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Abstract: In this paper, an approach for the monitoring of biotechnological process kinetics is proposed.
The kinetics of each process state variable is presented as a function of two time-varying unknown
parameters. For their estimation, a general software sensor is derived with on-line measurements as inputs
that are accessible in practice. The stability analysis with a different number of inputs shows that stability
can be guaranteed for fourth- and fifth-order software sensors only. As a case study, the monitoring of
the kinetics of processes carried out in stirred tank reactors is investigated. A new tuning procedure
is derived that results in a choice of only one design parameter. The effectiveness of the proposed
procedure is demonstrated with experimental data from Bacillus subtilis fed-batch cultivations.
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1. Introduction

Monitoring of the main variables and parameters of biotechnological processes is of key importance
for processes investigations and control, especially in industrial installations, where a limited number
of measurements is available [1,2].

A widely used approach for process monitoring is model-based software sensor (SS) design [3,4].
The operational model has to be (i) as accurate as possible to mimic the main characteristics and dynamics
of the process, and (ii) simple enough for a monitoring and control design. Such an operational model
was proposed by Bastin and Dochain [4] as the general dynamical model (GDM) of bioprocesses
in stirred tank reactors (STR). Approaches based on GDM software sensors are widely applied
simultaneously with other approaches for nonlinear systems, such as extended Kalman and Luenberger
filters [5–8], moving horizon [9,10] neural-network based observers [11], high-gain approach [12],
multirate observers [13], sliding mode-observers [14,15], interval SS [16], cascade SS [17–19], and joint
estimation of state variables and parameters [1,20,21], among others.

Usually, the software sensors are designed using operational models with constant yield
coefficients [4,12,15,20,21]. For many industrial biotechnological processes, like wastewater treatment
and processes in inhomogeneous mediums, the reproducibility is poor [18,22]. Hence, the assumption
of a constant yield coefficient leads to inexact results because of considerable changes of these
parameters during a process or within different production batches. This change is due to adaptations
of metabolic pathways, protein expression pattern, and random mutations of organisms, as well
as the occurrence and dynamics of population heterogeneities in single species, especially in
multispecies bioprocesses [23,24].
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Although it is biologically self-evident that such coefficients are not constant, there are only
a few examples of yield coefficients or maximum uptake rates that have been considered as dynamic
parameters in the literature. As an example, for Escherichia coli fed-batch processes, the dynamic decrease
of the maximum uptake rates for the substrate (glucose) and oxygen was modelled kinetically based on
experimental observations [25,26], although, in this case, new parameters were added to the complex
model, which decreased the identifiability of the parameters. Also, in our previous studies [18,22,23],
the functional relations between the estimated and measured variables and parameters were determined
for each concrete case.

The authors of [27] considered a class of aerobic processes for which on-line measurements of
the oxygen consumption rate were available. A linear structure of a software sensor was derived
from these data. Estimates of biomass concentration and two kinetic parameters (biomass growth
rate and yield coefficient of oxygen consumption, considered as unknown time-varying parameters)
were obtained as output. A disadvantage of the structure was the large number of software sensor
tuning parameters.

The authors of [18] conducted monitoring of activated sludge wastewater treatment processes.
A cascade scheme was proposed to estimate the denitrification rate of heterotrophs, and two time-varying
yield coefficients were proposed as the main kinetic parameters comprising unmodelled dynamics.
The tuning procedure of the derived fourth-order software sensor required the determination of
four parameters.

The authors of [22] proposed an extension of the investigations from Reference [1] for the estimation
of the glucose consumption rate and three yield coefficients. Industrial-scale fed-batch processes
simulated in a two-compartment reactor (TCR) were considered. Only on-line measurements, which are
commonly available in industrial practice, were included. In comparison to Reference [18], the tuning
of fifth-order SS was simplified to choose only two tuning parameters. Two sets of experimental data of
B. subtilis cultivations were used—one for the tuning procedure and one for the verification of the results.
The results impressively demonstrated the adaptive character of such a cascade estimation scheme with
respect to the generally limited reproducibility of cultivation experiments. The investigations with only
one design parameter were unsuccessful due to the oscillatory dynamics typical for bioprocesses that
were conducted with different growth phases, varying substrate supply, and changing cell physiology.

The results discussed above motivate us to apply the methods in other bioprocesses that are
realized under homogenous or inhomogeneous cultivation conditions. As a result, a new tuning
procedure is proposed in this paper that reduces the number of SS design parameters. The effectiveness
of the proposed scheme is demonstrated using experimental data of a real process.

2. Monitoring of the Unknown Kinetics

The proposed approach can be considered as an extension of the previously described method of
a model-based software sensor [4].

2.1. New Formalization of the Process Kinetics

The bioprocess kinetics describe the rates (fluxes) of biochemical reactions of the process as
functions of concentrations, pH, temperature, etc.

In the considered case, it is presented as product of two unknown time-varying terms as follows:

φm(t) = Y(t)ϕ(t), (1)

where φm(t)—the vector of known kinetics; ϕ(t)—the key kinetic parameter, which describes
the dynamics of the main state variables; and Y(t)—the vector of yield coefficients comprising
remaining parts of the state variables’ kinetics.

This presentation of the kinetics is a novelty, as both terms are unknown time-varying parameters
with a clear physical meaning.



Processes 2020, 8, 1307 3 of 14

The maximal dimension, m, of the vector of known kinetics, φm(t), and the vector of unknown
yield coefficients, Y(t), is three. In the case of m > 3, problems of the software sensor design arise as it
is shown below.

2.2. Structure of the General Software Sensor

For linearization of relations between yield coefficients and the key parameter, the following
vector of auxiliary parameters WY and the auxiliary parameter Wϕ are introduced:

Wϕ = ln(ϕ), (2)

WY = ln(Y), (3)

where WY =
[
Wy1 , . . . , Wyi

]T
is with elements Wyi = ln(Yi), i = 1, 2 or i = 1, 2, 3.

Through the differentiation of Equations (1)–(3), the following dynamic equations of φm(t)
elements are obtained:

dφmi(t)
φmidt

=
dϕ
ϕdt

+
dYi
Yidt

=
dWϕ

dt
+

dWyi

dt
, i = 1, 2 or i = 1, 2, 3. (4)

The dynamics of the vector WY can be presented as a function of φm(t), its time-derivative
and time-derivative of Wϕ, as follows:

dWyi

dt
=

dφmi(t)
φmidt

−
dWϕ

dt
. (5)

Applying the natural logarithm to the vector φm(t) (Equations (1)–(3)), the following relationship
is obtained:

lnφmi(t) = ln Yi(t) + lnϕ(t) = Wyi(t) + Wϕ(t). (6)

Equations (4)–(6) determine the linear structure of the software sensor of parameters WY and Wϕ,
described with the following equations:

dŴY

dt
=

dφm

φmdt
− p̂ +ω

(
lnφm − ŴY − Ŵϕ

)
, (7)

dŴϕ

dt
= p̂ + γT

(
lnφm − ŴY − Ŵϕ

)
, (8)

dp̂
dt

= ΨT
(
lnφm − ŴY − Ŵϕ

)
, (9)

where φm(t) =
[
φm1 , . . . ,φmi

]T
, p̂ = [p̂1, . . . , p̂i] with p̂1 = p̂i = p̂;

ŴY =
[
Ŵy1 , . . . , Ŵyi

]T
, Ŵϕ =

[
Ŵϕ1 , . . . , Ŵϕi

]T
, Ŵϕ1= Ŵϕi = Ŵϕ;

γ(t) = [γ1, . . . , γi]
T, Ψ(t) = [ψ1, . . . , ψi]

T, i = 1, 2 or i = 1, 2, 3;

ω =

∣∣∣∣∣∣ ω1 0
0 ω2

∣∣∣∣∣∣ or ω =

∣∣∣∣∣∣∣∣∣
ω1 0 0
0 ω2 0
0 0 ω3

∣∣∣∣∣∣∣∣∣.
ω, γ, and Ψ are a diagonal matrix and vectors, of which the elements are tuning parameters of

software sensor system (7), respectively. Since Equations (8) and (9) are scalar quantities, system (7)
is of fourth or fifth order depending on the number of measurements. The structure is derived by

the assumption that
dŴϕ

dt = p̂ and the dynamics of the estimate of p depends on the estimation errors



Processes 2020, 8, 1307 4 of 14

according to Equation (9). The estimates Ŷ(t) and ϕ̂(t) are obtained by applying reverse functions on
Equations (2) and (3) as follows:

Ŷ(t) = exp
(
ŴY

)
, (10)

ϕ̂(t) = exp
(
Ŵϕ

)
. (11)

The general structure of software sensor Equations (7)–(9) is given in Figure 1. The inputs and kinetics
formalization are presented by Equation (1). The auxiliary variables are calculated using Equations (2)
and (3). Linearization is carried out according to Equations (4)–(6). The software sensor is described by
system (7–9). The outputs are obtained by the reverse transformations using Equations (10) and (11).
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Figure 1. General structure of kinetics software sensor.

The application of the original idea for the linearization of kinetics, by representing it in logarithmic
form, leads to the derivation of a linear structure of the software sensor, system (7–9). This allowed us,
by applying the well-known linear control theory, to study the stability of both SS structures (fourth-
and fifth-order), as well as to reduce the number of SS’ design parameters to be tuned.

2.3. Stability Analysis

The following system of the estimation error dynamics is considered:

dx
dt

= Ax + u, (12)

where
x =

[
W̃Y W̃ϕ p̃

]T
, W̃Y = WY − ŴY, W̃ϕ = Wϕ − Ŵϕ, p̃ = p− p̂;

x—the estimation error vector with dim = 4 or 5; WY, Wϕ, and p—‘true’ values of the parameters;
ŴY, Ŵϕ, and p̂—estimates of WY, Wϕ, and p;

A(m+2)×(m+2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−ω −ω −1

−γT
m∑
γ=1
−γi 1

−ΨT
m∑

Ψ=1
−ψi 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,ω =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−ω1

−ω2

−ω3

. . .
−ωm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, 1 =

[
1 1 . . . 1

]T
,

ω =

∣∣∣∣∣∣∣∣∣∣∣
−ω1 0 0 0

0 −ω2 0 0
0 0 . . . 0
0 0 0 −ωm

∣∣∣∣∣∣∣∣∣∣∣, u(m+2)×1 =
[
0 . . . 0 0 dp

dt

]T
, where ωi, γi, and ψi are the SS

design parameters.



Processes 2020, 8, 1307 5 of 14

The concrete presentation of matrix A is:

A(m+2)×(m+2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−ω1 0 0 0 −ω1 −1
0 −ω2 0 0 −ω2 −1
0 0 . . . 0 . . . . . .
0 0 0 −ωm −ωm −1m

−γ1 −γ2 . . . −γm −γ1 − γ2 . . . − γm 1
−ψ1 −ψ2 . . . −ψm −ψ1 −ψ2 . . . −ψm 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (13)

The analysis of the observability shows that the system (7–9) (for m = 1, 2, and 3) was not
completely observable, but detectable, which is equivalent to the existence of an asymptotically stable
linear observer of the state [28]. Therefore, the parameter tuning of estimator (7–9) cannot guarantee
exponential (arbitrarily chosen) convergence of estimates, but asymptotic convergence only.

The cases of m = 2 (fourth-order system) and m = 3 (fifth-order system) are considered below.
In the case of m > 3, the polynomial degree of matrix A is greater than five, which leads to problems of
the software sensor design [29].

2.3.1. Stability Analysis of the Fourth-Order System

The system stability is investigated based on the analysis of system (12), where matrix A and vectors
x and u are presented as:

A =

∣∣∣∣∣∣∣∣∣∣∣
−ω1 0 −ω1 −1

0 −ω2 −ω2 −1
−γ1 −γ2 −γ1 − γ2 1

−γ1 − γ2 −ψ2 −ψ1 −ψ2 0

∣∣∣∣∣∣∣∣∣∣∣; x =
[
W̃y1 W̃y2W̃ϕ p̃

]T
; u =

[
0 0 0

dp
dt

]T

. (14)

The characteristic polynomial of matrix A is:

λ4 + λ3(ω1 +ω2 + γ1 + γ2) + λ2(ω1ω2 + (ω1 +ω2)(γ1 + γ2) − ψ2 − γ1ω1) +

+ λ((ω1ω2 − ψ2)(γ1 + γ2) − ψ2ω1 − γ1ω1ω2) +ω1γ1ψ2 −ω2γ2ψ1 − ψ2(γ1 + γ2)ω1,
(15)

where λ is the variable of the characteristic polynomial.
If matrix A has four different Eigenvalues (λ1 ÷ λ4), the following system (including equalities

and inequalities) has to be solved to guarantee the stability:

λ1 + λ2 + λ3 + λ4 = −ω1 − ω2 − γ1 − γ2 < 0, (16)

λ1λ2 + λ3λ4 + (λ1 + λ2)(λ3 + λ4) =ω1ω2 + (ω1 +ω2)(γ1 + γ2) − ψ2 − γ1ω1 > 0, (17)

λ3λ4(λ1+ λ2) + λ1λ2(λ3+ λ4) = −(ω1ω2 − ψ2)(γ1 + γ2) + ψ2ω1 + γ1ω1ω2 < 0, (18)

λ1λ2λ3λ4 =ω1γ1ψ2 −ω2γ2ψ1 − ψ2(γ1 + γ2)ω1 > 0. (19)

Numerous variations of system (16-19) exist that lead to a solution of a system of four algebraic
equations with four Eigenvalues and six tuning parameters.
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2.3.2. Stability Analysis of the Fifth-Order System

Matrix A and vectors x and u are presented as follows:

A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−ω1 0 0 −ω1 −1
0 −ω2 0 −ω2 −1
0 0 −ω3 −ω3 −1
−γ1 −γ2 −γ3 −γ1 − γ2 − γ3 1
−ψ1 −ψ2 −ψ3 −ψ1 −ψ2 −ψ3 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
; x =

[
W̃y1 W̃y2W̃y3W̃ϕ p̃

]T
;

u =
[
0 0 0 0 dp

dt

]T
.

(20)

The characteristic polynomial of matrix A is:

λ5 + λ4(ω1 +ω2 +ω3 + γ1 + γ2 + γ3) + λ3(ω1ω2 +ω1ω3 +ω2ω3 +

(ω1 +ω2 +ω3)(γ1 + γ2 + γ3)) + λ2(ω1ω2ω3 + (ω2ω3 +ω1ω2 +ω1ω3)(γ1 + γ2 + γ3)) +

+ λ((ω1ω2ω3)(γ1+ γ2+ γ3) − ψ1γ2ω2 − ψ2γ3ω3) − ψ1γ2ω2ω3 − ψ2γ3ω1ω3.

(21)

In the case of the five different Eigenvalues λ1 ÷ λ5 of matrix A, the following system has to be
solved to guarantee stability:

λ1 + λ2 + λ3 + λ4 + λ5 = −ω1 −ω2 −ω3 − γ1 − γ2 − γ3 < 0, (22)

λ3λ4 + λ1λ2 + (λ1 + λ2)(λ3 + λ4) + λ5(λ1 + λ2 + λ3 + λ4) =

=ω1ω2 +ω1ω3 +ω2ω3 + (ω1 +ω2 +ω3)(γ1 + γ2 + γ3) > 0,
(23)

λ3λ4(λ1 + λ2) + λ1λ2(λ3 + λ4) + λ3λ4λ5 + λ1λ2λ5 + (λ1 + λ2)(λ3 + λ4)λ5 =

= −ω1ω2ω3 − (ω2ω3 +ω1ω2 +ω1ω3)(γ1 + γ2 + γ3) < 0,
(24)

λ1λ2λ3λ4 + λ3λ4λ5(λ1 + λ2) + λ1λ2λ5(λ3 + λ4) =

ω1ω2ω3(γ1 + γ2 + γ3) − ψ1γ2ω2 − ψ2γ3ω3 > 0,
(25)

λ1λ2λ3λ4λ5 = ψ1γ2ω2ω3 + ψ2γ3ω3ω1 < 0. (26)

The general presentation of the fifth-order polynomial cannot be solved algebraically using
finite number operations [29]. Many solutions of system (22–26) exist, presenting five algebraic
equations with five Eigenvalues and nine tuning parameters. The parameter’s tuning could be different
depending on the considered process and its dynamics, as it is shown in the example below.

3. Results and Discussion

3.1. Structure of the General Software Sensor

As a case study, a class of aerobic fed-batch processes carried out in homogenous conditions was
considered. An operational model was derived. The model describes the dynamics of the key variables
chosen from the expert’s point of view, as follows:

dX
dt

= φX(t)X −
F
V

X, (27)

dS1

dt
= −φS1(t)X +

F
V

S1m −
F
V

S1, (28)

dS2

dt
= −φS2(t)X −

F
V

S2 + Kla
(
C∗S2
− S2

)
, (29)

dRQ
dt

= qRQ(t), (30)
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dV
dt

= F, (31)

where X, S1, S2, and RQ are biomass, glucose, dissolved oxygen concentrations, and the respiratory
quotient, respectively; F—glucose feed rate; V—culture volume; S1m—glucose concentration in the feed;
Kla—oxygen transfer coefficient; C∗S2

—oxygen saturation concentration; φX(t), φS1(t), φS2(t)—rates of
biomass growth, substrate consumption and dissolved oxygen consumption, respectively; qRQ(t)—the
change of the ration between the specific rates of carbon dioxide production and oxygen consumption
qCO2(t)/qS2(t).

In the considered case, a linear relationship exists between the experimental data of the specific
oxygen consumption rate and the specific carbon dioxide producti on rate. This leads to problems
in software sensor design. For this reason, the respiratory quotient RQ was used, as calculated
from the on-line data of the off-gas analysis. As shown below, the relationship between the yield
coefficient,YRQ/S1(t), related to RQ, and yield coefficients with biological meaning, YX/S1 and Yeth/pyr,
is justified.

In practice, for the considered processes, on-line measurements of X,φS2(t), and RQ were available.
Using the observer-based estimators published by the authors of [16], from on-line measurements of X
and RQ, we received the rates φX(t) and qRQ(t), which together with φS2(t), were accepted as inputs
of the scheme from Figure 2.
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Following the general formalization, each rate, φX, φS2 , and qRQ, is presented as function of
two terms considered as unknown time-varying parameters: The glucose consumption

(
φS1(t)

)
as

common term and a yield coefficient
(
YX/S1(t), YS2/S1(t), YRQ/S1(t)

)
, comprising the remaining parts

of the corresponding kinetics:
φX(t) = φS1(t)YX/S1(t), (32)

φS2(t) = φS1(t)YS2/S1(t), (33)

qRQ(t) = φS1(t)YRQ/S1(t), (34)

Equations (30) and (34) were derived assuming that the changes of the respiratory quotient can be
expressed as:

dRQ
dt

= φS1(t)
(
1−YX/S1

)
kYeth/pyr, (35)
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where Yeth/pyr is the yield coefficient for ethanol production at the pyruvic acid branch point that is
specific for the considered processes. Since the respiratory quotient RQ characterizes the degree of
fermentative growth, it is postulated that its changes are proportional to the split of carbon toward
ethanol synthesis at the pyruvic acid branch point under substrate limited conditions. Hence, the yield
YRQ/S1(t) represent the term of Equation (34), including both ‘true’ yield coefficients, YX/S1 and Yeth/pyr,
as follows:

YRQ/S1(t) =
(
1−YX/S1

)
kYeth/pyr. (36)

The monitoring of the kinetics of the processes described by system (32)–(36) was reduced to
the estimation of four parameters—the yield coefficients YX/S1(t), YS2/S1(t), YRQ/S1(t) and the glucose
consumption rate φS1(t), which are outputs of the scheme shown in Figure 2. This figure repeats
the structure of the general SS from Figure 1, where the information about each component corresponds
to the considered case.

System (7–11), describing the general SS for the considered case, can be rewritten as follows:

dŴYX/S1

dt
=

dφX

φXdt
− p̂ +ω1

(
lnφX − ŴφS1

− ŴYX/S1

)
, (37)

dŴYS2/S1

dt
=

dφS2

φS2dt
− p̂ +ω2

(
lnφS2 − ŴφS1

− ŴYS2/S1

)
, (38)

dŴYRQ/S1

dt
=

dqRQ

qRQdt
− p̂ +ω3

(
ln qRQ − ŴφS1

− ŴYRQ/S1

)
, (39)

dŴφS1

dt
= p̂ + γ1

(
lnφX − ŴφS1

− ŴYX/S1

)
+ γ2

(
lnφS2 − ŴφS1

− ŴYS2/S1

)
, (40)

dp̂
dt

= ψ1
(
lnφX − ŴφS1

− ŴYX/S1

)
. (41)

This represents a fifth-order SS of the auxiliary variables WYX/S1
, WYS2/S1

, WYRQ/S1
, WφS1

.
The values of φX and qRQ, as well as their time-derivatives at the right side of Equations (37)
and (39), were obtained as explained above. The time-derivatives of φS2m in (38) were calculated by
numerical differentiation.

The outputs of the SS,YX/S1(t), YS2/S1(t), YRQ/S1(t), and φS1(t), are obtained by the reverse
functions:

ŶX/S1 = exp
(
ŴYX/S1

)
, (42)

ŶS2/S1 = exp
(
ŴYS2/S1

)
, (43)

ŶRQ/S1 = exp
(
ŴYRQ/S1

)
, (44)

φ̂S1 = exp
(
ŴφS1

)
. (45)

3.2. Tuning Procedure

The structure of the derived software sensor systems (37)–(45) was simplified in comparison to
the general structure (7)–(11). An optimal dimension of vectors γ and Ψ was proposed with the aim to
facilitate the tuning procedure. It was based on stability analysis of the system’s error.

Taking into account the dynamics of processes in homogenous conditions, it is accepted that:

λ1= λ2= λ3= λ4= λ5= λ. (46)



Processes 2020, 8, 1307 9 of 14

The value of λ can be obtained by an optimization procedure (minimization of the square of
sum of estimation errors) using experimental data of each of the investigated processes of the class
described by system (27)–(31):

sum
(
e2

)
= φ̃2

X + φ̃2
S2
+ q̃2

RQ → min, (47)

where
φ̃X(t) = φ̂X(t) − φ̂S1(t)ŶX/S1(t), (48)

φ̃S2(t) = φS2m(t) − φ̂S1(t)ŶS2/S1(t), (49)

q̃RQ(t) = q̂RQ(t) − φ̂S1(t)ŶRQ/S1(t), (50)

φ̂X(t) and q̂RQ(t) are estimates of φX and qRQ, obtained similarly to [16].
Estimates ŶX/S1(t), ŶS2/S1(t), ŶRQ/S1(t), and φ̂S1(t) were received by the system (37)–(45).

The calculation of the design parameters is based on the following stability conditions:

5λ = −ω1 −ω2 −ω3 < 0, (51)

10λ2 =ω2ω3 +ω1(ω2 +ω3) > 0, (52)

10λ3 = −ω1ω2ω3 < 0, (53)

5λ4 = −ω2γ2ψ1 > 0, (54)

λ5 =ω2ω3γ2ψ1 < 0. (55)

Based on (54) and (55), the following relation between the design parameterω3 and the Eigenvalue
is obtained:

ω3 = −λ/3 > 0. (56)

The following auxiliary parameters D, B, and C are introduced:

5λ = D < 0, (57)

10λ2 = B > 0, (58)

10λ3 = C < 0. (59)

Substituting the terms ω2ω3 and (ω2 + ω3) from (52) with their equivalents from
the Equations (53) and (51), respectively, the following third order polynomial of parameter ω1

is derived:
ω3

1 + Dω2
1 + Bω1 + C = 0. (60)

One of the roots of (60) is denoted as:

ω1 =
3

√
−

q
2
+

√
Q +

3

√
−

q
2
−

√
Q−

A
3

, (61)

where q = −2(D/3)3
− DB/3 + C, Q = (α/3)3 + (q/2)2, α = D2/3 + B.

The design parameter ω2 is calculated from (51):

ω2 = −ω1 −ω3 − D. (62)

The values of the parametersω3 andω1 are obtained from Equation (56) and Equation (61), respectively.
The value of the parameter γ2 is calculated from (55) by:

γ2 = λ5/ω2ω3ψ1. (63)
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To satisfy the stability condition (55), the value of ψ1 has to be negative. For the parameter γ1, we
assumed the relationship γ1 = γ2 > 0.

Realizing the steps from Equation (51) to Equation (63), the values of all tuning parameters were
received. The proposed tuning procedure reduced the SS design to choose of one tuning parameter only.

A fed-batch cultivation process of B. subtilis, carried out in the laboratory bioreactor, was considered
as being representative. Two experiments (Experiment I and Experiment II), carried out in STR, were
used for the demonstration of theoretical results [30].

The calculation of the specific oxygen uptake rate (qS2m) and carbon dioxide production rate
(qCO2m) was performed on the basis of a gas balance of the input and output flow using O2 and CO2

measurements in the off-gas. The specific oxygen uptake rate, cell dry weight, and respiratory quotient
RQ = qCO2m/qS2m were available as on-line measurements, which were used in the calculation of
the SS inputs.

The two sets of experimental data are shown in Figure 3. On-line measurements are shown in Figure 3a,c,d.
In Figure 3b, off-line measurements of glucose concentration are shown. Both experiments were performed
under the same conditions, but as it can be seen, they varied due to a lack of reproducibility of experiments. In
order to demonstrate adaptive performance of the proposed SS shown in Figure 2, the tuning of software
sensors was conducted using the data of Experiment I, while the data of the Experiment II were used
for validation.
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Figure 3. Inputs of software sensor: (a): biomass concentration, (b): glucose concentration, (c): specific
oxygen consumption rate, (d): respiratory coefficient. Experiment I measurements (red lines); Experiment
II measurements (black lines).

For investigations, a program package was prepared in a MATLAB environment (MATLAB R2019a,
the MathWorks, Inc., Natick, MA, USA, 2019). The package included software sensor systems (37)–(45)
and both sets of experimental data from Figure 3. The value λ = −42, used in the tuning procedure,
was obtained based on the optimization procedure with the criteria given in Equations (47)–(50).

Estimates of YX/S1(t), YS2/S1(t), YRQ/S1(t), andφS1(t) are shown in Figures 4 and 5. The estimation
results under the Experiment I are shown in Figure 4. The verification results are presented in
Figure 5. To show the accuracy of the outputs, their reference values were derived using laboratory
measurements of glucose concentration, S1. A discrete observer-based estimator allowed us to obtain
discrete estimates of glucose consumption rate, RS−re f = φS1−re f , for both experiments. The reference
values of YX/S1(t), YS2/S1(t), YRQ/S1(t) were calculated using relationships (32)–(34) and φS1−re f .
All reference values are shown in Figures 4 and 5 with points.
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Figure 4. Tuning using Experiment I measurements: Comparison between experimental data (points)
and estimates (red lines): (a): yield coefficient YX/S1 ; (b): yield coefficient YS2/S1 ; (c): yield coefficient
YRQ/S1 ; (d): glucose consumption rate.
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Figure 5. Verification using Experiment II measurements: Comparison between experimental data
(points) and estimates (red lines). (a): yield coefficient YX/S1 ; (b): yield coefficient YS2/S1 ; (c): yield
coefficient YRQ/S1 ; (d): glucose consumption rate.

As it can be seen from the results in Figures 4 and 5, the dynamics of the yield coefficients
and the substrate consumption rate had different profiles for the two experiments, although
the experiments were realized under homogeneous conditions. This can be explained with the dynamic
nature of bioprocesses and fluctuations in the strain performance. Comparing the two experiments,
the values of the yield coefficients retained the trend of change to some extent, while the rate of
consumption of the substrate slightly decreased in Experiment 1 (Figure 4d), but stayed more or less
constant in Experiment 2 (Figure 5d).

The results, shown in Figures 4 and 5, demonstrate the good performance and adaptive properties
of the proposed SS. As can be expected, the accuracy of the estimation and their convergence were better
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for the experiment used for the tuning of the estimator. The estimates converged to the corresponding
reference values with a mean relative error below 3%.

The simulations proved the reliability of the proposed methodology for real-time assessment.
By setting only one design parameter, a good accuracy of the estimates of each term of the kinetics
with a clear physical meaning was achieved. By verifying with data from another experiment,
the adaptability of the proposed approach was demonstrated.

4. Conclusions

In this paper, a general approach for kinetics monitoring of a class of biotechnological processes was
proposed. This class of processes is characterized by a relationship between measured and estimated
parameters that guarantees the synthesis of asymptotically stable SS.

The originality of this approach consists of its (i) presentation of the process kinetics with two
unknown time-varying parameters with clear physical meaning, (ii) derivation of a linear structure
of the SS using logarithmic transformations of these parameters that facilitate stability analysis,
and (iii) derivation of stable fourth- and fifth-order structures of the SS, satisfying conditions for
asymptotical stability.

The proposed approach was applied for the monitoring of process kinetics realized in homogeneous
conditions. The tuning procedure was reduced to one design parameter, which led to an automatic
calculation of the others. The adaptability of the proposed method was proven by its application to
two B. subtilis fed-batch cultivations. The tuning of the SS was realized with one set of experimental
data, and its validation was demonstrated by the other dataset. The accuracy of the obtained estimates
is good enough for monitoring of the process dynamics and can be applied for process investigations
and control design.

In comparison to our previous investigations, the presented methodology provides the possibility
to reduce the tuning procedure to only one tuning parameter.

The obtained results are a good basis to extend both the theoretical investigations and their
applications in the future. One of the possible directions of research is the integration of physiological
parameters that can be measured on-line. This will expand the applicability of the presented approach,
as there is a strong relationship between yield coefficient dynamics and the physiological state of cells.
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