for
time. The optimal input trajectory of the control problem is u(t), which is calculated over the sampling
time t ∈ [τi, τs). This calculation is subject to the process model, f (·); sustainability constraints
specified by a sustainability index, SIi; and boundary constraints on u(t) and x(t). Please refer to
publications [24–28] for the detailed algorithm and applications of BIO-CS.
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4. Visualization of Dynamic Sustainability Performance

4.1. Visualization Approach

Understanding the dynamic behavior of sustainable systems and controlling the process to meet
the sustainability goals are critical tasks in the sustainability field. However, research in this direction
is scarce. This fact can be attributed to the complex and integrated nature of the resulting problems
when sustainability is incorporated into chemical process operations at different time and space scales.
For example, sustainability requires the expansion of the traditional energy, economic, and product
quality-focus to consider multiple objectives (e.g., environmental, economic, and social objectives).
Despite these challenges, it is expected that sustainability will be a major driver for process systems
engineering (PSE) to advance the capability of future chemical processes to deal with multiple control
objectives while balancing conflicting objectives. Before moving to the implementation of the proposed
framework, in this subsection, the proposed approach to monitor the process sustainability performance
during transience is introduced so that the characteristics of dynamic sustainability performance of
the process can be analyzed.

Here, process dynamics are referred to the essential relationships among different process variables
(e.g., temperature, pressure, and concentration), while dynamic sustainability performance focuses
on the understanding of the dynamic nature of the system from the sustainability perspective (e.g.,
in terms of sustainability indicators). For example, the fermentation process can be operated with
the fermenter dilution rate (Din), membrane dilution rate (Dm,in), and cooling water flow rate (D j)
fixed at 0.5 h−1, 0.1 h−1, and 0.1 h−1, respectively. The dynamic sustainability performance of
the process can be represented by selected GREENSCOPE indicators, such as Reaction Yield (RY),
Water Intensity (WI), Environmental Quotient (EQ), Global Warming Potential (GWP), Specific Raw
Material Cost (CSRM), and Specific Energy Intensity (RSEI) (refer to Table A2 in Appendix A for
indicator definitions and details). The obtained GREENSCOPE indicator scores translate the process
data into sustainability information for process monitoring and analysis during real-time operation.
In this article, a time-explicit radar plotting technique is developed for displaying the multivariate
sustainability information as depicted in Figure 3. In this approach, as shown in Figure 3a, each
radar plot (or polygon) represents the selected six sustainability indicators with specific score values.
According to the definition of a sustainability indicator score, the center represents 0% sustainable
while the outside edge is 100% sustainable. Thus, a wider polygon means better performance in
terms of sustainability. Then, visualization of sustainability performance along the time dimension
can be accomplished by stacking multiple polygons on top of one another on the time axis, as shown
in Figure 3b. The developed plotting method provides an efficient and intuitive way of presenting
high-dimensional time-explicit sustainability performance. However, with the indicator numbers
and time horizon increasing, it is hard to identify whether the operation is moving towards a more
sustainable area especially when some indicators selected are conflicting. To better balance the tradeoff

between conflicting indicators as well as to help with the decision-making step, a lumped sustainability
index (SI) is defined for combining indicators with user-defined weighting factors. An average
sustainability index

(
SI

)
can then be derived from the calculated SI values for analyzing or measuring

the performance during any specific time interval. The definitions of these indices are shown below in
Equations (12) and (13).

Sustainability Index (SI(t)) =
∑

wi·PSi(t)∑
wi·PSmax, i

(12)

Average Sustainability Index
(
SI

)
=

∫ t f
t0

SI(t)(
t f − t0

) (13)

where wi, PSmax,i, t0, and t f are the weighting factors and maximum percent score (PS) for the specific
indicator i as well as the initial and final time intervals. Note that different weights can be assigned to
selected indicators depending on user preferences or the application. A larger number for the weight
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means higher impact of the indicator on the overall sustainability performance. In this work, equal
weights for the selected six sustainability indicators have been used throughout this study.
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4.2. Open-Loop Simulation Example

The process dynamics have a direct relationship with the dynamic sustainability performance
of the process. Here, open-loop simulation results of the fermentation process are used to illustrate
the effectiveness of the proposed dynamic sustainability visualization approach. Figure 4 shows
the concentration profiles of the key component (Ce), biomass (CX), substrate (CS), product in
the fermenter (CP), and membrane sides (CPM), as well as fermenter temperature profile (Tr) with
the predefined operating conditions. As reported in the literature [22], the open-loop fermentation
process exhibits oscillatory dynamic behavior. From the sustainability perspective, the six indicators
mentioned above have been selected for evaluating the fermentation process in terms of efficiency,
environmental, energy, and economic aspects and for identifying how the overall performance of
the process can be improved in terms of sustainability. As shown in Figure 5, most indicators (except
WI) follow the trends in the process oscillations shown in Figure 4. This can be explained by the fact that
the dilution rates of Din, Dm,in, and D j that are associated with WI are kept constant for the open-loop
simulation and that the other indicators, such as RY, EQ, GWP, CSRM, and RSEI, are strongly related
to the process dynamics. Fermentation involves two types of reactions: one is microbial growth
reaction, and the other is the metabolite reaction for ethanol production. From the process dynamics in
Figure 4a, it is clearly shown four distinguished process phases, at 0–1 h, 1–5 h, 5–18 h, and 18–30 h. For
the time zone of 0–1 h, the substrate is mostly consumed for biomass and key component formation
and the yield for ethanol is relatively low. Hence, process performance in terms of sustainability for
this region is shown as red in Figure 5, which means less sustainable. This color scheme is defined
according to the SI value for every time step. It is interesting to note that the most sustainable part of
the simulation occurs during the transient stage of 1–5 h, which corresponds to the highest average
reaction yield. During 5–18 h, strong oscillations start due to ethanol inhibition and the SI values start
to decrease, which is reflected by a gradually changing green color along the time axis in Figure 5a.
After 18 h, the system is prone to steady state with light green sustainability status, as shown in Figure 5.
Through a deeper analysis of the dynamic sustainability performance, note that EQ, CSRM, RSEI, and
overall sustainability performance improve with the higher RY while GWP drops with RY increasing.
Such monitoring approach can thus help the design and implementation of the controller for keeping
the system within a desired sustainable operating range.



Processes 2020, 8, 310 9 of 21Processes 2020, 8, x FOR PEER REVIEW 9 of 22 

 

  
(a) (b) 

Figure 4. Process open-loop simulation dynamics: (a) concentration profiles of different components 
and (b) reactor temperature profile. 

 

(a) (b) 

Figure 5. Dynamic sustainability performance of open-loop simulation (red represents less 
sustainable, while green more sustainable according to calculated SI values): (a) 3D sustainability 
indicator dynamic radar plot; (b) 2D projection of sustainability indicator radar plot. 

5. Closed-Loop Simulation Results and Discussions 

Two case studies are presented here to evaluate the effectiveness of the novel sustainable process 
control framework. The first case with a fixed 𝐷௜௡  value of 0.1 h−1 is chosen to illustrate the 
application of the sustainability-oriented control strategy to improve the process sustainability 
performance. Specifically, the dynamic sustainability performance visualization approach is used to 
analyze how places with lower sustainability performance can be improved by adding sustainability 
constraints to the controller. The second case study shows the framework performance for a more 
challenging case with a higher 𝐷௜௡ of 0.5 h−1, which corresponds to a higher volumetric productivity 
in the fermenter. For all simulations, the parameter values in Table A1 are kept constant. 

5.1. Case 1 

The effectiveness of the sustainability-oriented control strategy is first demonstrated using the 
fermentation process for a setpoint tracking study. In this case study, the optimal setpoints for 𝐶௉ெ 

Figure 4. Process open-loop simulation dynamics: (a) concentration profiles of different components
and (b) reactor temperature profile.

Processes 2020, 8, x FOR PEER REVIEW 9 of 22 

 

  
(a) (b) 

Figure 4. Process open-loop simulation dynamics: (a) concentration profiles of different components 
and (b) reactor temperature profile. 

 

(a) (b) 

Figure 5. Dynamic sustainability performance of open-loop simulation (red represents less 
sustainable, while green more sustainable according to calculated SI values): (a) 3D sustainability 
indicator dynamic radar plot; (b) 2D projection of sustainability indicator radar plot. 

5. Closed-Loop Simulation Results and Discussions 

Two case studies are presented here to evaluate the effectiveness of the novel sustainable process 
control framework. The first case with a fixed 𝐷௜௡  value of 0.1 h−1 is chosen to illustrate the 
application of the sustainability-oriented control strategy to improve the process sustainability 
performance. Specifically, the dynamic sustainability performance visualization approach is used to 
analyze how places with lower sustainability performance can be improved by adding sustainability 
constraints to the controller. The second case study shows the framework performance for a more 
challenging case with a higher 𝐷௜௡ of 0.5 h−1, which corresponds to a higher volumetric productivity 
in the fermenter. For all simulations, the parameter values in Table A1 are kept constant. 

5.1. Case 1 

The effectiveness of the sustainability-oriented control strategy is first demonstrated using the 
fermentation process for a setpoint tracking study. In this case study, the optimal setpoints for 𝐶௉ெ 

Figure 5. Dynamic sustainability performance of open-loop simulation (red represents less sustainable,
while green more sustainable according to calculated SI values): (a) 3D sustainability indicator dynamic
radar plot; (b) 2D projection of sustainability indicator radar plot.

5. Closed-Loop Simulation Results and Discussions

Two case studies are presented here to evaluate the effectiveness of the novel sustainable process
control framework. The first case with a fixed Din value of 0.1 h−1 is chosen to illustrate the application
of the sustainability-oriented control strategy to improve the process sustainability performance.
Specifically, the dynamic sustainability performance visualization approach is used to analyze how
places with lower sustainability performance can be improved by adding sustainability constraints to
the controller. The second case study shows the framework performance for a more challenging case
with a higher Din of 0.5 h−1, which corresponds to a higher volumetric productivity in the fermenter.
For all simulations, the parameter values in Table A1 are kept constant.
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5.1. Case 1

The effectiveness of the sustainability-oriented control strategy is first demonstrated using
the fermentation process for a setpoint tracking study. In this case study, the optimal setpoints for CPM

and Tr are set to 48 kg/m3 and 30 ◦C, respectively, based on our previous studies [22,25]. The objective
function of the controller is to minimize the difference between the values of the controlled variables,
CPM and Tr, with respect to their setpoints by optimizing the input variable (Dm,in and D j) trajectories, as
shown in Equation (11a). Figure 6 depicts the closed-loop simulation results obtained for the output and
input profiles. Note in this figure that, with the implementation of the proposed BIO-CS, the oscillations
observed in the open-loop simulations are eliminated completely and the system reached the desired
setpoints in ~3.5 h. Literature results [22] have shown that the steady state obtained here using
the controller is more sustainable than the open-loop result. The proposed control strategy in this paper
takes a step forward towards analyzing the sustainability performance along the path from the initial
starting point (e.g., during start-up) to the desired steady state so that sustainability constraints can
be defined and added to the controller design. As shown in Figure 7a, three distinguished regions
in terms of sustainability performance characteristics can be observed at 0–0.8 h, 0.8–2 h, and 2–10 h.
The time zone of 0–0.8 h (reddish zone with SI of ~0.78) is the start-up, which involves the conversion
of substrate to ethanol as well as biomass cell reaction. The relatively low SI for this phase can be
explained by the low efficiency of the fermentation process at the beginning, and biomass and key
component are not growing enough for completely converting substrate into product. During 0.8–2 h,
the overall sustainability performance first improves for a short time and then decreases. This can
be attributed to the fact that the reaction yield or efficiency reached the highest level at 1 h and, then,
the water usage starts to increase from 1 to 2 h as shown in Figure 6. Note that the WI indicator
performance is directly associated with the profiles of the manipulated variables while EQ, GWP, CSRM,
and RSEI are more prone to changes to RY. After 2 h, the main variables of the system reach the steady
state, and thus, the sustainability performance is kept the same with SI of ~0.84. By further analyzing
the sustainability performance, it is found that 0.8–2 h has relatively low SI at 0.77, which can be
attributed to the lowest sustainability indicator of WI (lowest value of 58%). In order to make sure
the WI score is above a certain threshold during transience, a nonlinear sustainability constraint related
to the WI score is added to the BIO-CS controller as follows:

Din·V f + Dm,in·Vm + D j·VJ

(WIub −WIlb) ×
.

mproduct
> 0.7 (14)

in which the sum of the terms in the numerator corresponds to the total water usage in the system
and WIub, WIlb, and

.
mproduct represent the upper and lower boundaries for WI as well as production

rate, respectively. The BIO-CS solver implemented can handle such nonlinear constraints effectively.
Figures 8 and 9 show the input and output profiles of the fermentation process and the dynamic
sustainability performance, respectively, after the implementation of a WI constraint (WI > 70%). It is
shown in Figure 9 that the BIO-CS controller with the sustainability constraint can successfully drive
the system to the setpoints within a more sustainable range for water use while meeting the constraint.
During 0.8–2 h, the sustainability performance with SI of 0.84 increases by 9.65% when compared to
the scenario without the constraint (SI of 0.77). Also, the water consumption during this transient
time (0.8–2 h) dropped by 49.71%, from 0.0032 to 0.0016 m3/kg product (considering only the water
consumption in the reactor). To clearly show the comparison in terms of the sustainability performance
for the cases with/without the added sustainability constraint, Figure 10 shows all the sustainability
indicators at three representative time points: 1.8 h, 2.1 h, and 10 h. Note that the constrained scenario
changes the other sustainability indicators slightly during transient time (during 0–3 h) but that the final
steady states are the same due to the same setpoints used for both scenarios. By comparing the inputs
profiles in Figures 6 and 8, it is found that BIO-CS optimizes the input profiles of Dm,in and D j to avoid
increasing these two variables simultaneously, thus optimizing the WI score. It is worth mentioning



Processes 2020, 8, 310 11 of 21

that the sustainability constrained problem slightly decreases the controller performance in terms of
smoothness of the input profiles and time to reach steady state. A more advanced dynamic operability
study [29] could be further investigated in the future for locating feasible sustainable ranges for process
control improvements.Processes 2020, 8, x FOR PEER REVIEW 11 of 22 
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5.2. Case 2

To further investigate the capability of the proposed sustainability-oriented process control
framework, a more challenging case with Din of 0.5 h−1, which represents a higher ethanol production
rate with the same fermenter size is addressed in case 2. Operation with higher Din can increase
the fermenter productivity, which is an important performance indicator from the economic point
of view. In this case, the setpoints, the manipulated variable boundaries, and the objective function
of the controller are kept the same as in case 1. Figure 11 depicts the closed-loop simulation results
for the output and input profiles. In this figure, it is shown that the implemented BIO-CS can also
successfully eliminate the oscillations and drive this more challenging case to the desired setpoints. Note
that the manipulated variables reach their upper boundaries in the first 2 h which cause higher water
consumption and thus worsen the overall sustainability performance. Figure 12 shows the dynamic
sustainability performance results for case 2 without the sustainability constraint. Compared to case 1,
the overall sustainability performance of case 2 for the same obtained steady state is lower than that of
case 1 due to the lower efficiency and more water usage for the high Din operating condition. However,
the dynamic sustainability performance shares similar characteristics with case 1 for the different
zones: (1) 0–1 h with low sustainability performance; (2) 1–2.5 h for transient time before steady state;
and (3) 2.5–10 h for steady state. From the control results with the sustainability constraint on WI in
case 1, it is anticipated that the sustainability performance before steady state can be improved by
adding a sustainability constraint on WI. Moreover, it is known from Figure 12 that the WI score for
the obtained steady state is of 55.47%, and thus, a reasonable threshold of 55% is selected for the WI
score constraint.

Figures 13 and 14 show the input and output profiles for the closed-loop simulation as well
as the dynamic sustainability performance, respectively, for the scenario with the WI constraint. It
is shown in Figure 13 that the BIO-CS controller with the sustainability constraint can successfully
drive the system to the setpoints within a more sustainable range while meeting the constraint
(WI score > 55%). It is worth mentioning that the controller could not push the system to the setpoints
if the WI score constraint was increased to 60%. This is because the controller fails to achieve
the setpoints with such a harsh WI threshold (higher than the WI score of the obtained steady state).
During transient time of 0–2.5 h, the process sustainability performance in terms of SI is 0.66, which
increased by 16.86%, when compared to the unconstrained problem with SI of 0.56 during the same
transience. Specifically, water consumption for the same time interval (0–2.5 h) dropped by 54.58%,
from 0.0064 to 0.0029 m3/kg product (considering the water consumption in the fermentation reactor).
To clearly show the comparison in terms of sustainability indicators for the two cases with/without
the sustainability constraint, Figure 15 shows all the sustainability indicators at three representative time
points: 0.36 h (the time of lowest WI score for the unconstrained scenario), 1 h (the time of highest WI
score for the constrained scenario), and 10 h (the time that reached steady state). It is worth noting that,
during transience, the sustainability indicators improve while the sustainability performance of the final
steady states is exactly the same for these two scenarios, as shown in Figure 15. By comparing the input
profiles in Figures 11 and 13, it is found that the BIO-CS input profiles for the constrained problem have
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slightly higher oscillations, which might have been caused by the challenging sustainability constraint
as the system is operating close to the boundary of the steady-state WI score.Processes 2020, 8, x FOR PEER REVIEW 14 of 22 
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6. Conclusions and Future Work

This work introduced and demonstrated the proposed novel sustainability-oriented control
strategy to improve process sustainability during transient. Specifically, integrating process control
with dynamic sustainability helps with the understanding of the dynamic characteristics of the system
in terms of sustainability. Based on the analysis of the dynamic sustainability performance, regions with
lower sustainability percentage can be detected and a reasonable constraint can be imposed on selected
sustainability indicators so that the control actions can be optimized for improving the sustainability
performance. Two case studies of a fermentation process with different dilution rates (Din) were
used to illustrate the application of the proposed dynamic sustainability performance visualization
approach as well as the benefits of integrating a sustainability constraint into the BIO-CS control
strategy. Such a framework successfully improved the sustainability performance of the two addressed
cases by 9.65% and 16.86%, respectively, which corresponds to up to ~55% drop in water consumption
during transience considering both cases. In the future, an online performance analysis system for
locating the most important sustainability indicators can be developed to automatically provide
the sustainability indicators for the process constraints. Also, the investigation of a dynamic operability
method for guiding the constraint threshold selection would be important for improving the controller
performance. In particular, such a method would provide an input–output dynamic mapping to
systematically determine the achievability of the control objectives along with the indicator regions
(defined by their upper and lower bounds) for different input values.
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Nomenclature

Variables Definition (Units)
A1/A2 Exponential factors in Arrhenius equation
AM Area of membrane (m2)
AC Concentration analysis control
AT Heat transfer area (m2)
Ci Concentration of component i (kg/m3)
Cp,r Heat capacity of the reactants (kJ/kg/K)
Cp,w Heat capacity of cooling water (kJ/kg/K)
CSRM Specific raw material cost indicator
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Din Inlet fermentor dilution rate (h−1)
Dj Cooling water flow rate (h−1)
Dout Outlet fermentor dilution rate (h−1)
Dm,in Inlet membrane dilution rate (h−1)
Dm,out Outlet membrane dilution rate (h−1)
Ea1/Ea2 Activation energies (kJ/mol)
EQ Environmental quotient indicator
f (·) Process model
GWP Global warming potential indicator
J Control objective
KS Monod constant (kg/m3)
KT Heat transfer coefficient (kJ/h/ m2/K)
k1 Empirical constant (h−1)
k2 Empirical constant (m3/kg·h)
k3 Empirical constant (m6/kg2

·h)
ms Maintenance factor based on substrate (kg/kg·h)
mp Maintenance factor based on product (kg/kg·h)
.

mproduct Production rate (kg/h)
M Mixer
MW Molecular weight (g/mole)
α Membrane permeability (m/h)
P Correction factor
p Parameters of the process model
PS Sustainability indicator percent score
PSmax,i Maximum percent score for the specific indicator i
ri Production rate of component i (kg/m3)
R Gas constant
RY Reaction yield indicator
RSEI Specific energy intensity indicator
SIi Sustainability constraint i
SI(t) Dynamic sustainability index
SI Average sustainability index
SIth Threshold value for sustainability index
TC Temperature control
Tj Temperature of cooling water in the jacket (K)
Tw,in Inlet temperature of cooling water (K)
Tr Temperature of the reactor (K)
t0 Initial time interval
t f Final time interval
u(t) Input variables
u−(τ) The past input action for the controller
u(t)lb Lower boundary for input variables
u(t)ub upper boundary for input variables
VF Fermentor volume (m3)
VM Membrane volume (m3)
Vj Cooling jacket volume (m3)
wi Weighting factors i
w1 Penalty factor on the output variables for the controller
w2 Penalty factor on the input variables for the controller
WI Water intensity indicator
WIub Upper WI boundary (m3/kg)
WIlb Lower WI boundary (m3/kg)
x(t) State variables
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.
x(t) Derivatives of state variable
x(t)lb Lower boundary for state variables
x(t)ub upper boundary for state variables
y(t) Output variables
ysp Setpoint for process controller
Ysx Yield factor based on substrate (kg/kg)
Ypx Yield factor based on product (kg/kg)
Greek Symbols
ρr Reactants density (kg/m3)
ρw Cooling water density (kg/m3)
µ Specific growth rate (h−1)
µmax Maximum specific growth rate (h−1)
∆H Heat of fermentation reaction (kJ/kg)
Subscripts
e Key component inside the fermentor
e0 Inlet key component to the fermentor
P Product (ethanol) inside the fermentor
P0 Inlet product to the fermentor
PM Product (ethanol) inside the membrane
S Substrate inside the fermentor
S0 Inlet substrate to the fermentor
X Biomass inside the fermentor
X0 Inlet biomass to the fermentor

Appendix A

Table A1. Parameter values for the fermentation process model

A1 = 0.6225 KS = 0.5 kg/m3

A2 = 0.000646 KT = 360 kJ/(m2
·K·h)

AT = 0.06 m2 ms = 2.16 kg/(kg·h)
AM = 0.24 m2 mP = 1.1 kg/(kg·h)
Ce,0 = 0 kg/m3 P = 4.54
CX,0 = 0 kg/m3 α = 0.1283 m/h
CS,0 = 150.3 kg/m3 VF = 0.003 m3

CP,0 = 0 kg/m3 VM = 0.0003 m3

CPM, 0 = 0 kg/m3 V j = 0.00006 m3

Cp,r = 4.18 kJ/(kg·K) Ysx = 0.0244498 kg/kg
Cp,w = 4.18 kJ/(kg·K) YPx = 0.0526315 kg/kg
Ea1 = 55 kJ/mol Tin = 30 ◦C
Ea2 = 220 kJ/mol Tw,in = 25 ◦C
k1 = 16.0 h−1 ∆H = 220 kJ/mol
k2 = 0.497 m3/(kg·h) ρr = 1080 kg/m3

k3 = 0.00383 m6/
(
kg2
·h

)
ρw = 1000 kg/m3
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Table A2. Definitions and reference values for selected GREENSCOPE (Gauging Reaction Effectiveness for the ENvironmental Sustainability of Chemistries with
a multi-Objective Process Evaluator) indicators.

Category Indicator Formula Unit
Sustainability Value

Best Case (100%) Worst Case (0%)

Efficiency

Reaction Yield
(RY) RY =

Mass o f product
Theoretical mass o f product kg/kg 1.0 0

Water Intensity
(WI) WI = Volume o f f resh water consumed

mass o f product m3/kg 0 0.1

Environmental

Environmental Quotient
(EQ) EQ =

Total mass o f waste
Mass o f product ×Un f riendliness quotient m3/kg 0 2.5

Global Warming Potential
(GWP) GWP =

Total mass o f CO2 equivalents
Mass o f product kg/kg 0

Any waste released has
a potency factor at least

equal to 1

Economic Specific Raw Material
Cost (CSRM)

SRWC = Raw material costs
Mass o f product $/kg 0 0.5

Energy Specific Energy Intensity
(RSEI)

RSEI =
Net energy used as primary f uel equivalent

Mass o f product kJ/kg 0 100
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