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Abstract: For gold extraction, the most used extraction technique is the Merrill-Crow process, which
uses lixiviants as sodium or potassium cyanide for gold leaching at alkaline conditions. The cyanide
ion has an affinity not only for gold and silver, but for other metals in the ores, such as Al, Fe, Cu, Ni,
Zn, and other toxic metals like Hg, As, Cr, Co, Pb, Sn, and Mn. After the extraction stage, the resulting
wastewater is concentrated at alkaline conditions with concentrations up to 1000 ppm of metals.
Photocatalysis is an advanced oxidation process (AOP) able to generate a photoreaction in the solid
surface of a semiconductor activated by light. Although it is well known that photocatalytic processes
can remove metals in solution, there are no compilations about the researches on photocatalytic
removal of metals in wastewater with cyanide. Hence, this review comprises the existing applications
of photocatalytic processes to remove metal and in some cases recover cyanide from recalcitrant
wastewater from gold extraction. The use of this process, in general, requires the addition of several
scavengers in order to force the mechanism to a pathway where the electrons can be transferred to
the metal-cyanide matrices, or elsewhere the entire metallic cyanocomplex can be degraded by an
oxidative pathway.

Keywords: UV-LED; photoreactors; mining wastewater; cyanide; metal removal

1. Introduction

Gold has always had a high value since prehistoric times as ornaments in rituals, and it occupies
an essential role in the world economy. By mid-2017, the world gold reserves were around 33,450 metric
tons, with a demand of 4337 tons in 2016, destined for jewelry (47%), technology (7%), investments
(36%), and central banks (9%) [1].

The gold exploitation depends on the way it is present in minerals, and its extraction can be done
in the acid phase (pH < 3) with thiourea, thiocyanate, chlorine, aqua regia, ferric chloride; in neutral
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phase with thiosulfate, halogens, sulfuric acids, bacteria; and in alkaline phase (pH > 10) with cyanide,
ammonium cyanide, ammonium, sulfur, and nitriles [2,3]. However, the practical application of these
processes is limited to extraction in the alkaline phase using cyanide because of its high selectivity
with respect to gold [4–6].

Latin America and the developing countries exhibit one of the primary gold and silver exploitation
scenarios based on the leaching of ores with solvents, such as sodium cyanide (NaCN)—The
Merrill-Crowe Process. In this extraction process, the gold-concentrated effluent is later taken
to a precipitation stage with the use of zinc, called cementation [7]. The wastewater resulting from this
process is rich in heavy and non-heavy metals, poor of gold, and it contains dissolved silver, which is
very harmful to the environment [8]. The mining wastewater is well known to be the predominant
cause of pollution problems in surface water bodies (lakes and rivers). The problems, such as death,
due to poisoning, lead poisoning; cancer, due to chromium, blindness and congenital malformations,
are attributed to the contamination of surface and underground water sources [9]. Furthermore, heavy
metals in these waters could be bioaccumulated and present biomagnification causing serious health
effects, due to their high levels of toxicity [10–12]. Besides, mining wastewaters can show problems
of metal mobility and local cyanide release where they are stored; mining wastewaters are directly
discharged to tailings ponds for periods of three to six months where degradation is expected by the
sun (photolysis and evaporation) [13].

In large-scale operations, wastewater treatment is carried out with highly oxidizing processes,
such as chlorination, sulfur dioxide, hypochlorite oxidation, electrolytic oxidation, ozonation, use
of hydrogen peroxide, high thermal transformation, biological treatments, adsorption on activated
carbon, among others, usually at high oxidation conditions and operation cost [14].On the other hand,
advanced oxidation processes (AOPs) have the advantage of removing liquid and recalcitrant gaseous
matrices by non-selective chemical species. Among these processes, heterogeneous photocatalysis
(HPC) has received considerable attention as a promising technology, able to use renewable energy
from the sun. It is conventionally defined as the acceleration of the rate of a chemical reaction, induced
by the absorption of light by a catalyst or coexisting molecule. This definition of photocatalysis may be
the most widely accepted as it encompasses all aspects of the field, including photosensitization [15].

HPC is one of the AOPs that allows the elimination of toxic compounds in a non-selective
pathway, due to the generation of oxidizing species, such as the hydroxyl radical (•OH), perhydroxyl
radical (HOO•), superoxide (O2

•–), and photogenerated holes (h+), transforming recalcitrant and toxic
molecules into biodegradable or less harmful compounds [16]. Photocatalytic processes not only are
applied to oxidize recalcitrant organic matter, but also to promote reduction reactions. Some examples
are the photoreduction of benzaldehyde to benzyl alcohol, metallic ions, such as Fe3+, Cr6+, Hg2+,
Cu2+, inorganic nitrogen and carbon dioxide to formic acid, simulating part of artificial photosynthesis.

The photocatalytic reduction represents an option when traditional oxidative pathways are not
feasible and when the nature of semiconductor is able to transfer electrons at a high energy level on its
conduction band. Although the current applications of large-scale photocatalytic processes are scarce,
different assessments have been made for the contamination associated with gold mining wastewaters.
In this review, different photocatalytic processes used for the elimination of synthetic and real cyanide
matrices of gold extraction are explained and described.

2. Production and Characterization of Cyanide Wastewater

Cyanidation is used when gold is in the pyrite form and is not extractable by physical separation
methods. This process is carried out through the use of sodium cyanide in the alkaline phase and with
an excess of oxygen, as shown in Equation (1) [17]. Once Au is extracted from the ores, the gold is
precipitated by adding Zn (cementation), replacing the gold of the aurocyanide ion with zinc cyanide
and precipitating it in metallic form, as indicated in Equation (2). Although the efficiency of the process
is in the order of 99%, the wastewater has metal cyano-complexes strong acid dissociable (SAD), such
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as iron, copper, and cobalt, as well as weak acid dissociable (WAD), such as nickel, silver, zinc, and
arsenic [14].

Leaching or cyanidation:

4Au + 8NaCN + O2 + 2H2O→ 4Na[Au(CN)2] + 4NaOH (1)

Cementation:

2NaAu(CN)2 + 4NaCN + 2Zn + 2H2O→ 2Na2Zn(CN)4 + 2Au↓ + ↑H2 + 2NaOH (2)

Table 1 shows the metallic and semi-metallic cyano-composites, sorted by the logarithms of their
stability constants. Thus, the most unstable compound corresponds to the hydrogen cyanide in the gas
phase; the easily dissociable WAD corresponds to complexes of Cd, Zn, Ag, Ni, Cu, Cr, and the most
stable SAD correspond to complexes of Fe, Au, Co. The stability of strong complexes makes necessary
the use of tailings ponds for removing them by solar-evaporation [18].

Table 1. Stability of cyano-metallic complexes [19].

Group Species Toxicity [20] Stability Constant (Log Kn)

Free cyanide CN− High n.a.
HCN(g) 9.2

Simpler compounds:
Easily soluble

NaCN, KCN, Ca(CN)2,
Hg(CN)2, Zn(CN)2,

CuCN, Ni(CN)2, AgCN
High n.d.

Weak complex
(WAD—Weak Acid

Dissociable)

Cd(CN)2−
4 Intermediate 17.9

Cd(CN)−3 n.d.
Zn(CN)2−

4 19.6
Ag(CN)−2 20.5
Ni(CN)2−

4 30.2
Cu(CN)2−

3 21.6
Cr(CN)3−

6 n.a.
Cr(CN)3−

6 n.a.
Strong complexes

(SAD—Strong Acid
Dissociable)

Fe(CN)4−
6 35.4

Fe(CN)3−
6 Low 43.6

Au(CN)−2 38.3
Co(CN)3−

6 High 64.0
Unstable inorganic SCN−, CNO− High n.d.

Aliphatic organic
Acetonitrile,

acrylonitrile, adiponitrile,
propionitrile

Intermediate n.d.

On the other hand, weak complexes are easily hydrolyzable by changing the pH of the solution.
In principle, weak complexes tend to be destroyed over three months with or without photolysis;
however, strong complexes, such as Fe(CN)6

3–, Co(CN)6
3– remain over time, turning these waters into

recalcitrant. Additionally, degradation products, such as NH3/NH4
+, NO2

–, NO3
–, CNO–, sulfates,

and carbonates are formed by the slow rupture of cyano-metallic complexes. Thus, the resulting
wastewater (concentrated by these complexes) is not suitable for being poured into surface bodies of
water [13,21].

3. Existing Treatment Options

The existing treatment options of oxidative processes for the treatment of cyanide wastewater,
such as natural attenuation [18,22], chemical oxidation [23], thermal treatments, precipitation, biologic
oxidation [24–27], and ionic adsorption [28], are well documented [18]. Nonetheless, strictly
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photocatalytic treatments are scattered, and there is no clarity of existing photocatalytic processes
applications for degradation of cyanide complexes.

Figure 1 shows a relational diagram constructed with VOS Viewer® using technology watch
tools [29] on the main topics related to cyanide. In this figure, it is observed that the relationship
with the word “photocatalysis” is not very broad. However, it appears related to “activated carbon”
and “titanium dioxide” (in yellow). Likewise, other technologies appear, such as: “Biodegradation”,
“ozone”, “hydrogen peroxide”, “electroplating”, and “adsorption”. For this review, some applications of
photocatalytic processes used in the degradation of this type of cyano-metallic wastewater are depicted.
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4. Photocatalytic Treatment Alternatives

4.1. Classic Oxidative Photocatalysis

AOPs are generally based on mechanisms capable of producing profound changes in the chemical
structure of pollutants. Heterogeneous Photocatalysis (HPC) is a photochemical AOP where redox
reactions are promoted by the interaction of a semiconductor catalyst and photons, generating active
species able to degrade recalcitrant organic matter to allowable concentrations for final discharge [30].

Figure 2 shows the photocatalytic mechanism on a TiO2 particle. The photocatalytic process
initiates when a semiconductor is irradiated by photons (from solar or artificial light) whose energy is
equal or greater than the band-gap energy (Eg) of the semiconductor, promoting the electrons from
the balance band to the conduction band. Then, the electrons at the conduction band can react with
the adsorbed oxygen on the semiconductor surface to form superoxide radicals (O2

•–), and other
radicals with water, such as the perhydroxyl (HOO•) or generating reduction reactions by the direct or
indirect transfer with adsorbed compounds. On the other hand, the holes in the balance band can
react with the adsorbed water generating hydroxyl radicals (•OH), characteristics of the AOPs [31].
Conversely, it has also been evidenced that hydroxyl radicals are obtained by reduction of H2O2 and
not by direct oxidation of water adsorbed on the catalyst surface [32]. Furthermore, the holes in the
valence band can react directly with other adsorbed molecules as sacrificing agents oxidizing them to
simpler substances [32]. This final step is the most argued mechanism in the photocatalytic treatment
of recalcitrant molecules.
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In the case of the cyanide, the use of different catalysts, such as titanium dioxide, nickel oxide,
zinc oxide, platinum, zirconium, cadmium, and cobalt, have been studied for removing potassium
cyanide and sodium cyanide [33–50].

In general, all the photocatalytic evaluations are carried out using the oxidative chemical pathway
that works in the presence of oxygen. This process transforms the adsorbed substances in less toxic
compounds (nitrates, carbonates, carbon dioxide, and nitrogen). Table 2 shows the most applied
processes in matrices containing synthetic cyanide solutions of KCN and NaCN. It can be noticed that
the initial concentrations oscillate around 100 ppm of CN– (3.2 mM CN–). Moreover, photocatalytic
degradation with doped TiO2 and ZnO has been evaluated, with the main doping agents of Ce,
Ag, Zn, Pt, and Co. These photocatalysts have achieved degradations of free cyanide (over 8 and
10%) in oxic conditions and with artificial radiation using UV-C (light emitting diodes) LED light.
The photocatalytic evaluations in batch and continuous reactors for degradation of organic cyanide
compounds show how they have degraded and mineralized acetonitrile (CH3CN) in the gaseous and
liquid phase, obtaining better results with the gas phase [47].

Other combinations for free cyanide involve combined treatments of oxidation processes,
such as photocatalysis/ozone/electrolysis/electrocoagulation that achieved degradations greater than
90% [51–59]. Although in those photocatalytic evaluations, more than 90% of the substrate was removed.
Most of them were carried out with synthetic solutions of pure free cyanide, which does not address
the issue related to the metal-cyanide complex remediation at laboratory scale, as shown in Table 2.

The photocatalytic degradation of free cyanide is summarized in Figure 3. As mentioned before,
the oxidation is carried out by different pathways: Oxidation by holes (h+), oxidation by superoxide
(O2

•−) and oxidation by hydroxyl radicals (•OH). The reaction of CN− with radicals transforms it
into cyanate (CNO–), ammonium (NH4

+), nitrates (NO2
–, NO3

–) and carbonates (HCO3
–, CO3

2–).
Although these photocatalytic treatments were used for the degradation of free cyanide, all applications
were limited to synthetic solutions. Complexing agents like the metals in the ores represent the main
problem of mining wastewater.
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Table 2. Photocatalytic treatments applied to free cyanide matrices.

Year Substance [C0] Source of Light Wavelength Type of Reactor Degradation/Reaction
Time Catalyst Main Findings

1992 KCN
[100 ppm]

14 W UV Hg Low
Pressure 360 nm Compact Square batch

reactor 100%/60 min TiO2 P25
Achieve total degradation to nitrates and

cyanates. They find the CO2 in air bubbling as
harmful for the photocatalytic mechanism [33]

1999 NaCN, NaCNO [3.85 mM] Solar light Solar spectrum CPC pilot scale 100%/4.1 Einstein
accumulated TiO2 P25 Total degradation with solar light, but kinetics

is only related to accumulated energy [34]

2001 NaCN
[666 ppm CN−]

450 W, 700 W Hg
high-pressure

lamp
UV-A Laboratory Batch

1.5 mmol/h H2
produced at 70 ◦C and

700 W
NiO/TiO2

The process produced hydrogen and cyanate
from cyanide as a photocatalytic strategy of

remediation [50]

2002
Free Cyanide, phenol, atrazine,

EPTC, dichloroacetic acid, and Cr(VI)
among others.

Solar Solar spectrum Pilot-scale PSA–Solar
platform of Almeria 100%/N.D.

photo Fenton and
photocatalysis
applications.

Several experiments applied at a solar pilot
plant in Almeria with successful results [60]

2002 KCN
[100 ppm]

150W Hg medium
pressure lamp >300 nm Batch cylindrical 47%/2 h TiO2/SBA-15 Supported TiO2 on

SBA-15 and MCM-41

Achieved geometry optimization using the
support SBA. However, degradation resulted

low [43]

2002 NaCN
[100 ppm CN−]

150W Hg Medium
pressure n.a. Batch cylindrical 50%/350 min TiO2 Sol-gel method on

four different support

Achieved a low degradation of free cyanide
exploring a novel geometry configuration on

the TiO2 distribution [48]

2003 NaCN
[3.85 mM] n.a. n.a. n.a. 100%/420 min TiO2 P25

Although total degradation was achieved,
authors argue the photonic efficiency is very

low and radical recombination occurred. They
propose a very detail degradation kinetic

mechanism [61]

2004 KCN
[50 ppm]

450 W
High-pressure Hg

lamp
>300 nm binaural pyrex batch

with intern lamp n.a. TPA/TiO2, Cs-TPA/TiO2

They determine the interaction of CN−with
holes and electrons photogenerated. The Cs

resulted in photocatalytic inhibition [62].

2005 CH3CN (gas and liquid)
[24 mM]

500 W Hg medium
pressure lamp 365 nm

Annular photoreactor
steady state for liquid

and gas phase

21%/4 g gas phase
35%/5 g liquid phase

TiO2 anatase for gas, and
TiO2 P25 for the liquid

phase

Photocatalytic activity was low, and free
cyanide ions remain in solution [47]

2007

NH3, HCOOH, CN− from Electric
Power Plant wastewater

[10 ppm CN−, 1700 HCOOH, 150
ppm NH3]

150 W Hg lamp 190–280 nm Batch cylindrical
100% CN
90% NH3

100% HCOOH/10 min
TiO2 P25 + H2O2

Requires addition of H2O2 to enhance
photocatalytic degradation [45]
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Table 2. Cont.

Year Substance [C0] Source of Light Wavelength Type of Reactor Degradation/Reaction
Time Catalyst Main Findings

2007 KCN
[45 ppm CN−]

400 W Hg UV
Lamp >300 nm

Recirculating
cylindrical

photoreactor
5%/100 min Sol-gel TiO2/SiO2

Apply an optimization methodology to
optimize the photonic efficiency of the

photoreactor. However, a very low
photodegradation was evidenced [63]

2007 KCN
[40 ppm CN−]

400 W Hg medium
pressure lamp >300 nm Cylindrical with

reflector 95%/60 min
Three photocatalysts were
evaluated: TiO2 P25, DBH

TiO2, nanometric TiO2.

Evaluated the photocatalytic degradation with
three photocatalysts and with the addition of
O3. A good degradation was achieved but the

addition of O3 instead O2 resulted in
photocatalytic inhibition [59]

2008 KCN
[3.85 nM]

80 W and 36 W
Low-pressure

lamp
UV-A Cylindrical

photoreactor n.a. TiO2 P25, TiO2/SiO2

The authors proposed an intrinsic kinetic
model of cyanide degradation with an

accurate fitting of experimental data. The
study was more kinetic than a photocatalytic

evaluation [64]

2008 NaCN, gasification plant wastewater
[10 ppm CN−] Solar light

200 W/cm2 of
solar spectrum
concentrated

with a Fresnel
Lens

Cylindrical
photoreactor 100%/90 min TiO2 P25.

The evaluated the effect of solar light using a
Fresnel lens to concentrate energy. They

required the addition of H2O2 to achieve total
mineralization of free cyanide [46]

2008
KCNO, Fe+4

[1 mM CNO−]
[1 mM Fe+4]

n.a. UV-A Borosilicate glass
cylindrical

80% cyanate
degradation/120 min TIO2 P25

The process reduced ferrate(VI) and oxidated
cyanate in a Fe(VI)-TiO2-UV-NCO− system.

However, the role of the TiO2 in the
degradation was not specified. The possible

reduction-oxidation mechanism for Fe+4

reduction was not clarified [65]

2008 KCN [100 ppm CN−] 15 W Hg
low-pressure lamp UV-A Cylindrical batch 100%/350 min TiO2 P25

The degradation was done using 10.5 mM
EDTA as a hole scavenger. Addition of EDTA
evidenced an increase in the cyanide oxidation

to CNO− [49]

2009 KCN [30 ppm CN−] 400 W and 36 W
Blacklight lamp 365 nm Annular reactor 100%/120 min TiO2/SiO2

They evaluate and compared the scaling-up
process from laboratory to pilot plant, using
supported TiO2. Total elimination of cyanide

was achieved in both systems. Propose a
scaling up methodology for photoreactors [66]
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Table 2. Cont.

Year Substance [C0] Source of Light Wavelength Type of Reactor Degradation/Reaction
Time Catalyst Main Findings

2009 NaCN
[400 ppm] 450 W Halide lamp UV-A Cylindrical glass batch 90%/30 min

TiO2 nanoparticles
coupled with an

electrocoagulation
recovery

It is proposed a recovery technique using
electrocoagulation after a typical

photocatalytic cyanide degradation. A study
of TiO2 reuse was also performed [54]

2010 KCN [250 ppm] 8 W Hg lamp 365 nm Batch cylindrical 40%/100 min Ce-ZnO sonochemical
impregnation

Doping relations of 2% Ce-ZnO calcined at 500
◦C. This photocatalyst works better in the
visible region. There is an excess of light

applied to the system, which could mix the
photocatalysis with the photolysis effect on

CN− degradation [35]

2010 KCN
[11 mM CN–] 8 W Hg Lamp 365 nm Batch cylindrical

Reactor 86%/90 min Ag-ZnO sonochemical
impregnation synthesis

Ag-ZnO was found to be three times better
than ZnO pure [36]

2011 KCN [10 mM] 150 W halide and 8
W Hg UV lamp 365 nm UV Annular batch reactor 16%/150 min ZnO-TiO2

Photocatalytic activity was demonstrated but
with important radiant field losses in the

photoreactor [37]

2013 KCN [100 ppm] 150 W fluorescent
lamp 450 nm Batch cylindrical

reactor 98%/60 min
Pt-TiO2- hydroxyapatite.

Prepared by Sonic
method.

Hydroxyapatite enhanced the photocatalytic
behavior of bare suspended TiO2 [38]

2013 KCN [100 ppm] 150 W fluorescent
lamp 450 nm Batch annular reactor 100%/20 min

Pt/ZrO2-SiO2 prepared by
a photo-assisted

deposition method.

Evaluated the effect of catalyst load on the
reactor [39]

2014 KCN
[100 ppm]

150 W fluorescent
blue lamp 450 nm Batch cylindrical

reactor
100%/360 min 96%/240

min

Co-TiO2-SiO2 prepared by
a photo-assisted method

and impregnation.

Obtained the best catalyst load obtained at
0.08 g/L and a decreased in the TiO2 band-gap

with the total elimination of CN− [41]

2015 NaCN
[30 ppm] UV-LED

Not specified.
UV-A UV-B

UV-C

Submerged cylindrical
LED photoreactor 100%/>600 min TiO2 P25

Demonstrated the possibility of using LED as a
source of UV light in a photocatalytic

treatment. The most efficient was UV-C, due to
photolytic effect [21]

2015 KCN
[100 ppm]

500 W Xe bulb
lamp >420nm Pyrex reaction cell 100%/60 min MWCNT/Au-TiO2

They found carbon nanotubes beneficial for
photocatalytic degradation in the presence of

oxygen and visible light [67]
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Table 2. Cont.

Year Substance [C0] Source of Light Wavelength Type of Reactor Degradation/Reaction
Time Catalyst Main Findings

2015 KCN
[100 ppm] 700 W Xenon lamp n.a. Pyrex reaction cell 100%/5 h CeO2/KLTO

CeO2/KLTO enhanced the photocatalytic
activity compared to a photolytic effect at

750W/m2 [68]

2015 KCN
[100 ppm]

150 W Blue
fluorescent lamp >400 nm Horizontal cylinder

annular batch reactor 100%/30 min S-TiO2

Photocatalytic activity resulted enhanced with
the addition of S, being 0.3 wt %S-TiO2 the

most efficient with visible light [69]

2016 KCN
[150 ppm]

150 W Blue
fluorescent lamp >400 nm Pyrex cell reactor 100%/60 min Ag-Sm2O3

The Ag was beneficial for the photocatalytic
activity by 90% more than bare Sm2O3. The

catalyst is useful up to 5 times cycles [70]

2016 CN−

[100 ppm]
150 W Blue

fluorescent lamp n.a. Pyrex glass cylindrical 100%/70 min Pt/Ti-Al-MCM-41
The Pt addition to Ti-Al-MCM41 resulted in 10

times more efficient the suspended TiO2
photocatalytic activity [71]

2018 KCN
[30 ppm]

25 W metal halide
lamp, and UV

Lamp

365 nm and
400–700 nm Pyrex glass cylindrical 100%/350 min ZnO-CuPc

0.5wt%Zn-CuPc enhanced cyanide
degradation. However, the TiO2 P25 still
showed faster kinetic of degradation [72]

2019 NaCN
[0.18 mM CN−] 300 W Xe lamp >400 nm Quartz batch reactor 90%/150 min g-C3N4

−Nanosheets

Nanotubes exhibited good photocatalytic
activity, but it was the dissolved oxygen

played the most important role in the
oxidation of cyanide in visible light [73]

2019 KCN [10 ppm] Xe lamp 400–800 nm Pyrex glass cylindrical 89%/120 min B-ZnO
B-ZnO enhanced photocatalytic activity

compared to bare ZnO with visible light at low
cyanide concentrations [74]
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It is well-known that the application of photocatalytic processes for chemical remediation and
disinfection via hydroxyl radicals and holes oxidation has shown promising results. However, it is
possible to develop other types of photodegradation without direct oxidation. Since photocatalysis is
a redox process, the transformation of metallic ions and inorganic substances using the conduction
band (holes) instead the valence band (electrons) can be developed. This pathway depends on the
conduction and valence band energy level in the catalyst, the redox potential of the inorganic substance
and the pH of the solution. In most cases, the electron transfer to a substrate is favored in the absence
of oxygen in a process called reductive photocatalysis. Reductive photocatalysis has been applied
to substances with oxidation states similar to CO2, such as CCl4, which could hardly enhance the
oxidation of carbon via interaction with holes. Another example is the removal of transition metals in
the solution given their multivalences when the oxidation potential is very similar to the valence band
value [32].

4.2. Photoreduction of Metals

Photoreduction of metals was one of the first motivations for developing photocatalytic processes,
and it was intended to be applied for precious metals exploitation. The main differences between
photocatalysis with inorganic substances and photocatalysis with metals are (1) There are greater types
of states excited by the participation of metal orbitals and ligands, (2) Conversion from one state to
another is not always efficient, (3) Some excitations are achieved in the visible spectrum, (4) Heavy
metals form strong spin pairing in the orbitals, generating stable and long-tripled states, and (5) The
modular structure of the complexes does not allow radicals attacks, due to the organic substances.
However, the excitation process by electron transfer can occur by direct transfer of the electron from
the conduction band to substrates adsorbed on the surface of the catalyst; or indirect reduction by the
formation of a radical product of the oxidation of organic molecules of low repulsion with the complex.
Similarly, the presence of metals, such as Tl, Pb or Mn in solution has demonstrated their reductive
ability of metals in solution [75].

Photoreduction processes require the absence of molecular oxygen for avoiding the formation
of superoxide radical by transfer of the electron promoted to the conduction band. Furthermore,
the efficiency of the reducing mechanism can be improved by the action of a sacrificing agent that
is more selective for hydroxyl (•OH), hole (h+), and perhydroxyl (HOO•) oxidant radicals, so that
recombination is avoided and the probability of reducing other species adsorbed on the catalyst
increases [76]. This reductive mechanism can decrease the oxidation state of inorganic ions and metals
in solution, leading to smaller forms or their zero-valence state. This promotes the precipitation on
the semiconductor surface; nevertheless, it is required that the standard potential of the level of the
conduction band of the electron is sufficiently negative for generating the reduction half-reaction of the
metal [77].
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Figure 4 shows the different conduction and valence bands of some metal sulfides and oxides with
semiconductor properties. The standard potentials (NHE) of the conduction bands (upper) and valence
bands (lower) of each semiconductor are depicted. For the semiconductors with a conduction band
more negative than the H+/H2 redox couple potential, the predominant mechanism is the reduction of
adsorbed species; those are known as reductive semiconductors. In the opposite, for semiconductors
with a balance band more positive than the H2O/O2 redox couple, are considered oxidative catalysts,
generating oxidation reaction to adsorbates as its predominant mechanism.
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Figure 4. Relative position of the edges of the conduction and valence bands of some semiconductors.
Adapted from References [78,79].

As it can be seen in Figure 4, the sulfides of La, Zn and Mn have conduction bands more negative
than the H+/H2 redox potential, whereas metal oxides, such as Zr, Ni and BiTiO3 have valence bands
more positive for the H2O/O2 potential. Depending on the reduction potential of the metal or inorganic
ion in solution, the most suitable semiconductor will be selected for a photocatalytic desired reaction.
The most applied semiconductor catalyst in photocatalytic processes is the TiO2; however, it appears
in three different crystalline forms: Anatase, rutile, and brookite. From them, anatase and rutile
are the most used crystalline phases in photocatalytic processes and the most commonly used in
photocatalytic applications.

Few studies reported the photocatalytic reduction of metals in cyanide complexed matrices.
Table 3 shows some studies related to metallic cyano-complexes using photocatalytic processes. The
first evidence of solar-assisted TiO2 photocatalysis studies with real mining wastewater by using As,
Fe, Hg, Cu, and Zn complexed for precipitating metals, reported that three days were needed for
free cyanide elimination and 17 days to achieve 99% of Hg and As removal [44]. Other studies were
focused on the degradation of complex in synthetic samples and studied the degradation of Cu, Ni, Fe,
Co, Pb, Cr, Au, and As cyano-complexes.
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Table 3. Photocatalytic treatments of metallic cyano-complexes.

Year Matrix Light Source Wavelength Type of
Photoreactor

Removal/Reaction
Time Catalyst Main Finding

1995

Real mining wastewater
Cu(CN)3

2– [22 mM]
Zn(CN)4

2– [300 mM]
Fe(CN)6

4– [5.2 mM]
Fe [29 mM]
Hg [11 mM]
As [16 mM]

Solar light Solar spectrum Dish PVC 99% metal
removals/17 days TiO2 P25

All metal was removed with the
formation of metal-hydroxides and

nitrate [44]

2002 Fe(CN)6
3−

[0.64 mM]
150W Hg high
pressure lamp >300 nm Pyrex batch

photoreactor
50%/350 min for

SBA-15/TiO2
TiO2 MCA-41, SBA-15

The photocatalytic activity was
evaluated using two different

support for TiO2. The porous SBA-15
resulted in better degradation of
Fe(CN)6

3− but also for the free
cyanide mineralization [48].

2003 Fe(CN)6
3− [1 mM]

4W Hg low mercury
lamp and solar light >300 nm Cylindrical batch

100%/1.5 h solar
radiation, 77%/6 h

UV Lamp
TiO2 sol-gel

TiO2 resulted in a better way to
destroy Fe(CN)6

3−, however
resulting wastewater was rich in

cyanate and incomplete oxidation
was observed. Solar light exhibited

better degradation rates [80].

2004 CuCN [90 ppm CN–]
400 and 700 W halide

lamp medium
pressure Hg

UV Batch cylindrical
reactor 100%/180 min TiO2 in Raschig rings

support
Evaluated four different methods and
the hydrothermal was the best [81].

2004 NaCN, Cu(CN)3
2– [1 mM

NaCN], [10 mM Cu(CN)3
2–]

100 W high pressure
Hg lamp 228–420 nm

Batch annular
reactor bench

scale.
100%/150 min TiO2 P25

The ratio Cu:CN influences
photocatalytic degradation. A 10:1

ratio was the best for the process [82]

2005 AuCN2
– [75 mg/L AuCN2

−] 150 W medium
pressure Hg lamp 365 nm Beaker 86%/240 min TiO2/L

The recovery of free cyanide is made
adding methanol as •OH acceptor.
Thus, oxidation of CN– to CNO– is

avoided. The cyano-complex
AuCN2

− is the electron acceptor and
Au0 is deposited on the TiO2

particles [83]
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Table 3. Cont.

Year Matrix Light Source Wavelength Type of
Photoreactor

Removal/Reaction
Time Catalyst Main Finding

2005 [Fe(CN)6]3– and [Fe(CN)6]4–

[100 ppm CN– equivalent]
150 W Hg medium

pressure >320 nm Beaker 70%/240 min
TiO2 P25, TiO2/SiO2

prepared by sol-gel and
hydrothermal method.

The maximum degradation was
about 70% of the cyano-complex. It
requires additional treatment. Iron

complexes contaminated the
semiconductor [84]

2005

KCN, K3(Fe(CN)6),
KAu(CN)2 [3.85 mM KCN;
0.64 mM K3(Fe(CN)6); 0.38

mM KAu(CN)2]

150 W Hg medium
pressure 365 nm Beaker n.d. TiO2/GrSiO2, TiO2/SBA-15.

Different methods of support were
evaluated, 60% of TiO2/SBA-15

performed better for iron-complex
degradation [85]

2008 CNO− [0.5 mM] Fe(IV)
[1 mM]

Spectro line UV-A
lamp 365 nm Beaker 80%/120 min TiO2 P25 Degussa

There is an enhancement in the
cyanate degradation related to the

presence of ferrate [65]

2009 Real Wastewater from
Energy Plant UVA UVC 200–280; 320–400

nm Pilot photoreactor 100%/15 min FeSO4, H2O2

Although the study demonstrates the
ability of a pilot plant for cyanide

degradation, it only is evaluated the
degradation of free cyanide and not

of its complexes [57]

2013 KCN, Co(CN)6
3–,

Ni(CN)4
2– [100 µM]

15 W Hg low-pressure
lamp. n.d. Cylindrical

borosilicate reactor
Ni:90%/180 min,
Co: 30%/180 min TiO2 P25 suspension

Nickel removal was shown to be
achievable by photocatalysis;

however, cobalt removal is more
challenging [86]

2013 KCN, Co, Pb, Cr [100 ppm
CN–, Co, Pb, Cr]

Blacklight lamp and
blue light 365 nm Annular

photoreactor 100%/180 min TiO2/SiO2 sol-gel.

Synthesized photocatalyst could
degrade free cyanide and dissolved
Co, Pb, Cr. However, the evaluation
of metal photo-removal was not done

in the presence of cyanide [87]

2018 Fe(CN)6
3− [100 ppm] 30 W UV-LED 300–400 nm Mini CPC UVLED

photoreactor 70%/20 min TiO2 P25
Using UV-LED at 30W/m2 in a mini
CPC resulted better for recovery of
cyanide instead remediation [88]

2018 Fe(CN)6
3− [100 ppm] 5W UV-LED 300–400 nm UV baffled flat

plate reactor 60%/90 min TiO2 P25

Configuration resulted useful for
light harvesting, but it is required
more UV Power since the complex

was not complete degraded [89]
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Generally, the main characteristic of these photocatalytic treatments is the use of UV lamps with a
high irradiation capacity (about 150, 400 or 700 W) and in some cases metals are recovered by reducing
them to their zero valence state [37–41,46–48,50,54,59,62,63,66,81–86,90]. Nevertheless, photocatalytic
processes for stable metallic cyano-complexes destruction are not yet fully effective for the treatment
of mining wastewater, due to the presence of metal re-oxidation-redissolution and photocatalyst
poisoning by deposition.

It is known the role of chemisorbed oxygen in photooxidation reactions. The TiO2 chemistry
depends on the O2 coverage, temperature and the characteristics of the semiconductor crystalline phase.
Those studies are performed using molecules, such as Ar, Kr, N2, CO, CH4 in order to understand their
interaction with the adsorbed oxygen using a photon stimulated desorption. This technique has been
used to understand and monitor photochemical processes occurring on the surface of photocatalyst [91].
Although these methods require specialized equipment, practical applications require more investment.
A simpler method to understand the global mechanism is related to scavengers’ addition to the bulk of
the photocatalytic system.

In the case of metallic-cyanide matrices, the addition of scavengers increases the selective
photoreduction of the metals (charge transfer efficiency) without oxidizing the free cyanide. Thus,
several acceptors have been used as electron donors for hydroxyl, perhydroxyl, and holes. This
selectivity enhancement was used to precipitate Ag from a solution of sodium cyano-argentate and
sodium aurocyanide [83].

Table 4 shows examples of the main acceptors with which the mechanism studies on photocatalytic
degradations in several matrices have been carried out. Compounds, such as NaF, have been used
to inhibit the adsorption effect on the semiconductor particle and demonstrate the importance of the
degradation reaction in bulk and not on its surface [92]. Moreover, the application of radical scavengers
has been used to determine the main pathway that affects the photocatalytic degradation and to study
the selectivity for certain radicals.

Table 4. Several radical scavenger agents used in a typical photocatalytic degradation.

Scavengers Compound

Holes (h+)

Glucose [93]; formic acid, sulfuric acid [9,94]; sodium
oxalate [95]; ammonium oxalate [96,97];
4-methylimidozal [98]; EDTA [97,99,100]; KI
[92,100,101]; NH4

+ [102]; oxalic acid and methylene
blue [103]

Hydroxyl radical (•OH)
t-butanol [92,96,99]; isopropyl alcohol [97]; methanol
[100,104]; ethanol [101]; acetonitrile [101]; KBr [105];
terephthalic acid [106]

Electrons on the conduction band (e−) Fe3+, Cu2+, Ag+ [106,107]; AgNO3 [96]; Cr6+ [95];
KIO3 [102], (S2O8)2− [92]

Superoxide radical (O2
•−) Benzoquinone [96,97]
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4.3. Application of Traditional Photoreactors and LEDs in Mining Wastewater

Sunlight and UV lamps (as natural and artificial photon source, respectively) have been used
directly on photocatalytic processes with several reactor geometries, such as compound parabolic
concentrators (CPC), flat plates, spinning-discs, submerged lamps and microchannel among other
systems, in order to harvest light energy [108]. Nevertheless, available sunlight radiation is very
variable and depends on the weather condition, geography, time of the day and year. Reversely, UV
lamps as a source of UV photons for photocatalysis make this process more controllable, and it is a
better alternative for fine photochemistry. The development of semiconductors for being irradiated by
UV LED is a trending research topic and a promising source of photons. LED lamps have been replacing
traditional incandescent halide and fluorescent mercury lamps for a wide variety of applications.
The advantages of LEDs are not only the small geometry, versatility, and robustness but also a more
prolonged time life, a high electrical efficiency (more than 60%) and a capability for generating radiation
at a particular wavelength [109–111]. This type of artificial light has been used for water purification,
sterilization, protective coatings and photo sensors from the near visible, UV to the IR spectrum
range [112,113]. Table 5 shows the application of this type of diodes for photocatalytic processes as an
alternative to the treatment of other organic matrices. There is only a study that reported a successful
application for removal of free cyanide [21]; therefore, it can be an emerging solution for the issue of
availability of UV radiation from the sun by coupling with another renewable source of energy instead
using direct sunlight or traditional incandescent lamps.
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Table 5. LED emerging photoreactors.

Year Description Main Findings

2013 Phenol photodegradation using batch UV LED at 375 nm. It is reported that UV LEDs at 800 mW are 100 times more efficient in comparison with 12 and 16 W fluorescent
UV Lamps [114].

2013 Drinking water potabilization using UV LED at 365 nm Natural organic matter and emerging pollutants were removed from drinking water. It is concluded that the
photoreactor design with this type of light is more critical than the catalyst load [111].

2014 Used in the dyes photodegradation, organic matter of air
and water.

Proved the capability of organic matter using this type of light, which is better in term of the photoreactor size,
energy consumption [110].

2014 Oxytetracycline and 17-α-etinil estradiol as agriculture
antibiotic degradation using UV LED light. Reached a 100% degradation of total organic carbon with cumulative energy of about 12.5 kJ/L [115].

2014 Acetonitrile degradation in Green blue and red LED
photoreactor with C-N TiO2. Degradation of about 100% was achieved in 2 h using low power (3 W) LEDs [116].

2014 Chromium photoreduction using CdS and TiO2 with white
LED photoreactor. The removal of chromium was about 93% in 240 min of reaction [117].

2014 Methyl orange degradation modeling applying Controlled
Periodic Illumination in a UV LED photoreactor.

It was found that Langmuir-Hinshelwood kinetics do not describe well the photoreactor operating at
Controlled Periodic Illumination. Novel mathematic modeling is required for pulsed photoreactors [118].

2014 Selective photocatalytic reduction of nitrobenzene carried
out by UV LED light.

The transformation of nitrobenzene to aniline was achieved using ethanol as the electron donor with 100% of
conversion [119].

2014 Evaluation of nitro-aromatic compounds using CdS as the
catalyst.

The photoreactor uses a visible LED to enhance photoreduction of amines using methanol and isopropanol as
electron donors (hole scavenger). The conversion was about 90% with a selectivity of about 71% [120].

2014 A CFD simulation experimental and validation of a UV
LED photoreactor for Escherichia coli disinfection.

The CFD established the best amount of irradiation, flowrate and photoreactor dimension in which best photo
absorption is achieved for E. coli disinfection [121].

2014 Methyl orange degradation under Controlled Periodic
Illumination with a UV LED.

The Controlled Periodic Illumination demonstrated being more critical in the photonic efficiency when the
ON-OFF period is closer to the characteristic time of the reaction. Also proposes photo-reductive degradation
instead of a photooxidation mechanism [122].

2014 Methyl ketone degradation using UV-vis LED with
supported TiO2 in alveolar foam. The removal was 100% of methyl ketone in 600 min of reaction using 56 LEDs [123].
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Table 5. Cont.

Year Description Main Findings

2014 Photoreactor using graphene oxide ZnO for methylene blue
degradation.

Degradation of 100% of Methylene blue is achieved in 150 min using UV-A LEDs. Graphene oxide resulted in
photocatalytic degradation enhancement than Degussa P25 [124].

2014 Evaluation of FeFNS-TiO2 activated by LED in pesticides
mineralization. Degradation of 90% achieved in 100 min of reaction [125]

2015 E. coli disinfection modeling in a LED photoreactor Bacteria deactivation achieved in 120 min using TiO2 in an annular LED UV-A photoreactor [126].

2015 Direct Red 23 degradation in a continuous UV LED
photoreactor assisted with S2O8

2− Complete oxidation of Direct Red 23 is done in homogeneous photocatalysis and 72 UV-LED units [127].

2015 Uses a photoreactor with UV-A LED for phenol and
plywood mill wastewater treatment.

Demonstrated a photocatalytic degradation of phenol about >90% in 13 min and total removal of tannic acid in
plywood mill wastewater in 43 min [128].

2015 Free cyanide degradation by the oxidative pathway in
synthetic wastewater.

Demonstrated the free cyanide degradation in more than 10 h, using LEDs at UVA, UVB, and UVC. The last one
was the most effective in photooxidation [21].

2017 Methylene blue degradation in a mini-CPC photoreactor. Evaluated two systems in a coupled mini CPC and a traditional beaker with external UV-A LED illumination.
Demonstrated the capability of the mini CPC in harvesting LED Light in the degradation [129].

2018 CFD simulation to enhance LED light utilization and
evaluation in iron cyano-metalic complexes. Demonstrated the utilization of a baffled plat plate photoreactor is useful for UV-LED light harvesting [89].

2018 Iron cyanocomplexes degraded in anoxic conditions using a
mini-CPC UV LED photoreactor

Achieved the photoreduction of iron and free cyanide liberation as a strategy of recovery instead remediation
for this iron cyanocomplex [88].
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5. Conclusions

In this review, the state-of-the-art in the application of photocatalytic processes for the
decontamination of synthetic and real cyanide wastewaters was presented. Photocatalytic processes
can be effective for removing free cyanide content via oxidative pathways. Complexed cyano-metallic
compounds are less studied in photoreactors, and usually, it requires the modification of selectivity by
applying electron donors as scavengers of unwanted radicals in order to enhance charge transfer to the
cyano-complex. The metal removal from inorganic cyanide matrices using photocatalytic processes
has been explored, and the direct metal reduction on the conduction band appears to be the main
mechanism as an electron acceptor at the conduction band. The use of unconventional UV LED lamps
represents a growing area for development of photoreactors. Likewise, little evidence has been found
of the treatment of metallic cyano-complexes from mining activities by using this type of UV source,
and the existing applications are not aimed at improving the use of photons in the illuminated area.
Although the evidence shows UV-vis LED application for other types of organic compounds, the
knowledge about its use for the elimination or treatment of inorganic substances is still scarce. As far
as it is known, none of the studies has compared the performance of the processes between different
types of radiation sources at different wavelengths for cyanide wastewater treatment using UV LED.
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