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Abstract: Industrial archived process data represent a convenient source of information for data-driven
models, such as artificial neural network (ANN), that can be used for safety and efficiency improvement
like early or even predictive fault detection and diagnosis (FDD). Nonetheless, most of the data
used for model generation are representative of the process nominal states and therefore are not
enough for classification problems intended to determine abnormal process conditions. This work
proposes the use of techniques to augment the original real data standards, dismissing the need for
experiments that could jeopardize process safety. It uses the Monte Carlo technique to artificially
increase the number of model inputs coupled to the nearest neighbor search (NNS) by geometric
distances to consistently classify the generated patterns in normal or faulty statuses. Finally, a radial
basis function neural network is trained with the augmented data. The methodology was validated
by a study case in which 3381 pulp and paper industrial data points were expanded to monitor the
formation of particles in a recovery boiler. Only 5.8% of the original process data were examples of
faulty conditions, but the new expanded and balanced data collection leveraged the classification
performance of the neural network, allowing its future use for monitoring purpose.

Keywords: machine learning; neural networks; Monte Carlo technique; data-driven; FDD; study
case; pulp and paper industry

1. Introduction

Even though modern process control systems in chemical industries are highly automatic,
the automation of abnormal situation management is yet to be accomplished. According to
Venkatasubramanian [1], the UK loses 27 billion dollars per year due to abnormal situations, and
Vásquez and co-workers [2] report that the economic losses of the petrochemical industry in the USA
are up to 20 billion dollars per year.

Continuous process monitoring in association with fault detection and diagnosis (FDD) tools
might contribute greatly to achieve operational excellence by optimizing maintenance interventions
and avoiding unplanned shutdowns and even preventing accidents.

Several approaches have been developed over the years to cope with the FDD issues in industrial
processes. Venkatasubramanian, Rengaswamy, and Kavuri [3–5] summarize and review the main
characteristics of the techniques described in the literature. Nonetheless, the size and complexity of
chemical process industries and the increasing amount of data available in this digital era endorse
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the use of data-based FDD techniques, such as neural network algorithms and multivariate statistical
methods [6]. Ragabab and co-workers, Casanova-Peláez and co-workers, and Leiviskä [7–9] are some
examples of data-driven FDD applications in chemical processes applications.

There are still many challenges until FDD becomes widespread in industrial applications. Most of
the historical data used for model generation are representative of process nominal states. Therefore,
the data collection contains limited information, corresponding to a specific time window and is
possibly limited to a set of operational states’ space regions. In industrial processes, the low data of
faulty conditions or non-uniform data distributions are common because processes are not allowed to
operate in faulty scenarios for safety reasons. When data distributions are unbalanced, it is difficult
to use the data information samples to construct an accurate classifier for conventional machine
learning algorithms [10]. The categories with low data, such as unusual faults, are easily neglected and
submerged by the situations with a large amount of samples, and the classification algorithm becomes
biased towards majority classes [11].

Venkatasubramanian [12] highlights that a drawback of machine learning data-centered techniques
is that a tremendous amount of data is required. Even though we collect much more data now than we
did in the past, the chemical processes “big data” domain is not like finance, vision, game playing,
and speech domains. Chemical processes data usually deal with incomplete and noisy measurements.
Clinical decision making [13] and civil and structural engineering [14] are also subjected to such
data issues.

Many research efforts to address the unbalanced dataset issue focus on two different approaches:
Improved algorithms and data preprocessing techniques [10]. The improved algorithms do not
create a balanced data distribution. Instead, they highlight the unbalanced learning problem by
using cost-sensitive learning, ensemble learning, or probability density changes techniques [15–18].
Nonetheless, too many computational resources and time are consumed by algorithm-level methods [15].

The data-level approach consists of re-sampling methods, which mainly include increasing the
number of minority examples by replicating observations in the original dataset—over-sampling—or
decreasing the number of majority examples by removing some of them—under-sampling [19–22].
Duplications and uncertainties are introduced by re-sampling methods that might lead to overfitting
or loss of information [15].

Data augmentation (DA) seems to be an alternative to overcome the unbalanced dataset issue
by artificially inflating the training set with label-preserving transformations [23]. DA methods are
traditionally used in the image domain to synthesize data samples by geometric transformations,
such as rotation, brighten, clips, flips, and channel alterations [24]. This DA approach is called
data warping [15], a computationally inexpensive method [25], which generates additional samples
through transformations applied in the data space. However, the generated data is just a surfaced
transformation of the original data, and the traditional transformation technique can only be used
in the image sets [26]. Another DA approach for creating additional training samples is synthetic
over-sampling, which creates additional samples in the feature space [15]. This scheme has the ability to
generate a greater variety of data [23]. Previous researches demonstrated that data augmentation works
as a regularizer that avoids overfitting and improves model performance. Zaifeng et al. [27] focused
on image analysis with augmented data. Huang and co-workers [28] used a generative adversarial
network with a gradient penalty (GAN) data augmentation technique for marine organisms’ detection
and recognition, and Gao et al. [11] used GAN-based data augmentation to deal with unbalanced
data sets for FDD in chemical industrial benchmarks. Zhou et al. [29] also used GAN to generate
more discriminant fault samples. The authors of [30–32] discussed synthetic minority over-sampling
technique (SMOTE) applications.

The pulp and paper industry is one of the largest industries in the world, considering that
paper has many powerful benefits to human society through education, communication, security, and
hygiene. The world’s paper production was around 406 million tons in 2015 and it is expected to reach
482 million tons by 2030. Brazil is the fourth largest producer of pulp in the world and the ninth largest
producer of paper [33]. Nevertheless, in recent years, pulp and paper mills have faced challenges
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concerning energy efficiency mechanisms and management of the resulting pollutants, considering the
environmental feedbacks and the competitive markets [34].

Globally, more than half of the produced paper is used for packaging (cartonboard and
containerboard). There have been substantial reductions in the consumption of printing and writing
paper since 2010, which represents a 25% reduction in the volume of paper use. In the last years,
sanitary paper consumption represents the highest growth rate, although it accounts for less than 10%
of the global volume at the present [34].

The kraft process is the dominant chemical route in the paper industry and uses sodium hydroxide
(NaOH) and sodium sulphide (Na2S) to pulp wood [35]. In this process, the wood is dissolved in
pulping chemicals to form a liquid stream called weak black liquor (BL). The BL is washed out from
the pulp and is sent to the kraft recovery boiler, where the inorganic pulping chemicals are recovered
for reuse. Meanwhile, the dissolved organics are used as fuel to generate steam and power. In this
process, every ton of produced pulp generates about 10 tons of weak black liquor or about 1.5 tons of
black liquor dry solids that need to be processed through the chemical recovery process [36].

BL is the fifth most important fuel in the world. Every year, 1.3 billion tons of BL are processed in
recovery boilers worldwide, recovering 15 million tons of cooking chemicals, reducing the amount of
waste, and producing 700 million tons of steam at elevated pressure [35,37,38].

Despite its importance for increasing the process efficiency and reducing environmental impacts,
the kraft recovery process is difficult to operate. Typical recovery boiler problems include the fouling
of heat transfer tubes and plugging of flue gas passages by fireside deposits, which cause low steam
production, blackouts, and air emissions, and lead to unscheduled operational shutdown [36]. Many
of the recovery boiler’s issues might be caused by particle formation and deposition, a slow dynamic
phenomenon that is difficult to monitor and predict.

Usually, slow dynamic phenomena are difficult to track and demand maintenance interventions
like cleaning and regeneration procedures [39]. Therefore, the number of particles formed inside the
boiler is a parameter that assists the evaluation of the operation, and the frequency of maintenance
interventions can be reduced by using it as a process control variable.

The complex nature of the formation of particulate material inside the boiler makes it difficult
to develop conventional mathematical models based on analytical and phenomenological methods.
As a result, the use of artificial intelligence and machine learning techniques are an alternative to
address this limitation. Artificial neural networks (ANNs) are processing techniques that use empirical
information to generate complex system models through the identification and generalization of
patterns found in a given data set. They are endowed with the capacity of learning from examples and
are part of the artificial intelligence and machine learning methods.

This work proposes the use of the Monte Carlo simulation to artificially increase the amount
of the original real data collection, leading to an expanded and widespread data set that represents
nominal steady states and faulty conditions. The methodology used geometric distances and the nearest
neighbors search to preserve the phenomenological characteristics of the original data set. The suggested
technique was validated in a pulp and paper industrial study case wherein 3381 process data standards
were expanded to monitor the formation of particles in a recovery boiler—a key equipment in kraft’s
pulp and paper production plants. The new expanded and balanced data collection was used to develop
an artificial neural network model to classify the operational status as normal or failure, allowing its
future use for monitoring.

The paper is structured as follows: In Section 2, the industrial study case is presented, the real
process data set characteristics are explained, and the normal and faulty scenarios are described.
In Section 3, the data augmentation methodology and the model development steps are described.
It includes the description of the statistical metrics used to assess the methodology performance:
receiver operating characteristic (ROC) curve, confusion matrix, and true and false positive/negative
ratios. In Section 4, the results are presented and compared to regular machine learning-based FDD
model development and to previous research in the literature. The paper ends with the presentation of
the main conclusions.
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2. Case Study

This study presents real operational data of an important Brazilian pulp and paper mill, whose
name was omitted for confidentiality. The data set corresponds to 12 months of operation of the recovery
boiler of a kraft production process and includes 12 process variables and 3381 cases, acquired through
the industrial SCADA system [40]. Table 1 shows the process variables and their physical description.

Table 1. Industrial process variables.

TAG Description Units

Vvlu Black liquor feed flow rate m3/h
x Solids concentration in black liquor feed %

Tlu Black liquor feed temperature ◦C
Var1 Primary air flow rate ton/h
Var2 Secondary air flow rate ton/h
Var3 Tertiary air flow rate ton/h
Par1 Primary air feed pressure mmH2O
Par2 Secondary air feed pressure mmH2O
Tar1 Primary air feed temperature ◦C
Tar2 Secondary air feed temperature ◦C

Pl Black liquor feed pressure Kgf/cm2

Epart Number of formed particles Particles/min

The Epart value is defined as the average number of particles formed inside the boiler that are
dragged by the gas flow in the furnace at the entrance of the superheater region. Measurements are
made by means of image processing captured by two cameras on both the right and left sides of the
superheater section.

The operational data collected was preprocessed to deal with spurious data. Whenever the
difference between the two camera sensors was greater than 100 particles per minute the operational
case was withdrawn [40]. The Epart values ranged from 9.62 up to 806.12 particles per minute, where
200 particles per minute corresponds to normal operating conditions. This threshold is exceeded
sometimes, characterizing the fault operating condition. There are 197 operational cases wherein the
Epart values were greater than 200 particles per minute (5.8% of the total).

Figure 1 shows the real process operating conditions in which a faulty status is characterized by an
average number of particles greater than 200/min. A non-uniform distribution is expected because the
data points were gathered during routine operation in order to monitor the process and not to perform
an experimental scan of all possible Epart values. The low number of points with high Epart values
(above 200) shows that the boiler works most of the time within the desired operating conditions.Processes 2020, 8, x FOR PEER REVIEW 5 of 15 
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Figure 1. Average number of particles/min in regular operation.
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However, when the data is poorly distributed, the network training process can be impaired, a
relevant issue for process control and FDD applications. For instance, if a certain class presents enough
training standards, the network will classify with a high accuracy rate the data belonging to this specific
class. However, if a class is not well trained, the network will be unable to perform generalization and
will not classify future entries belonging to it. Thus, it is possible that the network presents a high
overall performance, once it can classify most of the operational cases correctly. Yet, it performs poorly
for one of the classes, which is not desired. In process control, a network that represents the normal
operating situations well but cannot represent an abnormal situation might lead to unsafe scenarios.

3. Methodology

Monte Carlo simulation is a powerful statistical analysis tool that does not require physical
experiments and conducts a large number of computerized experiments. It is named after the city of
Monte Carlo in Monaco, which is famous for gambling, because it involves generating chance variables
and exhibits random behaviors. It is particularly suitable for solving complex engineering problems
because it can deal with many random variables, various distribution types, and highly nonlinear
engineering models [41].

The Monte Carlo combined with a clustering technique implemented here for data augmentation
can be depicted in three steps, as shown in Figure 2. In Monte Carlo-based step 1, n pseudo-random
input variables with a normal distribution are generated using an algorithm in C programming language
(see Equation (1)). Rand is a pseudo-random number that ranges between 0 and 1. The minimum
and maximum values are limited to the real process data range and the number of generated cases
is defined by the user. This step led to a large matrix with 11 columns—one for each input process
variable—and n lines:

P = DMin + (DMax −DMin ) ∗ rand. (1)
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Then, the values of the output variable are calculated through the performance function at the n
cases: A combination of geometric distance measurements with clustering analysis that establishes a



Processes 2019, 7, 958 6 of 14

decision rule to classify the n cases depending on the process features. This work used square Euclidian
distances between the process plant data and the simulated data and the nearest neighbors search to
define whether the operation was under normal or faulty conditions. The geometric distances were
weighted by the inverse of the maximum values of the input (DjMax) process variables to avoid the
influence of their magnitude order, according to Equation (2):

Distkj =
∑ (

D j,i − Pk
)2

D jMax
; k = 1 : n i = 1 : l, (2)

where:

n—number of generated cases;
l—length of real process data matrix;
Dj—real process data matrix;
Pk—simulated process data matrix; and
Djmax—real process data maximum values.

In step 2, the nearest neighbors clustered operational conditions alike to the simulated case
being evaluated. The output variable (class) was hence determined by the arithmetic mean of the
nearest neighbors classes, keeping the original real data representativity (true label) in the augmented
categorical data collection.

By performing the output analysis of step 3, if the output data set retains the original unbalanced
distribution, it is possible to resample it so that the new data collection exhibits a uniform distribution.

The statistical characteristics of the experiments (model outputs), such as data correlation, are
observed and used to develop classification models intended for process fault detection and diagnosis
(FDD) (Figure 3).
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Radial basis function networks (RBFNs) were developed in the commercial software STATISTICA®

(version 12, Stata®, TX, USA, 2013), using uniformly distributed simulated data sets that differed
in size. RBFN typically outperforms other traditional machine learning algorithms for classification
problems when there is a representative training data set because they use an explicit similarity-metric
classifier to make decisions, leading to a more robust decision boundary [42]. Figure 4 presents the
RBFN three-layer neural network scheme, in which the input vector is the first layer, the hidden layer
containing the radial basis function neurons is the second layer, and the output layer consisting of
linear neurons is the third layer.

The activation function of the hidden neurons is the Gaussian function, in which each neuron is
represented by a bell curve centered at a given input value, called c. When a new input, s, is presented
to the network, the neuron activation function classifies its similarity to all of the neurons of the
network. The activation region is determined as a function of the Euclidean distance between the s
input vectors and their center, c, weighted by the constant scale factor, σ (Equation (3)):

f
(
c j, σ j

)
= e

(−
‖sp−cj‖

2

σi
2 )

, (3)
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where:

sp—is the pth input vector presented to the network;
cj—is the center vector of the jth hidden neuron; and
σj—constant scale factor value for the jth hidden neuron.
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The activation, λpj, for the jth output neuron, relative to the pth input vector, is given by the sum
of all hidden neuron outputs weighted by its respective weights. The softmax activation function,
described in Equation (4) for the jth neuron, is then used to provide the normalized output of the
RBFN, where it is admitted that the output layer has M neurons:

f
(
λpj

)
=

eλpj∑M
m=1 eλpm

. (4)

The initial learning phase of an RBFN is an unsupervised data-clustering phase, wherein the c
centers are adjusted by the k-means algorithm. Then, the σ scale factors are adjusted by the P-nearest
neighbor heuristic method. Finally, the w weights are calculated by the supervised backpropagation
algorithm [42].

The simulated data matrix is the input-output pattern collection that will be used for the fault
detection model’s development and its size will affect the quality of the monitoring predictions. A
large number of features (or input variables) can lead to numeric difficulties in obtaining good class
estimation. In this case, the classifier could be biased, fitted to the training set, due to the finiteness of
the training set. Typically, the classifier is able to generalize when the number of cases, n, is sufficiently
larger than the number of features, d [43].

The choice of an adequate dimensionality ratio (n/d) was based on power analysis and sample
size estimation. If the pattern matrix size is too small, the empirical model will lack the precision to
provide reliable answers to the investigative question. Nonetheless, if it is too large, time and resources
will be wasted [43].

Briefly, power analysis is the hypothesis test that computes the probability of finding an existing
effect [44]. The first option to increase the test performance within a significant tolerance is to increase
the sample size. This work used a minimum acceptable power of 90% and a confidence level of 5%.
The mean values of the population for the significance test were the integer values 1 and 2 markers
attributed to each process class or status. The sample size estimation results are displayed graphically
and allowed the determination of the pattern matrix size used for the RBFN FDD model development.
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The RBFN classification tool is a non-parametric method and, therefore, makes no assumptions
about the underlying data distribution. Table 2 summarizes the ANN model development parameters.

Table 2. Neural network development parameters.

Parameter Values

Number of Neural Networks developed 1000
Training Sample 80% of the data set

Test Sample 20% of the data set
Number of hidden neurons 10 to 100

Input Variables Vvlu, x, Tlu, Var1, Var2, Var3, Par1, Par2, Tar1, Tar2, PI
Number of neural networks retained 10

Each test generated 1000 new neural networks and the architectures presenting the best
performance were selected and used for refining the search. This process was repeated until there was
no significant performance improvement. Overall performance evaluation for both training and test
phases were measured by the functions sum of squared error (SOS) and cross entropy (CE), described
in Equations (5) and (6). The percentage of correct classifications for each class is presented as a
confusion matrix:

ESOS =
N∑
i

(yi − ti)
2, (5)

ECE = −
N∑
i

ti × ln
(

yi

ti

)
, (6)

where:

yi—is the output value predicted by the ANN;
ti—is the target output value; and
N—is the training data set size.

Global statistical sensitivity analysis is used to determine the importance of each input variable in
the ANN model performance by the ratio of a new error (maintaining the evaluated variable constant
at its average value) and the original error. High ratio values indicate that the input variable has a
great influence on the neural network results.

The best ANN model concerning training and recall performance was validated with real process
data. The results were displayed by the confusion matrix and the ROC (receiver operating characteristic)
curve. The ROC curve is an analysis tool for two-class problems that are intended to detect rarely
occurring events, such as process faults [43]. Figure 5 shows the canonical classification matrix for
this situation, with N being the normal event and A being the abnormal process condition. Based
on a given decision rule, the true classes are exhibited along the rows and the predicted or decided
classifications are displayed along the columns.
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The ROC analysis method depicts the true positive ratio (TPR, in Equation (7))—or sensitivity-
versus the false positive ratio (FPR, in Equation (8))—or the complement of the specificity—for every
possible decision threshold [43]:

TPR =
a

a + b
, (7)

FPR = 1−
d

c + d
. (8)

It is expected that a classification method with high sensitivity, i.e., high true positive ratio
and low false positive ratio, will rarely miss the abnormal event when it occurs. A classifier with
a high specificity, i.e., high true negative ratio and low false negative ratio, will have a very low
rate of false alarms. False alarms occur when normal events are classified as abnormal. A decision
method is considered highly accurate if it simultaneously has a high sensitivity (rarely misses the
abnormal event when it occurs) and a high specificity (has a low false alarm rate) [43]. Nonetheless,
there is a compromise between sensitivity and specificity, graphically presented in the ROC curve.
The classification method optimal performance for a large range of prevalence situations occurs when
the ROC curve is close to perfect, i.e., with an underlying area of 1.

4. Results and Discussion

The Monte Carlo simulation generated 160,000 new patterns, creating specific faulty situations
that are either impossible or too expensive to be forced to happen in the real world and too complex
to be theoretically modeled by first principle equations. The data simulation step lasted about 8 h.
Computational time was measured in an Intel® Core™ i7-8550U processor (Intel, Santa Clara, CA, USA,
2017) running at 2 GHz in the Windows 10 operating system (Microsoft, Redmond, WA, USA,.2015).

In this new data collection, despite the large number of simulated cases, the data distribution
retained its original unbalanced characteristics of unequal prevalence of the process statuses. Hence,
the new data set was re-sampled in order to present a uniform distribution, which means that any
class status has the same probability of happening.

The augmented data matrix size was defined based on the power analysis and sample size
estimation exhibited in Figure 6. Considering that classification results are particularly sensitive to the
sample size, results show that for a minimum power goal of 90%, there must be about 2500 samples for
each output class group.
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The input-output pattern matrix that resulted from the re-sampled Monte Carlo simulation with
5502 cases was used in the commercial software STATISTICA® as the pattern database to develop the
ANN FDD classification model. The 11 industrial process variables are significant for classification
purposes according to global sensitivity statistical criteria. The sensitivity test results evidenced that
all features contribute to class discrimination and that none of them has a remarkably greater impact
than the others.

Discarding features with no importance for class discrimination does not guarantee that there is no
variable redundancy. So, a correlation analysis was performed. Figure 7 shows the scatterplot matrix
of the correlations between the input variables. Considering that none of the correlation coefficients is
greater than 0.9, 11 process variables were used in the input layer of the FDD ANN model.
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The model development algorithm had a total running time of 60 h of computational effort.
The best ANN model—built with augmented data—has 11 neurons on the input layer, 27 neurons on
the hidden layer, and 2 neurons on the output layer. The ANN model exhibits an overall performance
index of 85.6%, an error rate of 19.6% for normal events, and 16.7% for fault events during the
training phase.

In the model validation phase, the classifier was tested using a set of independent real process data
cases. Its confusion matrix is shown in Table 3 and the sensitivity and specificity values are, respectively,
0.63 and 0.70. The results showed that the overall classification error increases as the classification tool
becomes more accurate in detecting faulty states, i.e., more sensitive. At the same time, the number of
false alarms increases, i.e., the model becomes less specific. However, the classification risks associated
with the losses of a false positive alarm (a normal operational condition diagnosed as fault) are smaller
than the losses regarding false negative detections (missing an abnormal operation) and the consequent
economical losses due to unplanned shutdowns.

It should be noticed that the variance of the error estimate is predominantly influenced by the
size of the validation data set. A larger and proper selection of the raw process data set leads to a
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classification method with higher accuracy. Furthermore, real process data can be used in association
with synthetic data in the training and validation phases by means of sample partition methodologies.

Table 3. Artificial neural network (ANN) model confusion matrix (expanded data).

ANN Topology: RBFN 11-27-2 Class 1 Class 2 Overall

Total 3184.0 197.0 3381.0
Correct 2225.0 124.0 2349.0

Incorrect 959.0 73.0 1032.0
Correct (%) 69.9 62.9 69.5

Incorrect (%) 30.1 37.1 30.5

Figure 8 displays the ROC curve of the RBFN FDD model developed presenting an underlying
area of 0.69 and a feature threshold of 0.52. The shape of the curve is off diagonal, inferring that the
model is an informative classifier. Considering that the model is applied to a scenario where the
prevalence of abnormal situations is low, and the classification tool would be expected to operate in
the lower left part of the ROC curve (small threshold), in order to keep the false positive ratio (FPR) as
small as possible. Given the high prevalence of normal scenarios, the high rate of false alarms obtained
can be explained by the threshold value of the classifier of 0.52, an intermediate value. The high
underlying curve area suggests that the classification method is robust because it performs well for a
large range of prevalence situations.
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Table 4 was included for purposes of comparison between the classifier model developed with
augmented data and the model built exclusively with raw process data, both following the same
methodology for training and refinement. Regarding the proposed methodology in this work, the
performance improvement of the developed model is clear. Although the network exclusively trained
with real data has high overall performance, an inspection of the error rates for individual classes
shows that this classifier tool is not able to diagnose fault operation and therefore would be of no
use in a real application. This model will rarely detect an abnormal situation when it occurs, due to
sensitivity values of 0.11. Nevertheless, the specificity value of 0.99 represents that if the classification
tool identifies an abnormal situation, it will have a high probability of being a true positive scenario.
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Table 4. ANN model confusion matrix (real process data).

ANN Topology: RBFN 11-21-2 Class 1 Class 2 Overall

Total 2232.0 135.0 2367.0
Correct 2215.0 15.0 2230.0

Incorrect 17.0 120.0 137.0
Correct (%) 99.2 11.1 94.2

Incorrect (%) 0.8 88.9 5.8

5. Conclusions

Predictive process fault detection and diagnosis (FDD) models—especially those based on machine
learning techniques—are part of a growing effort to accomplish the automation of abnormal situation
management. Nonetheless, real process data are typically unbalanced and majorly representative of
normal process operation.

This work used the Monte Carlo technique to massively increase the amount of the original real
data standards—a robust mathematical solution to deal with unbalanced data sets. In an innovative
way, the methodology also used geometric distances and the nearest neighbors search to keep the
original phenomenological characteristics of the original data set in the categorical augmented data
collection. The simulation dismissed the need for experiments that could jeopardize process safety.
In total, 160,000 artificial process cases were generated and a new uniformly distributed data collection
of 5502 patterns was used to train a multilayered radial basis neural network, in order to classify the
process operation within normal and failure events.

The RBFN FDD model developed was validated with real process plant data of a Brazilian pulp
and paper mill, in order to monitor the formation of particles in a recovery boiler—a key equipment in
kraft’s pulp and paper production plants. The FDD tool was able to correctly classify the normal and
failures status in almost 70% of the cases, with a sensitivity of 0.63 and a specificity of 0.70. The ROC
curve underlying area of about 0.7 suggests that it is a robust model for a wide range of class prevalence.

The data augmentation methodology embedded with the machine learning-based FDD model
was compared with traditional FDD techniques and also with previous results reported in the
literature [40,45] for this case study and outperformed them.
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