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Abstract: In this paper, the cavitation characteristics of centrifugal blood pumps under variable speeds
were studied by using ANSYS-CFX and MATLAB software. The study proposed a multi-scale model of
the “centrifugal blood pump—left heart blood circulation”, and analyzed the cavitation characteristics
of the centrifugal blood pump. The results showed that the cavitation in the impeller first appeared
near the hub at the inlet of the impeller. As the inlet pressure decreased, the cavitation gradually
strengthened and the bubbles gradually developed in the outlet of the impeller. The cavitation
intensity increased with the increase of impeller speed. The curve of the variable speeds of the
centrifugal blood pump in the optimal auxiliary state was obtained, which could effectively improve
the aortic pressure and flow. In variable speeds, due to the high aortic flow and pressure during the
ejection period, the sharp increases in speeds led to cavitation. The results could provide a guidance
for the optimal design of the centrifugal blood pump.
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1. Introduction

Heart failure (HF) is the most fatal clinical syndrome due to heart dysfunction and insufficient
blood supply. The New York Heart Association (NYHA) proposed the NYHA classification of heart
failure, which classifies heart failure into four levels. Grade I-II heart failure is mild heart failure,
grade II-III heart failure is moderate to mild heart failure, and grade IV heart failure is end-stage
heart failure. In recent years, with the increasing prevalence of cardiovascular and cerebrovascular
diseases, ventricular assist devices have attracted attention as the main method for treating patients
with advanced heart failure. In ventricular assist devices, constant rotating speed control is frequently
used to make the average aortic pressure and cardiac output of patients reach normal physiological
levels. However, this assisted state is likely to cause aspiration and reflux, and is accompanied
by many complications [1]. Thus, a blood pump variable speed control method is used to achieve
the best auxiliary state under different heart failure conditions [2–4]. During the variable speed
assist process, the transient of rotating speed can easily cause cavitation inside the blood pump.
The centrifugal pump uses the centrifugal force of the impeller to form a low-pressure area to suck in
liquid, and then transfer energy to the discharged liquid [5]. During inhalation, the local pressure is
reduced. Generally, the pressure cannot reach the critical value of blood cavitation when the constant
speed is assisted. When the rotating speed of the pump increases instantaneously, the local pressure
in the blood pump will be lower than the critical value of blood cavitation, resulting in a cavitation
phenomenon. When the cavitation bubbles enter the high-pressure area of the impeller, the bubbles
will collapse due to the large pressure difference between the inside and outside of the bubble, which
will damage the blood cells and the surface of the impeller, and affect the stability and service life of
the pump. In some serious conditions, the hemolysis or thrombosis will appear [6]. In 1974, Walker et
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al. observed cavitation in a pneumatic artificial heart for the first time. The cavitation mainly occurred
near the moving diaphragm of the artificial ventricle through high-speed photography [7,8]. Freed et al.
proposed that the occurrence of cavitation under external physiological conditions mainly depends on
local pressure, and the occurrence of cavitation is highly traumatic to the nearby red blood cells, which
results in hemolysis [9]. In recent years, Lin et al. experimentally studied the cavitation phenomenon
of the pump caused by the failure of the short inlet casing [10]. Kijima et al. found that the impeller
pump is more prone to cavitation than the straight pump [11]. With the development of computer
technology and computational fluid dynamics, it is possible to study the cavitation characteristics
of ventricular assist devices through numerical simulation methods. However, there are only a few
studies on the cavitation of variable speed centrifugal blood pumps.

In this paper, the computational fluid dynamics (CFD) software ANSYS-CFX was used to
numerically simulate the centrifugal blood pump and predicted its performance [12]. According to
the simulation results, the development mechanism of cavitation in the centrifugal blood pump was
discussed. The cavitation characteristics of the centrifugal blood pump under variable speed condition
were also studied. This is of great significance for identifying the risk of cavitation and increasing the
reliability of the centrifugal blood pump.

2. Methods

Theoretical analysis and numerical simulation were applied in this section. Firstly, CFD simulation
was used to analyze the pressure distribution, cavitation critical pressure, and cavitation distribution
patterns in the pump. Grade IV heart failure is generally used to indicate end-stage heart failure,
so this paper takes grade IV heart failure as the research condition. MATLAB was used to established a
“centrifugal blood pump—left heart blood circulation system” model [13]. The speed changing curve
was obtained when the optimal assist state was reached in the cardiac cycle, under the condition of
level IV heart failure. The cavitation mechanism of the centrifugal blood pump was analyzed during
the variable speed assist process by CFD.

2.1. Pump Geometry

The centrifugal blood pump, as shown in Figure 1a, is used as the numerical calculation model.
The design parameters are as follows: flow rate is 5 L/min, rotating speed is 3330 r/min, and the
pressure difference between the inlet and outlet of the pump is 100 mmHg. The geometrical parameters
of the centrifugal blood pump are shown in Table 1. Figure 1b is the geometric model of the centrifugal
blood pump. The investigated medium is blood.
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2.2. Mesh 

In order to reduce the influence of inlet and outlet boundary conditions on the internal flow of 
the pump, the inlet and outlet sections of the pump model were extended accordingly, as shown in 
Figure 2. The impeller and the pump casing were meshed by the tetrahedral unstructured mesh with 
strong adaptability, because of the serious distortion of the pump blade space and the complicated 
structure of the flow channel. The extended section of the inlet and outlet was meshed by the 
structural grid. To check for grid independence, when the pressure difference between the inlet and 
outlet of pump correlation is less than 0.5%, it can be considered that the grid does not affect the 
calculation result [14]. Finally, the total number of grids in the calculation area is 982,503, and mesh 
quality is 0.3, as shown in Figure 3. After calculation, the blade surface mesh y+ <50 meets the 
requirements of the standard k-ε turbulence model for y+ [15]. 

 

Figure 2. 3D modeling of the calculation area of the centrifugal blood pump. 

Figure 1. Pump geometry. (a) Photograph of the centrifugal blood pump; (b) geometric model of the
blood pump.

Table 1. Design parameters of the centrifugal blood pump.

Design Parameter Value Unit

Rated point head 100 mmHg
Rated point flow 5 L/min
Impeller speed 3330 r/min

Pump inlet diameter 10 mm
Impeller diameter 30 mm

Pump outlet diameter 10 mm
Blade number 6 mm

Blade spiral angle 30 ◦

2.2. Mesh

In order to reduce the influence of inlet and outlet boundary conditions on the internal flow of
the pump, the inlet and outlet sections of the pump model were extended accordingly, as shown in
Figure 2. The impeller and the pump casing were meshed by the tetrahedral unstructured mesh with
strong adaptability, because of the serious distortion of the pump blade space and the complicated
structure of the flow channel. The extended section of the inlet and outlet was meshed by the structural
grid. To check for grid independence, when the pressure difference between the inlet and outlet of
pump correlation is less than 0.5%, it can be considered that the grid does not affect the calculation
result [14]. Finally, the total number of grids in the calculation area is 982,503, and mesh quality is 0.3,
as shown in Figure 3. After calculation, the blade surface mesh y+ <50 meets the requirements of the
standard k-ε turbulence model for y+ [15].
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2.3. Numerical Simulation Methods

ANSYS-CFX is employed to solve finite element equations. The convection term uses the
high-precision difference scheme, and the other terms use the central difference scheme. In solving the
system of equations, a fully implicit coupling technique is used to improve the calculation speed and
stability [16]. The fluid flowing through the centrifugal blood pump during numerical simulation is
blood. Assuming blood is an incompressible Newtonian liquid, blood behaves as a Newtonian fluid
for the condition of reasonable shear stresses, as expected in the LEV-VAD, and shear rates above
100/s [17]. When the normal temperature of the human body is 37 ◦C, blood density is 1055 kg/m3,
viscosity is 0.0035 Pa*s, blood gas density is 0.5542 kg/m3, and viscosity is 0.0000134 Pa*s, whose
vaporization pressure at the corresponding temperature is −715 mmHg [18,19]. The detailed settings
of the boundary conditions are shown in Table 2.

Table 2. Settings of boundary condition.

Project Name CFX Settings

Inlet Mass Flow
Outlet Pressure

Reference pressure 0 atm
Turbulence model Standard k-ε

Wall No-slip
Cavitation model Rayleigh–Plesset

Near wall area Standard Wall Function
Control equation RANS

Cavitation simulations do not consider the fact that a small amount of air may be left in the
circulation because of insufficient perfusion time during surgery. In this study, an assumption was made
that when cavitation occurs, only the blood and its vaporized vapor exist in the fluid. The boundary
conditions were total pressure inlet, mass flow outlet, and a reference pressure of 0 atm. The volume
fraction of the liquid medium was set to 1, and the volume fraction of the gaseous medium was 0.
In order to improve the convergence speed of the calculation, the calculation result of the constant
cavitation was used as the initial file for the calculation of the cavitation value, and the result file of
each previous calculation was used as the initial file for calculation. The convergence schemes were all
based on the average residuals of all control volumes in the calculation domain, and the convergence
accuracy was 10−5.
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3. Centrifugal Blood Pump—Left Heart Circulation System Coupling Model

3.1. Centrifugal Blood Pump Model

According to the research of Choi et al. [20], Equation (1) could be taken as the state equation of
the centrifugal blood pump:

dQx

dt
= −

β0

β1
Qx −

β2

β1
ω2 +

1
β1

H (1)

where Qx represents the flow rate of the blood pump, H represents the pressure difference between the
inlet and outlet of the blood pump,ω is the impeller speed and the values β0, β1, β2 are constant.

In the study, the centrifugal blood pump has a differential pressure–flow characteristic curve,
as shown in Figure 3. When the flow rate is 1, 2, 3 . . . 7, 8 L/min, the rotation speed is 2330, 2830, 3330,
3830, 4330, 4830 r/min, respectively.

In Figure 4, the mathematical model expression of the centrifugal blood pump was obtained by
the least square method and the flow inertia equation, as shown in Equation (2).

H = −0.391Qx − 0.00183
dQx

dt
+ 0.00001147ω2 (2)

Processes 2020, 8, x FOR PEER REVIEW 5 of 16 

 

3. Centrifugal Blood Pump—Left Heart Circulation System Coupling Model 

3.1. Centrifugal Blood Pump Model 

According to the research of Choi et al. [20], Equation (1) could be taken as the state equation of 
the centrifugal blood pump: 

− −
β βdQ 0x 2= Qxdt β β1 1

12ω + H
β1

 (1) 

where Qx represents the flow rate of the blood pump, ܪ represents the pressure difference between 
the inlet and outlet of the blood pump, ߱  is the impeller speed and the values ߚ଴, ,ଵߚ ଶߚ	  are 
constant. 

In the study, the centrifugal blood pump has a differential pressure–flow characteristic curve, as 
shown in Figure 3. When the flow rate is 1, 2, 3 … 7, 8 L/min, the rotation speed is 2330, 2830, 3330, 
3830, 4330, 4830 r/min, respectively. 

In Figure 4, the mathematical model expression of the centrifugal blood pump was obtained by 
the least square method and the flow inertia equation, as shown in Equation (2). 

− −
dQ 2xH = 0.391Q 0.00183 + 0.00001147ωx dt

 (2) 

 
Figure 4. Pressure difference-flow characteristic curve of the centrifugal blood pump. 

3.2. Centrifugal Blood Pump–Left Heart Blood Circulation System 

The left heart system is the equivalent to a circuit model. In this model, the voltage, current, 
resistance, capacitance, and inductance are used to represent the blood pressure, blood flow, 
resistance, compliance, and inertia in the blood circulation system, respectively [21]. In addition, the 
left atrium, right heart, and pulmonary circulation are simplified. Only one capacitive Cr is used to 
represent pre-load and pulmonary circulation. For the mitral and aortic valves, which control blood 
flow in one direction, a resistor and an ideal diode are connected in series to indicate the heart valve, 
where Rm and Dm represent the mitral valve and Ra and Da represent the aortic valve. The aortic 
compliance is represented by a capacitance Ca. The quaternary elastic cavity models Rc, Ls, Cs, and 
Rs are used to express the afterload [22,23]. The left ventricular elastic function model is used to 
control the left ventricular motion process to define the heart failure level. Grade IV heart failure 
 has a heart rate of 75 beats/minute. One cardiac (୫୧୬ = 0.05 mmHg/mLܧ ,୫ୟ୶ =0.63 mmHg/mLܧ)
cycle is 0.8 s [24]. Figure 5 shows the circuit model of the left ventricular blood circulation system 

Figure 4. Pressure difference-flow characteristic curve of the centrifugal blood pump.

3.2. Centrifugal Blood Pump–Left Heart Blood Circulation System

The left heart system is the equivalent to a circuit model. In this model, the voltage, current,
resistance, capacitance, and inductance are used to represent the blood pressure, blood flow, resistance,
compliance, and inertia in the blood circulation system, respectively [21]. In addition, the left atrium,
right heart, and pulmonary circulation are simplified. Only one capacitive Cr is used to represent
pre-load and pulmonary circulation. For the mitral and aortic valves, which control blood flow
in one direction, a resistor and an ideal diode are connected in series to indicate the heart valve,
where Rm and Dm represent the mitral valve and Ra and Da represent the aortic valve. The aortic
compliance is represented by a capacitance Ca. The quaternary elastic cavity models Rc, Ls, Cs,
and Rs are used to express the afterload [22,23]. The left ventricular elastic function model is used
to control the left ventricular motion process to define the heart failure level. Grade IV heart failure
(Emax = 0.63 mmHg/mL, Emin = 0.05 mmHg/mL) has a heart rate of 75 beats/minute. One cardiac cycle
is 0.8 s [24]. Figure 5 shows the circuit model of the left ventricular blood circulation system with a
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blood pump. The parameter values of the model are shown in Table 3, and the state variables are
shown in Table 4 [25–27].
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Table 3. Parameters used in the model.

Parameter Value Physiological Meaning

Rm 0.0050 mmHg·s/mL Mitral valve resistance
Ra 0.0010 mmHg·s/mL Aortic valve resistance
Rc 0.0398 mmHg·s/mL Aortic resistance
Rs 1.0000 mmHgs/mL Systemic vascular resistance
Cr 4.4000 mL/mmHg Left atrial compliance

C (t) Time-varying Left ventricular compliance
Ca 0.0800 mL/mmHg Aortic compliance
Cs 1.3300 mL/mmHg Peripheral vascular compliance
Ls 0.0005 mmHg·s2/mL Aortic blood inertia

Dm Mitral Valve
Da Aortic Valve
H1 Centrifugal blood pump

Table 4. State variables of the coupled model.

Variable Name Physiological Meaning Unit

x1(t) LVP (t) Left ventricular pressure mmHg
x2(t) LAP (t) Left atrial pressure mmHg
x3(t) AP (t) Arterial pressure mmHg
x4(t) AoP (t) Aortic pressure mmHg
x5(t) Qt (t) Aortic flow mL/s
x6(t) Q (t) Pump flow mL/s

According to Figure 5 and the given state variables, Kirchhoff’s law was used to list the state
equations of the equivalent circuit of the model, as shown in Equation (3).
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

dx1(t)
dt =

[
r( x2(t)−x1(t))

Rm − x6(t) − x1(t)
dC(t)

dt −
r(x1(t)−x4(t))

Ra

]
/C(t)

dx2(t)
dt =

[
x3(t)−x2(t)

Rs −
r(x2(t)−x1(t))

Rm

]
/Cr

dx3(t)
dt =

[
x5(t) −

x3(t)−x2(t)
Rs

]
/Cs

dx4(t)
dt =

[
r(x1(t)−x4(t))

Ra
− x5(t) + x6(t)

]
/Ca

dx5(t)
dt = [x4(t) − x3(t) −Rc·x5(t)]/Ls

dx6(t)
dt =

[
x4(t) − x1(t) + β0·x6(t) + β2·ω

2
]
/β1

(3)

where r (ξ) is a slope function to indicate the state of the mitral and aortic valves of the heart, as shown
in Equation (4):

r(ξ) =

ξ, i f

0, i f
ξ ≥ 0
ξ〈0

(4)

4. Numerical Simulation Results

4.1. Numerical Simulation of a Centrifugal Blood Pump without Cavitation

4.1.1. Performance Characteristics

The performance characteristics of the centrifugal blood pump were analyzed under the rotating
speed of 3330 r/min, as shown in Figure 6. The pump efficiency η is defined as:

η =
ρgQH

Mω
(5)

where ρ is the blood density; Q is the flow rate of the pump; H is the head of the pump; M is the torque;
and ω is the angular velocity.Processes 2020, 8, x FOR PEER REVIEW 8 of 16 
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Figure 6. Performance characteristic of the centrifugal blood pump.

As shown in Figure 6, the efficiency of the blood pump is close to the highest of 40.5% near
the design flow point Q = 5 L/min, and the inlet and outlet pressure difference is 100 mmHg.
The performance of the numerical calculation is similar to the performance of the design parameters,
which indicates that the calculation model has high accuracy.
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4.1.2. Pressure Distribution of Blade Surfaces

Figure 7 is the pressure distribution of the impeller blade surfaces under the different flow
conditions of 3330 r/min. It can be clearly seen from Figure 7 that under different flow conditions,
the pressure on the pressure surface of the blades is higher than the suction surface of the blades,
and the low-pressure area appears in the area of the impeller inlet near the rim. As the flow increases,
the pressure at the leading edge of the blade inlet gradually increases, and the pressure distribution
on the blade’s working surface is more uniform at high flow, which is one of the reasons for the high
efficiency of the pump at high flow Q = 6 L/min.
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Figure 8 is the pressure distribution diagram of the impeller blade surface at different speeds
of the pump, and the flow rate is 5 L/min. It can be seen from Figure 8 that as the speed increases,
the pressure on the blade surface close to the leading edge of the blade decreases sharply. This is
because the increase of rotating speed will increase the pump head. According to the Equation (6),
the higher the rotating speed, the greater the negative pressure at the pump inlet. Cavitation will occur
when the negative pressure at the pump inlet is lower than the critical cavitation pressure.

H = (p2 − p1)/ρg + (ν2
2 − ν

2
1)/2g + Z2 −Z1 (6)

where p1, p2 are the pressure at the pump inlet and outlet; v1, v2 are the flow velocity of the fluid at the
pump inlet and outlet; Z1, Z2 are the inlet and outlet altitudes of the pump; ρ is the blood density; and
g is the acceleration of gravity.
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4.2. Numerical Simulation of Centrifugal Blood Pump with Cavitation

4.2.1. Prediction of Cavitation Performance

The development of cavitation inside the pump can be controlled by continuously changing the
inlet pressure of the pump. The effective cavitation margin of the model pump at each inlet pressure
can be calculated by sorting and analyzing the numerical calculation results of the model pump at
different inlet pressures. As shown in Equation (7):

NPSHa =
ps

%g
+

vs
2

2g
−

pv

%g
(7)

Required net positive suction head (NPSHr) is defined in Equation (8):

NPSHr =
vs

2

2g
+ λ

ω2

2g
(8)

where NPSHa is the available net positive suction head; the NPSHr is the required net positive suction
head; ps is the inlet pressure of the pump; vs is the inlet velocity; pv is the saturated vapor pressure
of the liquid; ρ is the density of blood at 37 ◦C, which is 1055 kg/m3; ω is the impeller speed; λ is a
constant; and g is the acceleration due to gravity, which is 9.8 m/s2.

When NPSHa is less than NPSHr, the cavitation occurs in the pump. In the simulation, the speed
is 3330 r/min and the flow rate is 5 L/min, which remains unchanged. According to formula (7),
and by continuously reducing the inlet pressure to change the NPSHa, the cavitation characteristic
curve of the pump under rated conditions was obtained, as shown in Figure 9. Based on relevant
regulations, the effective cavitation allowance NPSHa, corresponding to the pump inlet and outlet
pressure difference drop of 3%, is generally taken as the critical net positive suction head (NPSHc) [28].
Figure 9 shows that when the effective cavitation allowance is large enough, the pump inlet and outlet
pressure difference does not affect the effectivity of the cavitation allowance, which is a straight line.
Thus, when the inlet pressure is large, the inlet pressure change has no effect on the pump inlet and
outlet pressure difference, and when the cavitation allowance is reduced to about 0.9 m, the pump
inlet and outlet pressure difference curves begin to show a downward trend. When NPSHa is lower
than 0.4836 m, the pump inlet and outlet pressure difference decreases sharply. This observation
indicates that cavitation occurred inside the pump and developed rapidly with the decrease of pump
inlet pressure.
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4.2.2. Cavitation Distribution

The cavitation inception (total inlet pressure 11 kPa), not severe cavitation (total inlet pressure
10 kPa), and severe cavitation (total inlet pressure 9 kPa) were selected for analysis. In order to observe
the cavitation more clearly, a gas volume fraction of 0.1 was selected on the isosurface [29]. When the
flow is 5 L/min, the inlet pressure is reduced, as shown in Figure 10. The cavitation bubble inside the
impeller flow channels is uneven and the phenomenon of asymmetric cavitation occurs in the impeller
flow channels. This phenomenon may be caused by the asymmetry of the pressure distribution in the
flow channels of the blades due to the coupling of the impeller and the pump casing [30]. In addition,
the cavitation in the impeller flow channel of the pump model appears at the position of the impeller
flow channel near the hub at different inlet pressures. As the inlet pressure continues to decrease,
the degree of cavitation gradually increases and the bubbles gradually diffuse toward the impeller
outlet [31].
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Figure 11 shows an isosurface with a flow volume of 5 L/min and an air bubble volume of 0.1 in
the impeller flow channel at different speeds. It can be seen that under other conditions, which
were unchanged, the degree of the cavitation becomes severe with the increase of the speed of the
impeller. From Equations (7) and (8), the NPSHa is set by an external line, regardless of pump speed.
NPSHr represents the anti-cavitation performance of the pump. When the flow rate is constant and
ω is increased, NPSHr increases, and NPSHa remains unchanged. The cavitation bubbles inside the
flow channels of the impeller are still distributed asymmetrically, and the positions of the cavitation
distribution are consistent with the low-pressure distribution area in Figure 8.
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5. Cavitation Characteristics Analysis Under Variable Speed

5.1. Numerical Results of Variable Speed Assist

According to the multi-scale model of the “centrifugal blood pump–left heart blood circulation
system”, when the patients with grade IV heart failure reach the optimal auxiliary state, the speed
curve of the centrifugal blood pump is obtained. As shown in Figure 12, the pump speed is relatively
low and stable in the diastolic period. In the systolic period, the pump speed increases rapidly and
decreases rapidly after reaching the maximum value, and then fluctuates slightly. During the diastole,
the blood pump plays the role of closing the aortic valve, maintaining only the pressure difference
between the aorta and the left ventricle, and no blood passes through. At this time, the pump speed is
relatively low and stable. During systole, the blood pump plays a role in assisting the heart to deliver
blood to the aorta. With the passage of blood, the speed and the blood flow increases rapidly to meet
the normal physiological state of the human body that cannot be reached by heart failure.
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Figure 13 shows the numerical results of the grade IV heart failure model assisted by the variable
speeds of the centrifugal blood pump. The figure shows the pressure and flow waveforms of the aorta
in normal physiology, grade IV heart failure and grade IV heart failure with pump. It can be seen
from Figure 13 that both aortic pressure and flow are greatly improved under the assistance of the
centrifugal blood pump, and the trend is close to the normal physiological state under the assistance of
variable speed. During the entire cardiac cycle, the variable speed assist changes its aortic flow and
aortic pressure values, which may vary between 0 and 500 mL/s, and 75 and 115 mmHg, respectively.
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5.2. Cavitation Characteristics under Variable Speed

According to the hemodynamic numerical results obtained with the aid of variable speed,
a characteristic time point was selected in each of the four stages of a cardiac cycle, to carry out
numerical simulation of the centrifugal blood pump. The corresponding characteristic time points
were 0.05 s in the isovolumic contraction phase, 0.16 s in the ejection period, 0.35 s in the isovolumic
relaxation phase, and 0.5 s in the filling period. Among them, the characteristic time point of t = 0.16 s
was not only the point taken during the ejection period, but also the point where the pump rotation
speed was large during the variable speed assist.

Figure 14 shows the impeller pressure distribution at different characteristic time points in a
cardiac cycle, when the centrifugal blood pump was assisted with variable speed under the condition
of grade IV heart failure. Figure 14 shows that blade pressure distribution is generally high during
the isovolumic contraction phase. At this time, the flow speed of the centrifugal blood pump is small.
Although the pressure at the inlet of the impeller is low, the pressure is higher than the saturated
vapor pressure of blood. Cavitation will not occur during this period. In the isovolumic relaxation
phase and filling period, the flow rates were 6 and 10 mL/s, which were not much different from the
rates at the isovolumic contraction phase. However, the rotation speed is slightly larger than the
isovolumic contraction phase. The pressure distribution of the whole blade is similar to the isovolumic
contraction phase, but slightly lower than that of the whole period. In the ejection phase, the flow rate
was 420 mL/s, and the speed was 11,500 r/min. The flow rate and rotation speed were higher than
other periods. At this time, the pressure difference on the impeller is large, and the pressure in the area
near the rim of the impeller inlet is the lowest [32]. Cavitation will occur when the pressure is lower
than the saturated vapor pressure of the blood.
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The ejection period was selected according to the isosurface with a vacuole volume fraction of 0.1,
as shown in Figure 15a. It can be seen that severe cavitation occurred during this period. The outlet
flow channel was blocked almost completely by air bubbles. The degree of hemolysis is related to
exposure time and shear stress. Red blood cells are easily broken by high shear stress, which causes
hemoglobin to overflow and lose its oxygen-carrying capacity. Equation (9) is a model for predicting
the degree of hemolysis [33,34].

∆Hb
Hb

= 3.62× 10−7
· t0.875

exp · τ
2.416 (9)
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where Hb is the hemoglobin concentration, ∆Hb is the increased plasma free hemoglobin concentration,
τ is the shear stress on the red blood cells, and texp is the exposure time.
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stress distribution.

Figure 15b shows the wall shear stress generated by the cavitation of the centrifugal blood pump
impeller during the ejection period, which is distributed mainly in the contact part between the bubble
and the pump body. The maximum shear stress reached above 300 Pa, which did not include the
wall shear stress generated by the fluid part of the centrifugal blood pump. Larger shear stresses can
damage blood cells and reduce blood compatibility.

6. Conclusions

Cavitation of the blood pump not only causes damage to the over-flow components, but also
destroys the blood cells, which is important in the safe operation of the ventricular assist device. In this
study, a self-developed centrifugal blood pump was used as the research model. Through CFD and
MATLAB simulation, the pressure and cavitation distribution in the centrifugal blood pump were
analyzed, and the model of the centrifugal blood pump—left heart blood circulation system was
established. The speed control equation was proposed, and the speed changing curve of the variable
speed contributed when the optimal assist state was reached under the condition of level IV heart
failure. The following conclusions were drawn, based on the results of the analysis of the distribution
of pressure, cavitation bubble, and wall shear stress at characteristic time points of the centrifugal
blood pump during variable speed assist:

(1). As the inlet pressure decreases, the cavitation in the impeller flow channel of the centrifugal
blood pump appears near the hub of the impeller flow channel. Then, as the inlet pressure
decreases further, the degree of cavitation increases gradually and the bubbles develop towards
the impeller outlet.

(2). With the increase of impeller speed, the cavitation degree in the passage of the centrifugal blood
pump increases accordingly, and the bubbles produced by cavitation distribute asymmetrically in
the impeller.

(3). The obtained hemodynamic results show that the aortic flow rate and the aortic pressure pulsatility,
obtained by variable speed assist in the case of heart failure, are significantly improved.

(4). In a cardiac cycle assisted by the variable speed of the centrifugal blood pump, cavitation is
most likely to occur during ejection and most unlikely to occur during isovolumetric contraction.
Cavitation not only affects the working performance of the pump but also generates large shear
stress, which increases the chances of hemolysis.

In this paper, the cavitation flow phenomenon of a centrifugal blood pump assisted by variable
speed is studied by numerical simulation. This study provides theoretical and data reference to
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improve the stability, service life, and blood compatibility of centrifugal blood pumps for further
clinical application.
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Nomenclature

Qx flow rate of the blood pump (L/min)
β0, β1, β2 constant
Rm mitral valve resistance
Rc aortic resistance
Cr left atrial compliance
Ca aortic compliance
Ls aortic blood inertia
Da aortic valve
x2(t) left atrial pressure (mmHg)
x4(t) aortic pressure (mmHg)
x6(t) pump flow (mL/s)
M torque (N·m)
p1 inlet pressure (Pa)
v1 inlet flow velocity (m/s)
Z1 inlet height of the pump (m)
ρ liquid density (kg/m3)
NPSHa available net positive suction head (m)
NPSHc critical net positive suction head (m)
pv saturated vapor pressure of the liquid (mmHg)
Hb hemoglobin concentration (g/L)
τ shear stress on the red blood cells (Pa)
H pressure difference between the inlet and outlet of the blood pump (Pa)
ω speed (r/min)
Ra aortic valve resistance
Rs systemic vascular resistance
C(t) left ventricular compliance
Cs peripheral vascular compliance
Dm mitral valve
x1(t) left ventricular pressure (mmHg)
x3(t) arterial pressure (mmHg)
x5(t) aortic flow (mL/s)
η efficiency (%)
ω1 angular velocity (rad/s)
p2 outlet pressure (Pa)
v2 outlet flow velocity (m/s)
Z2 outlet height of the pump (m)
g acceleration of gravity ( m/s2)
NPSHr required net positive suction head(m)
λ constant
H1 centrifugal blood pump
∆Hb increased plasma free hemoglobin concentration (g/L)
texp exposure time (s)
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