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Abstract: With the development of distributed generation technology, the problem of distributed
generation (DG) planning become one of the important subjects. This paper proposes an Improved
non-dominated sorting genetic algorithm-II (INSGA-II) for solving the optimal siting and sizing of DG
units. Firstly, the multi-objective optimization model is established by considering the energy-saving
benefit, line loss, and voltage deviation values. In addition, relay protection constraints are introduced
on the basis of node voltage, branch current, and capacity constraints. Secondly, the violation
constrained index and improved mutation operator are proposed to increase the population diversity
of non-dominated sorting genetic algorithm-II (NSGA-II), and the uniformity of the solution set
of the potential crowding distance improvement algorithm is introduced. In order to verify the
performance of the proposed INSGA-II algorithm, NSGA-II and multiple objective particle swarm
optimization algorithms are used to perform various examples in IEEE 33-, 69-, and 118-bus systems.
The convergence metric and spacing metric are used as the performance evaluation criteria. Finally,
static and dynamic distribution network planning with the integrated DG are performed separately.
The results of the various experiments show the proposed algorithm is effective for the siting and
sizing of DG units in a distribution network. Most importantly, it also can achieve desirable economic
efficiency and safer voltage level.

Keywords: distributed generation (DG); INSGA-II; multi-objective optimization; potential crowding
distance; static and dynamic planning

1. Introduction

In recent years, distributed generation systems using renewable energy technologies such as wind
power generation and photovoltaic power generation have become one of the hotspots of research
at home and abroad. After the distributed generation (DG) units are connected to the distribution
network (DN), the structure, operation mode, and control strategy of the DN will undergo tremendous
changes [1,2]. The research shows that DGs provide more flexibility and expansibility for distribution
network. When DGs are connected to the distribution network (DN), the performances of DGs are
most important for the power quality, reliability, and security of DN. In addition, DGs with renewable
energy technology can effectively reduce system line loss and transmission congestion [3–5]. Despite
the above advantages, if the placement and sizing of the DGs are improperly selected, it may cause a
series of power system safety hazards such as power flow reverse, insufficient voltage stability, and
malfunction of the protection device [6,7]. Therefore, the placement and sizing of the DGs has become
one of the important subject.
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The optimal planning of distributed generation sizing and siting is critical to ensure the operational
performance of a distribution network in terms of power quality, voltage stability, reliability and
profitability. DG planning problems are often defined as multi-objective and multi-constrained
optimization problems. A number of review papers [8–10] have surveyed the optimization techniques
for optimal DG planning in power distribution networks. The aforementioned review papers mainly
focused on the discussion of various computational methods and metaheuristic algorithms.

Nowadays, industrial systems, such as papermaking, steelmaking, petrochemical, and power
generation, are becoming more and more complex. In such cases, data-driven models based on novel
nonlinear signal processing and data analysis techniques may provide an attractive alternative [11].
Therefore, it is paramount but challenging to develop effective techniques in modelling, monitoring,
and control for complex industrial systems [12,13].

Among many optimization methods, multi-objective heuristic algorithms are the main means
to solve multi-objective optimization problems today because they can effectively balance multiple
objectives for optimal search [14]. At present, the main objectives of DG planning include the lowest
investment cost of DG, the lowest environmental pollution, the optimal voltage quality of the power
grid, and the minimum power loss. Partha Kayal et al. aimed to minimize the reactive power loss of the
DN, to maximize the system voltage stability, and to establish a multi-objective optimization model
for power systems [15]. Although it can effectively reduce the network loss and improve the voltage
distribution, planning with only two objectives does not reflect the real condition. R. Li et al. established
a multi-objective optimization model considering economy, voltage quality, and network loss and used
the distance entropy multi-objective particle swarm optimization algorithm to solve the optimization
problem [16]. However, there is a lack of environmental energy-saving factors in economic costs; M.
Esmaili and T. Wang et al. also introduced voltage safety margins [17] and pollutant emissions [18] as
optimization models, respectively. However, the objective function of optimization varies greatly in
the timescale. For example, the voltage and reactive power change rapidly, and the pollutant emission
often has a long timescale, which makes it difficult to use a unified model to optimize. Therefore, this
paper establishes a multi-objective optimization model for economy, environmental protection, safety,
and reliability.

Constraint processing is a key part of engineering optimization problems, and the treatment
of constraints is the key to solving constrained multi-objective optimization problems. Commonly
used constraint handling methods include rejection of infeasible solutions, penalty functions, and
various correction algorithms. In fact, in the iterative process, infeasible solution is always difficult to
be rejected, especially in the case of small feasible region, and repeated trial and error will affect the
speed of solution; other modified algorithms are always designed for specific problems. The penalty
function method [19] is the most classical method to deal with constraints, but the penalty factor has
the same weight problem and is not easy to grasp, resulting in large errors in planning results.

In this paper, a new operator is proposed to address the degree of default. This method does not
need to set parameters in advance but deals with feasible and infeasible solutions by considering the
number and degree of violation of constraints. This method can effectively combine with multi-objective
optimization algorithm to improve the diversity of populations and to avoid the algorithm falling into
local optima.

At present, the planning methods of multi-objective optimization problems can be divided into
weighted single-objective optimization algorithm and multi-objective optimization algorithm. In order
to obtain the unique solution, scholars transform the multi-objective into single-objective optimization
model by the weight method and solve it by combining with the single-objective optimization algorithm.
This method makes the calculation convenient by reducing the dimension of the problem. For example,
H. Su introduced improved simulated annealing particle swarm optimization [20] and established a
multi-objective model to maximize DG utilization and to minimize system losses and environmental
pollution. Finally, the DG injection model is optimized by this algorithm. However, the selection of
weights depends on experience. Multi-objective functions are both interrelated and independent. The
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subjectivity of weight selection makes the calculation result unsatisfactory. Aiming at the above problems,
multi-objective optimization algorithm is introduced to solve the DG planning problem [21]. J. Neale
solved the reconfiguration problem of the DN with the integrated DG by using non-dominated sorting
genetic algorithm-II (NSGA-II) [22]. This method can effectively improve the operation performance of
DN. A. Ameli used the multi-objective particle swarm optimization (MOPSO) [23] with adaptive grid
method to optimize the distribution of energy supply system electric vehicle (EV) in DG technology.
The results show the effectiveness of MOPSO programming; R. S. Maciel proposed an evolutionary
particle swarm optimization algorithm (MEPSO) [24] as a multi-objective optimization algorithm for DG,
of which the planning scheme can ultimately improve the objectives. However, in the multi-objective
optimization algorithm, there is a common problem; that is, the evaluation information of solution set is
insufficient due to crowding distance, which leads to the elimination of potential high-quality solutions
in the truncation process. The distribution of the final algorithm planning results is uneven.

In addition, the mutation operator of NSGA-II will gradually lose the ability of local search as
the dimension of solution variable increases, so the population updating strategy in the fireworks
algorithm [25] is introduced to simultaneously improve the mutation operator and the diversity
of solution set. Based on the effective Pareto-optimal set of multi-objective optimization problems,
decision makers cannot get a unique solution. Therefore, this paper introduces an unbiased compromise
strategy [26] to choose a best compromise from the Pareto-optimal set.

According to the above analysis, a lack of the operation state research planning of DN with the
integrated DG considers the relay protection. Actually, when the DG is connected to the DN, the
DN that is originally powered by a single system power becomes a network with multiple power
structures, causing a change in the magnitude and direction of the short-circuit current during the
failure. The action affects the safe and stable operation of the DN. Therefore, this paper increases the
short-circuit current constraint condition and compares the result with the optimization result without
considering the short-circuit constraint, so as to prove the necessity of considering the relay protection
condition. At present, with the development of technology, distributed energy resources are bound
to penetrate into the fields of industry, commerce, and urban and rural residents. The problem of
DG planning with timing characteristics needs to be solved urgently. Therefore, the paper studies the
planning of various examples and plans the static state and dynamic running state of the IEEE 33-bus
system separately to provide a reasonable DG planning for decision makers.

The main contributions of this work are as follows:

(1) An improved non-dominated sorting genetic algorithm (INSGA-II) for placement and sizing
of DGs is proposed. The violation constrained index and improved mutation operator are
proposed to increase the population diversity of NSGA-II, and the uniformity of the solution
set of the potential crowding distance improvement algorithm under the 3D objective function
is introduced.

(2) The energy-saving benefit of DGs is considered, and a multi-objective optimization model
is established.

(3) The restraint condition of relay protection is added; that is, the size of short-circuit current is
limited, so that the protection device will not malfunction.

(4) Convergence metric and spacing metric are employed to evaluate the performance of INSGA-II,
NSGA-II, and MOPSO.

(5) The effectiveness of the algorithm in different cases is verified.

The proposed algorithm is applied to solve the static and dynamic planning of the DN with the
integrated DG units. The rest of this article is organized as follows. Section 2 presents the mathematical
programming model. Section 3 briefly introduces the algorithms needed in the planning scheme
and proposes INSGA-II. Section 4 provides the comparison of the simulation results of the proposed
algorithm in various cases and the performance of the algorithm. Section 5 concludes our work.
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2. Problem Formulation

2.1. Objective Functions

Three objectives should be taken into account when establishing multi-criteria optimization model
of DN with the integrated DG units: (1) Improving the energy-saving benefit of the system; (2) reducing
system line losses; and (3) reducing the node voltage deviation.

1. Maximizing annual energy-saving benefit

Maximizing annual energy-saving benefit of DN with the integrated DG units can be expressed
as follows:

max f1 = ZNODG
cost −ZDG

cost (1)

where ZNODG
cost is the total annual cost of DN without DGs and ZNODG

cost is the total annual cost of DN
with DGs.

Total annual costs of DN excluding DGs can be expressed as follows:

ZNODG
cost = Closs + Cb (2)

where Closs is the annual loss of DN without DGs and Cb is the annual purchase cost of DN without DGs.

Closs =
k∑

j=1

(
Cp · τmax · ∆P j

)
(3)

where k is the number of branches in the DN; Cp is the unit price of electricity consumed per unit
($/kWh); τmax is the annual maximum load loss hour (h) of the DN; and ∆P j is the active power loss
(kW) of the jth branch.

Cb = Cp · Pload · Tmax (4)

where Pload is the DN total active load and Tmax is the DN annual maximum load utilization hours.
The total annual cost of DN with DGs can be expressed as follows:

ZDG
cost = Cdgm + Cploss + CB −Csub (5)

where Cdgm is the annual investment and maintenance cost of DGs; Cploss is the annual cost of DN
with DGs (calculated in the same way as Closs); CB is the annual purchase cost of DN with DGs; and
Csub is the financial subsidy of new energy generation.

Cdgm =
n∑

i=1

 r(1 + r)t

(1 + r)t
− 1
·Cdgi + Cmi

 · Pdgi (6)

where r is the annual interest rate; t is the planning period; Cdgi is the ith distributed generation
equipment investment cost ($/kWh); Cmi is the annual operation and maintenance cost ($/kWh) for the
ith distributed generation; and Pdgi is the installed capacity (kW) of the ith distributed generation.

CB = CP ·

Pload −

n∑
i=1

λi · Sdgi

 · Tmax (7)

In order to reflect the benefits of DGs in environmental protection, the government has put forward
policy support to DGs, that is, financial subsidies for distributed generation. It can be expressed
as follows:

Csub = Csp ·

n∑
i=1

Pdgi · Tmax (8)
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where Csp is the subsidy amount ($) of distributed generation unit.

2. Minimize line losses

The existence of line losses will lead to line heating, which will accelerate the aging of insulated
lines, will reduce the insulation of lines, and will ultimately lead to the risk of leakage. Reducing line
losses can improve energy efficiency of electrical equipment or processes.

Lowering the line losses can improve the energy utilization efficiency of the energy-using
equipment or process, and it is also one of the important measures of energy saving. The objective
function can be expressed as follows [27]:

min f2 =
∑
i, j∈n

gi j
(
U2

i + U2
j − 2UiU j cosθi j

)
(9)

where n is the total number of DN nodes; gi j is the admittance of the branch (i, j); Ui and U j are the
voltage amplitudes of branches i and j respectively; and θi j is the voltage phase angle.

3. Minimize the total voltage deviation

With the increase of load, the system voltage stability will deteriorate gradually, even voltage
collapse, resulting in a system in danger. Therefore, the voltage deviation is one of the important
indexes to evaluate the operation safety and power quality of the system. In addition, the increase
of network node voltage can effectively reduce the reactive power loss of the system. The objective
function can be expressed as follows:

min f3 =
N∑

i=0

∣∣∣∣Ui −Uspeci f ied
i

∣∣∣∣
Umax

i −Umin
i

(10)

where Ui is the node ith voltage real value of the DN when DG is incorporated and Uspeci f ied
i is the

voltage rated value. This paper assumes that the rated voltage is 1 (p.u).

2.2. Influence of DG on Relay Protection of DN

DN is generally equipped with three-stage current protection. After the DG is connected to the
DN, the system changes from single power supply to multiple power supply. When the transmission
line is short-circuited, the magnitude and direction of the short-circuit current will change.

Figure 1 shows a typical simple DN. L1 and L2 represent feeders; T1 represents a transformer;
PD1, PD2, PD3, and PD4 are protective devices of the corresponding feeders; and DG is connected to
the DN from node C.
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Figure 1. Distribution network system diagram of distributed generation (DG). Figure 1. Distribution network system diagram of distributed generation (DG).

Assuming that the DG is connected, the short-circuit fault can be divided into the following
three cases:

1. The adjacent feeder connected to the DG is short-circuited
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When the short-circuit fault F1 occurs at the end of the adjacent feeder, the power source S and
DG provide the overlapping short-circuit current to PD1 and PD2. Compared without DG connection,
the short-circuit current increases and its value may be larger than the original I segment setting value
of PD1, which makes PD1 malfunction, resulting in the loss of coordination between PD1 and PD2.
Simultaneously, PD3 will also flow through the reverse current provided by DG. When the capacity of
DG is larger, the value of reverse current may be larger than the original I segment setting value of
PD3, resulting in PD3 malfunction.

2. The upstream of DG access is short-circuited

When the DG upstream feeder AC is short-circuit fault F2, PD4 can operate normally. However,
when PD3 is activated, the island downstream of the DG will form an island operation. At the same
time, the DG will always provide short-circuit current to the fault point, which will affect the reliability
of the system.

3. The downstream of DG access is short-circuited

When DG downstream feeder CD short-circuit fault F3 occurs, protections PD1 and PD2 can
operate normally. Although the short-circuit current through PD3 is only supplied by the system
power S, the fault current will be smaller than before due to DG connection, which may cause the
backup protection of PD3 to refuse to operate. The short-circuit current through PD4 is provided by
the system power S and DG together. The increase of short-circuit current may increase the protection
distance of PD4, thus losing the selectivity.

When there are multiple DGs in the system, the analysis method is similar. From the above analysis,
it can be seen that the access of DG will have adverse effects on the reliability of the relay protection
and system of DN, so it is necessary to consider the restraint of relay protection when optimizing the
configuration of DG. In the traditional three-stage current protection, the I-stage instantaneous current
quick-break protection is the most important, so this paper focuses on the analysis of the impact of DG
on the I-stage of the original current protection of the PD in the DN.

2.3. Constraint Condition

DG connected to a distribution network has great influence on power flow, voltage distribution,
branch current, and power quality of the system. In order to design a reasonable programming model,
the following equality constraints and inequality constraints are included in this paper.

1. Equality constraint

Below are the power flow equations constraints.
PDGi − PLi −Ui

N1∑
k∈i

Uk(Gik cosθik + Bik sinθik) = 0

QDGi −QLi −Ui

N1∑
k∈i

Uk(Gik sinθik + Bik cosθik) = 0
(11)

where PDGi and QDGi are the ith node active and reactive power of the DGs injected; PLi and QLi are
the ith node active and reactive powers of load output; Uk is the voltage amplitude of all kth nodes
connected to ith nodes; Gik is branch conductance; Bik is the branch susceptance; θik is the difference
between the voltage angles of ith node and kth node; and N1 is the number of branches associated with
the ith node.

2. Inequality constraints

In order to make the planning scheme meet the power system operation standards, it is usually
required that the node voltage, current, power, and permeability satisfy the constraints after DGs are
connected to the grid.
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a. Node voltage constraints
Umin

i ≤ Ui ≤ Umax
i (12)

where Ui represents the voltage amplitude of the ith node, and Umin
i and Umax

i represent the
upper and lower limits of the ith nodes voltage amplitude, respectively.

b. Branch current constraints
Ii j ≤ Imax

i j (13)

where Ii j is the current of branch (i, j) and Imax
i j is the maximum current allowed of branch (i, j).

c. Single DG access capacity constraints{
Pmin

DGi ≤ PDGi ≤ Pmax
DGi

Qmin
DGi ≤ QDGi ≤ Qmax

DGi
(14)

where PDGi and QDGi are the active power and reactive power of the DG connected to the ith
node, respectively.

d. Distributed generation access total capacity constraints

N∑
i

SDGi ≤ 0.3SL (15)

where
∑

SDGi is the total capacity of distributed generation and SL is the maximum load value
of DN.

e. Short-circuit current constraints 

KIII
sen,i =

I(2)k,i+1.min

IIII
set,i

≥ 1.2

II
set,i > I(3)k,i.max

II
set,i > I(3)rk,i−1.max

III
set,i > I(3)rk,i−1.max

IIII
set,i > I(3)rk,i−1.max

II
set, j > I(3)k, j.max

(16)

where KIII
sen,i is the sensitivity coefficient of current III segment protection of branch i as backup

protection; II
set,i, III

set,i, and IIII
set,i are the setting values of the current I, II, and III protections of

branch i, respectively; II
set,j is the setting value of the current I segment protection of the branch j

of the feeder line of the DG; I(3)k,i−1.max is the maximum reverse current through branch i when

three-phase short circuit occurs at the end of the upstream of branch i; I(3)k,i.max and I(3)k, j.max are the
maximum short-circuit currents through branch i of the terminal three-phase short circuit of
branch i and branch j, respectively; and I(2)k,i+1.max is the minimum short-circuit current through
branch i of the two-phase short circuit at the end of the downstream of branch i.

3. Overview formulation

From the above analysis, the multi-objective function and constraints can be described as follows:

min
[

f1(xs, xc), f2(xs, xc), · · · , fNobj(xs, xc)
]

(17)

s.t. h(x, x) = 0, i = 1, · · · , p (18)
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gi(xs, xc) ≤ 0, i = 1, 2, · · · , q (19)

where fi is the ith objective function, Nobj is the number of objective functions, xs and xc denote the
state vector and the control vector respectively, hi is the equation constraint, p is the number of equality
constraints, gi is the inequality constraint, and q is the number of inequality constraints.

xc is composed of n variables, and n represents the number of nodes of the optimized network,
where each variable represents two components: the DG installation placement and capacity. For
example, a variable is assigned a value indicating the placement of the variable to installation DG.
The value of the variable indicates the installation capacity. If DG is not installed, the corresponding
variable value is 0. xc can be illustrated as follows:

xc = [(LDG1, PDG1), (LDG2, PDG2), · · · , (LDGN, PDGN)] (20)

where LDGi indicates that the ith node is the DG installation location and PDGi represents the DG
installation capacity of the ith node.

xs is the network parameter that xc is calculated from the power flow. Variables such as line losses,
node voltage, and branch current are used to calculate multi-objective functions and to determine the
satisfaction of constraints. xs can be illustrated as follows:

xs = [P′, Q′, U′, I′,θ′] (21)

where P′, Q′, U′, θ′, and I′ represent the network feeder active power vector, reactive power vector, node
voltage vector, voltage argument vector, and branch current vector respectively after DG is connected.

2.4. Establish PQ Mode of DG

The DG injects its power output into the grid through power electronics. Typically, for a PQ
model, which shows the active power (P) versus reactive power (Q) called a PQ model. DG is modeled
as a constant power factor and negative load model.

In this case, the DG is modeled as a constant power source. PDG is the actual power output
specified for the DG model. The load at ith node with the DG device is modified as Equations (22)–(23).

P′loadi = Ploadi − PDGi (22)

QDGi = PDGi · tan
(
cos−1(ϕ)

)
(23)

where Ploadi is the original network load power of ith node, PDGi and QDGi are the active and reactive
power of DG at the ith node, P′loadi is the active power after installing DG, and cosϕ is the power factor.

In general, constrained problems can be solved using either deterministic or stochastic algorithms.
However, deterministic approaches such as feasible direction and generalized gradient descent require
strong mathematical properties of the objective function such as continuity and differentiability. In
cases where these properties are absent, evolutionary computation, such as NSGA-II, offers reliable
alternative methods [13].

3. Improved NSGA-II Algorithm

3.1. NSGA-II Algorithm Overview

NSGA-II was proposed by Deb, K. in 2002 [28], which is one of the most popular multi-objective
optimization algorithms. It uses simulated binary crossover and polynomial variation to introduce
non-dominated sorting and crowding distance operator instead of NSGA. The sharing radius of the
algorithm ensures the diversity of the population and the uniformity of the Pareto-optimal set and
introduces the elite retention strategy and the elimination strategy, which improves the operation
speed and stability of the algorithm.
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3.2. Dominant, Non-Dominated, Pareto-Optimal Set and Crowding Distance

NSGA-II introduces Pareto-optimal set and crowding distance to replace the fitness of traditional
intelligent optimization algorithm. The solution set is divided into dominated solution set and
non-dominated solution set according to the dominant relationship among the solutions. The rank of
the solution is from 1 to n: the better the quality, the smaller the value. Solutions of the same rank are
divided into pros and cons by comparing the size of the crowding distance.

Multi-objective optimization problems can be described as follow:

min fi(x), i = 1, 2, . . . , Nobj, x ∈ I (24)

where I is a feasible solution space.

Definition 1. If solution x1 dominates x2, then the following definitions must be met.

∀i, j ∈
[
1, 2, · · · , Nobj

]
,

∃
i, j

fi(x1) < fi(x2)∨ f j(x1) = f j(x2)
(25)

Definition 2. If solution x1 does not dominate x2, then the following definitions must be met.

∀i, j ∈
[
1, 2, · · · , Nobj

]
,

∃
i, j

fi(x1) ≤ fi(x2)∧ f j(x1) > f j(x2)
(26)

Equations (25) and (26) in Definitions 1 and 2 are derived from Reference [29].

Definition 3. Pareto-optimal set is composed of mutually non-dominated solution sets, and ranks are composed
of mutually dominated solution sets.

Definition 4. Assume that P = {x1, x2, · · · , xn} is a Pareto-optimal set and that the crowding distance represents
the distribution density of other solution sets around the solution. The larger the solution distance at the same
layer, the better the solution distribution, that is, the better the solution set diversity. Its calculation formula is
as follows:

cdk
i =


f k
i+1− f k

i−1

f k
max− f k

min
, i f index

(
xk

i

)
∈ [2, n− 1]

∞, otherwise
(27)

cdi =
m∑

k=1

cdk
i (28)

where cdk
i is the crowding distance on the kth objective function of xi, m is the number of objective functions,

index (xk
i ) is the sort index of xi on the kth objective function, f k

i+1 is the value of objective function corresponding
to the last solution on the axis of the kth objective function, and f k

max and f k
min represent the maximum and

minimum values of the kth objective function, respectively.

3.3. INSGA-II: Improved Mutation Operator

Because mutations in genetics often lead to worse results, the probability of mutation operations
in genetic algorithm (GA) is usually set to be very small. In GA, crossover and mutation operations
have two functions: global search and local search. When dealing with low-dimensional convex
problems, only the crossover operator can solve these problems well. However, when dealing with
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high-dimensional nonconvex problems, it often falls into the local optimal solution. For this reason,
the mutation operator is improved by referring to the population-updating method in the fireworks
algorithm [25]; the new mutation individual is created by Equations (29)–(31).

di = vd · rand (29)

S = randperm(1, di) (30)

u′j =

 umu
j , i f j ∈ S

u j, otherwise
(31)

where di denotes the dimension of the ith solution for mutation, vd denotes the variable dimension,
rand denotes the random number between [0, 1], S denotes the index for performing the mutation
operation, umu

j denotes the jth gene performing the mutation operation, and u′j represents the value of
the jth gene after the mutation operation.

Crossover and mutation operations often produce solutions beyond the feasible space. The
general method is to assign solutions less than the lower limit of feasible region to the lower limit, and
the solution that exceeds the upper limit of the feasible region is given the upper limit value. This
operation is simple to perform but reduces the diversity of solution sets. According to Equation (32),
solutions beyond the boundary can be effectively mapped back to the feasible space.

∧
ui = umin

i + |ui|%
(
umax

i − umin
i

)
(32)

where umax
i and umin

i represent the upper limit and lower limit of the gene, respectively, and % is the
remainder operation.

3.4. INSGA-II: Violation Constrained Index

In view of the subjectivity of penalty factor selection, the violation constrained index (VCI) is
proposed when dealing with infeasible solutions.

The method divides the solution set into feasible solution and infeasible solution by calculating
the error degree (ED) of the constraint condition of the solution.

The VCI calculation formula is as follows:

ED(xs, xc) =
∣∣∣h(xs, xc)

∣∣∣+ max(g(xs, xc), 0) (33)

VCIi =
C∑
j

EDi
j − EDmin

j

EDmax
j − EDmin

j

(34)

where EDmax
j and EDmin

j represent the maximum and minimum error degree of infeasibility under the
jth constraint, respectively, and C indicates the number of constraints. The classification process of the
solution set is performed according to Equation (35).

S_t =


0 , i f all VCIi = 0
1 , i f all VCIi != 0
1
2 , otherwise

(35)

where S_t denotes the type of the solution set. The default index can be effectively used in combination
with the non-dominated sorting strategy. For example, when the S_t is 0 or 1/2, the feasible solution
part is given the true rank and the crowding distance, and the rank of the infeasible solution is sorted
in descending order according to VCIi and continues to be sorted from the feasible solution.
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3.5. INSGA-II: Improved Crowding Distance Operator

Figure 2 shows that, after solutions a–h pass the truncation strategy, a, d, e, g and h are preserved
but the eliminated solution c has a better crowding distance than the solution d, which is due to
the traditional crowding distance information being missing, and the truncation strategy eliminates
the solution set with small crowding distances at one time, resulting in uneven distribution of the
final set. The calculation of the traditional crowding distance only considers the spatial distribution
of two adjacent solutions on the axis of the objective function without considering that the effect of
deleting the neighborhood solution leads to the elimination of potential high-quality solutions. Finally,
a potential crowding distance is proposed. The potential crowding distance in the two-dimensional
space is simple to calculate. As shown in Figure 2a, when the solution map is re-target functions 1
and 2, the neighborhoods are the same in the solution set and only the order changes. The truncation
process is shown in Figure 2b,c:
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Therefore, the formula for calculating the potential crowding distance in two-dimensional space
is as follows: 

∆d1
i =

f 1
i−1− f 1

i−2
f 1
max− f 1

min
+

f 2
i+2− f 2

i+1
f 2
max− f 2

min
,

∆d2
i =

f 1
i+2− f 1

i+1

f 1
max− f 1

min
+

f 2
i−1− f 2

i−2
f 2
max− f 2

min
,

pdi = cdi + max
(
∆d1

i , ∆d2
i

) (36)

where ∆d1
i and ∆d2

i denote the increments of the crowding distance after the adjacent solution of the
kth solution is deleted, f 1

i−1 and f 2
i−1 denote the neighborhood solutions mapped to the kth solution on

the objective function 1, and pdi denotes the potential crowding distance of the kth solution.
The objective function above three-dimensions does not have the symmetric relationship of the

two-dimensional objective function. Each solution no longer has only the same two adjacent solution
sets on each objective function axis but has (2–n) different solutions. Therefore, the potential crowding
distance of the solution under the 3D objective function is calculated as follows:

pdi = cdi + max(k_∆di), k ∈ Φ (37)

k∆di =
m∑

j=1

1 j

1l

 f j
i−1 − f j

i−2

f j
max − f j

min

+ 1r

 f j
i+2 − f j

i+1

f j
max − f j

min


 (38)

where Φ denotes the set of adjacent fields mapped to the ith solution on each objective function axis;
m denotes the number of objective functions; k∆di denotes the increment generated by the crowding
distance of the ith solution after the kth solution in the neighborhood set is eliminated; and 1 j, 1l, and
1r respectively indicate that the kth solution belongs to the neighborhood of the ith solution or belongs
to the left neighborhood solution or the right neighborhood solution on the jth objective function.
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3.6. INSGA-II: Improved Crowding Distance

NSGA-II uses the tournament selection operator for population reproduction, and the selection
criteria considers the rank and crowding distance. The specific selection process is described in
Reference [27]. Since the improved NSGA-II algorithm increases the potential crowding distance, it
needs to involve the crowding distance for the selection operation. After some modifications, the
selection rules are as follows:

newxk =


xi, i f cdi > cd j and pdi > pd j
x j, i f cd j > cdi and pd j > pdi
xi or x j, otherwise

(39)

where newxk denotes the selected kth descendant solution, and xi and x j respectively denote two
different solutions in the parent. Improved selection strategy comprehensively considers the current
crowding distance and potential crowding distance. Therefore, it can select a better solution and can
avoid the defects of insufficient diversity of the solution set when the truncation strategy is executed.

3.7. Unbiased Compromise Strategy

In order to solve the cumbersome scheme of the Pareto-optimal set, this paper uses an unbiased
compromise strategy based on fuzzy set, which uses unbiased member parameter ω to evaluate the
quality of each individual in the Pareto-optimal set. The calculation formula is as follows:

ω∗ = max
i=1,··· ,n


m∑

j=1
ωi

j

n∑
i=1

m∑
j=1

ωi
j

 (40)

where ωi
j denotes the unbiased parameter of the ith solution in the Pareto-optimal set on the jth

objective function; f min
j and f max

j denote the minimum and maximum values of the jth objective

function corresponding to the Pareto-optimal set, respectively; f i
j denotes the value of the jth objective

function corresponding to the ith solution in the Pareto-optimal set; n denotes the number of objective
functions; m denotes the number of solutions in the Pareto-optimal set; and ω∗ denotes the unbiased
member parameters of the comprehensive optimal solution.

3.8. Optimized Configuration Process Based on Improved NSGA-II

The proposed algorithm optimizes the placement and sizing process configuration of DG, as follows:

Algorithm 1. The algorithm of the proposed INSGA-II

Input: Set IEEE-33 distribution network-related parameters, the number of target functions, the number of
variables, the size of the population, the maximum number of iterations, etc.
Outputs: Comprehensive optimal solution x∗.
1: Initialization population P(xc)t, set the number of iterations t = 0;
2: P(xs)t is calculated by forward and backward substitution method, and then, the objective function values
f1, f2, f3, and S_t are calculated;
3: Algorithm iteration start, while t < tmax do;
4: The solution set is classified by S_t, feasible solution to perform non-dominated sorting strategy, and the
infeasible solution to calculate DCI and sorted;
5: Generation of children Q(xc)t from the parent P(xc)t by improving selection operations and improving
genetic manipulation;
6: Q(xc)t performs power flow calculation, mixes with P(xc)t to form a mixed population R(xc)t and R(xc)t for
non-dominated sorting strategy, and calculates the crowding distance according to Equations (37) and (38);
7: Selecting a new parent population R(xc)t of size from P(xc)t+1 by a truncation strategy;
8: t = t + 1;
9: End while;
10: Using unbiased compromise strategy to select comprehensive optimal solution x∗;
11: Return x∗.
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4. Experiment and Results

4.1. Experiment Setup and Description

In order to better verify the effectiveness of the proposed algorithm, IEEE 33-, 69-, and 118-bus
systems are introduced as simulation examples to compare performance with current mainstream
multi-objective optimization algorithms, considering the dynamic and static characteristics of the DGs
and DN. Hardware parameters used in the experiment are as follows: Intel (R) Core (TM) i5-3337 CPU
1.80 GHz, memory: 4.00 GB, and simulation software: Matlab-2014a (The MathWorks, Inc.3 Apple Hill
Drive, Natick, MA, USA, 2014).

4.2. IEEE 33-Bus System Case Simulation Experiment

An IEEE 33-bus system topology diagram is shown in Figure 3, where the system includes 33
nodes and 32 branches [30]. The 0 node is assumed to be a balanced node with a voltage reference of
12.66 kV, total power load of 3.17 MW, and reactive power 2.30 MVAr.Processes 2019, 7, x FOR PEER REVIEW 14 of 23 
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Multi-objective function parameter setting: The maximum installation capacity of each node of
DG is 1 MW, the annual maximum load utilization time and the annual maximum line loss hour of
DGs are 4500 h, the investment cost of micro-turbine (MT) unit equipment is 0.07 million $/kW, annual
operation and maintenance cost is 0.009 $/kWh, wind turbine generator (WTG) group unit equipment
investment cost is 0.114 million $/kW, annual operation and maintenance costs are 0.004 $/kWh, MT
and WTG unified as a PQ model for processing, power factor is 0.9, the unit price of the loss is 0.071
$/kWh, the financial subsidy per unit of electricity is 0.019 $/kWh, and the conversion factor of the
annual equipment investment cost of the distributed power source is obtained by 3% of the annual
interest rate. We use the algorithm of the proposed INSGA-II for the following series of analysis.

4.2.1. Analysis of Optimization Results with Different Parameters

As shown in Table 1, in order to improve the operation speed of the algorithm and the accuracy of
the solution, experimental comparisons of the experimental hyperparameters are made. Compared
with experiment 1 and experiment 2, the optimization results are improved with the increase of
iteration times.

Table 1. Simulation results of INSGA-II with different parameters.

Experiment Population
Size (NP)

Iterations
(tmax)

Time
(s)

Energy-Saving
Benefit

(Million $)

Voltage
Deviation

(p.u)

Line Loss
(MW)

1 50 100 26.71 0.193 5.289 0.081
2 50 200 52.46 0.196 5.273 0.084
3 100 100 83.67 0.197 5.254 0.082
4 200 100 107.91 0.199 5.267 0.081

Comparing experiments 1, 3, and 4, the optimization effects are improved with the increase of
population size but the time increases. The population selection of 100 and the number of iterations of
100 are taken as the hyperparameters of the algorithm.
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Through large numbers of experiments, subsequent experiments decided to set improved NSGA-II
parameters: population size is 100, number of iterations is 100, and crossover probability is 0.7.

4.2.2. Analysis of DG Installation Capacity Optimization Results

The DG optimization configuration results of the improved NSGA-II are shown in Table 2.

Table 2. INSGA-II optimization results.

Case DG Location
(Bus Number)

DG Sizes
(MW)

Energy-Saving
Benefit

(Million $)

Voltage
Deviation

(p.u)

Line Loss
(MW)

1 - - 0 19.6024 0.2017
2 5/6/17/32 0.2379/0.2391/0.6965/0.4451 0.1976 5.2453 0.0797
3 6/17/24/32 0.2148/0.5013/0.2062/0.4126 0.1781 4.9348 0.0613

As shown in Table 2, Case-1 has no DG, Case-2 is installation without short-circuit current
constraints (other constraints are considered), and Case-3 is installation with short-circuit current
constraints (other constraints are considered). Compared with Case-1, the planning of Case-2 and -3
obtained by INSGA-II can effectively improve the objective function. Case-2 can produce energy-saving
benefits of about $0.197 million, the voltage deviation is improved by 73.24%, and the line loss is
reduced by 69.60%. Case-3 can produce energy-saving benefits of about $0.193 million, the voltage
deviation is improved by 74.83%, and the line loss is reduced by 60.49%. Comparison of Case-2 and
-3 show that, under the influence of short-circuit current protection constraints, the capacity of DGs
decrease and voltage deviation and line losses are improved. In addition, when the DGs are close,
the short-circuit current of some branches will be very high, so the Case-3 optimization results do not
show that the DG access points are close. The above results confirm the rationality of considering
short-circuit current constraints.

As shown in Figure 4a,b, Case-2 and -3 can improve the voltage amplitude of each node and line
losses by installing DG appropriately. Because most of the installation nodes of Case-3 are terminal
nodes of the system, the supporting effect of the node voltage is stronger [31]. Active network loss is
usually determined by node voltage and branch resistance. Distribution network voltage level is lower
and R/X value is larger, so it will lead to larger network losses. When DG is reasonably connected, the
voltage fading will be improved [31]. In the case of the conditions, Case-3 has a greater effect on node
voltage support than Case-2, so the line losses are better.
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Figure 4. Results of nodal voltage optimization.

4.3. Performance Analysis of INSGA-II Algorithm

In order to verify the optimization performance of the proposed algorithm, INSGA-II, NSGA-II,
and MOPSO are used to analyze and compare the planning results of the IEEE 33-bus system
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independently. The parameters of NSGA-II are set as INSGA-II, the inertia factor is 0.8, the local speed
factor is 0.1, and the global speed factor is 0.1; other parameters are the same as INSGA-II.

As shown in Figure 5, NSGA-II and MOPSO have uneven distribution of Pareto solutions due to
the defects of crowding distance operators. MPSO optimizes by choosing leaders and by archiving
mechanism. Similar to NSGA-II, its selection process also depends on a dominant relationship, so
crowding distance is also needed to participate in it. When solving the high-dimensional nonconvex
problem, the solution set is easy to fall into the local optimal solution and the population diversity
is insufficient. Obviously, the uniformity of Pareto-optimal set obtained by INSGA-II is the best of
the three algorithms, which verifies the validity of the potential crowding distance and improves the
mutation operator to improve the optimization ability of the algorithm.
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In order to verify the performance of the improved algorithm more intuitively, the convergence
metric [29] and the spacing metric [32] are used to compare the three optimization algorithms.

(1) C_mertic

Convergence metric can be expressed as follows:

IC(X′, X′′ ) =
|{a′′ ∈ X′′ ;∃a′ ∈ X′ : a′ ≺ a′′ } |

|X′′ |
(41)

where X′ and X′′ are respectively two solution sets, a′ and a′′ are solutions belonging to two solution
sets, p is the dominant symbol, and |X′′ | is the number of solutions in the solution set X′′ . If IC(X′, X′′ )
is 1, all solutions in the solution set X′ dominate the solution in the solution set X′′ , and if IC(X′, X′′ ) is
equal to 0, all solutions in the solution set X′′ are not dominated by the solution set X′.

As shown in Table 3, about 32.39% of NSGA-II and 33.04% of MOPSO are dominated by INSGA-II.
In contrast, only about 6.41% and 7.92% of INSGA-II are dominated by NSGA-II and MOPSO,
respectively. In addition, the computational complexity O (mn3) is similar, so the running time of the
three algorithms is almost the same, which proves that the improved crowding distance operator can
effectively improve the quality of the solution set and can ensure operation efficiency.

Table 3. Convergence metric of each algorithm.

Algorithm NSGA-II INSGA-II MOPSO Time(s)

NSGA-II - 6.41% 11.21% 52.87
INSGA-II 32.39% - 33.04% 53.04
MOPSO 15.73% 7.92% - 53.12

(2) S_mertic

Spacing metric [27] can be expressed as follows:
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IS =

√√√
1

N − 1

N∑
i=1

(
d− di

)2
(42)

where N represents the number of solutions, di represents the shortest distance from the ith individual
to the rest of the solution, and d represents the mean of all individuals di. A smaller spacing metric
means that the solution distribution in the Pareto solution is more uniform. The zero value of the
interval metric means that all solutions in the Pareto-optimal set are equally spaced.

As shown in Figure 6, in order to visually describe the uniformity of the distribution of the
solution sets of different algorithms, the diversity indices obtained by each algorithm running 30 times
independently are represented by box diagrams, in which each box represents the distribution of the
measurement values of the distance between the solution sets of different algorithms. The upper
quartile line at the top of each box diagram and the lower quartile line at the bottom represent the
boundary values except outliers. If there is an abnormal value, use “+” to identify it. The median
value is the red line in the rectangle box. Compared with the other two algorithms, INSGA-II has
smaller median values (see red line in the middle) and minimum values (see quartile line below).
Therefore, it is further explained that the distribution of INSGA-II solutions is more uniform and has
better diversity.Processes 2019, 7, x FOR PEER REVIEW 17 of 23 
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(3) Analysis of the relationship between objective functions

As shown in Figure 7a, the energy-saving benefit has a nonlinear relationship with line loss,
and the degree of line loss improvement will have an extreme point, which will not decrease with
the increase of DG capacity but will be damaged. In view of Figure 7b, the voltage increases with
the increase of energy-saving benefits. The results of DG optimization show that the capacity of
DG-mounted nodes is too large to reduce the total voltage deviation correction effect. Therefore, the
energy-saving benefits have a linear relationship with the voltage deviation when the permeability of
DG is satisfied. Line loss and voltage deviation also show a nonlinear relationship in Figure 7c, and
the two restrict each other.
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4.4. Case Analyses of IEEE 33-, 69-, and 118-Bus Systems

In order to prove the improvement degree of the NSGA-II algorithm on network optimization
results of different node systems, the IEEE 33-, 69- and 118-bus systems are introduced. The parameters
of the IEEE 69- and 118-bus systems are described in References [33,34].

Table 4 shows the optimization results of the INSGA-II algorithm on three examples. For the
objective function, with the increase of network complexity, the improvement degree of the objective
function of the three DNs increases. For example, IEEE 33-bus, 69-bus, and 118-bus are improved by
74.38%, 77.39%, and 77.32%, respectively, in terms of voltage deviation. On the hand, it also proves
the importance of reasonable installation of DG. On the other hand, most of the installation nodes
are the end of the system, which also proves that DGs can improve the voltage deviation better than
other nodes.



Processes 2019, 7, 955 18 of 22

Table 4. Results of different network optimization.

Test
System

DG Location
(Bus Number)

DG Sizes
(MW)

Optimal Objectives

Optimization
Energy-Saving

Benefit
(Million $)

Voltage
Deviation

(p.u)

Line
Loss

(MW)

33-bus 6/17/24/32 0.2148/0.5013/0.2062/0.4126 Before/ 0 19.6024 0.2017
After 0.1781 4.9348 0.0797

69-bus 27/35/39/56/52 0.4266/0.2618/0.3446/0.5426/0.5698 Before/ 0 31.6747 0.2206
After 0.4876 7.1614 0.0609

118-bus 3/17/27/18/80/116 0.7787/0.4544/0.7240/0.6483/0.1027/0.2698 Before/ 0 54.3018 0.6427
After 0.8161 12.3112 0.10272

4.5. Experiments on Load and DG Output Considering Annual Time Series Changes

With the increase of installations and capacity of DG in the future, considering only static load
and DG operation status, it may not be applicable to other load levels of permeability constraints and
may even lead to reverse power flow, voltage limit, original system protection measure failures, and
other phenomena, so that the system is threatened.

To this end, this section optimizes the configuration scheme to consider the DG annual output
change and load change trend and the revised IEEE 33-bus system-related data reference [34]. The data
was recorded every hour, so it is assumed that the DG output is equal every hour and that the load
demand is constant. The four-season output level and load demand of wind turbines are shown in
Figure 8a,b.
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Figure 8. Time series data of wind turbine output and load.
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As seen in Figure 8a,b, the wind speed is higher in spring and winter and the output of wind
turbine is also improved. On the contrary, the output of wind turbine in summer and autumn is small
and the seasonal data of the load has changed but the overall change is not large. On the one hand, if
the optimization is based on the summer and autumn season time data, it may lead to waste of DG
capacity installation. On the other hand, optimizing the configuration in spring and winter will destroy
the network penetration rate and cause economic and security crisis. Here, we choose to optimize
the four seasons separately and consider them comprehensively. The four seasonal DG optimization
results using INSGA-II are shown in Table 5.

Table 5. Four quarterly independent optimization results.

Seasonal
Condition

DG
Location

(Bus)
DG Sizes (MW)

Optimal Objectives

Optimization
Energy-Saving

Benefit
(Million $)

Voltage
Deviation

(p.u)

Line
Loss

(MW)

Spring - - Before/ 0 471.6464 1.5656

6/17/24/32 0.2148/0.5013/0.2062/0.4126 After 0.0056 121.3572 1.5326

Summer
- - Berfore/ 0 472.3140 0.3733

7/17/24/32 0.1962/0.6129/0.1135/0.4544 After 0.0065 67.9313 0.3599

Autumn
- - Before/ 0 472.2005 0.5149

6/17/24/32 0.1308/0.5136/0.1012/0.4227 After 0.0067 83.6967 0.5019

Winter
- - Before/ 0 471.8158 1.1628

6/17/24/32 0.2029/0.5364/0.1910/0.4313 After 0.0583 119.9812 1.1352

As shown in Table 5, due to the relatively stable output of the wind turbines in summer and autumn,
it is possible to seek a relatively high-quality configuration result. The spring and winter seasons
are relatively unsatisfactory because of the large fluctuations in output. The combined installation
capacity of the dynamic optimization scheme should meet the DG permeability constraint of the
remaining time period. In each season, it is quite difficult for a DG configuration scheme to improve
the optimization function while satisfying the different constraints of 24 h. Therefore, the installation
capacity of each season is almost close to the maximum installation capacity, which is a compromise
that is comprehensively considered to optimize the time-series data of each objective function. In order
to meet the annual operating constraints, the combination of the smallest installation capacity on each
quarter node is selected as the planning scheme.

5. Conclusions

Considering the influence of DG access on the economy, security, and reliability of DN, this paper
establishes a multi-objective optimization model to minimize the line losses and voltage deviation and
to maximize the annual energy benefit. For DN with integrated DG units, equality constraints and
inequality constraints, which include power-flow equality, nodal voltage, branch current, DG capacity,
and short-circuit current, are considered in the optimization model. The principle of installation of DG
is summarized through experiments and power system theory, and the violation constraint indicators
are proposed to solve the infeasible solution.

The mutation operator, crowding distance operator, and selection operator of traditional NSGA
II are improved to increase the population diversity and consistency in the optimal allocation.
The introduction of an unbiased, compromised strategy can quickly give decision makers a
comprehensive plan to weigh each goal.

The different examples of the IEEE 33-, 69-, and 118-bus systems are analyzed and optimized, and
different super parameters are compared experimentally. The performance of the proposed INSGA-II
is verified by comparing NSGA-II and MOPSO algorithms. The IEEE 69- and 118-bus systems are
selected as the verification case. The proposed algorithm is applied to solve the static and dynamic
characteristics of the DN with the integrated DGs. Finally, the IEEE 33-bus system is modified and
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optimized by using the four season data of wind turbine and load. The results indicate that the
proposed method can achieve better precision and diversity and can provide a good configuration
plan for decision makers under the premise of meeting the annual penetration rate.

In practice, the choice of the best site may not always be feasible due to many reality constraints.
However, the optimization and analysis here suggest that considering multi-objectives helps to decide
siting and sizing of DG units for the decision maker. The optimization planning of a multi-distributed
generation access distribution system combined with geographic information system (GIS) technology
will be further investigated.
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Abbreviations

ZNODG
cost total annual cost of DN without DGs

ZNODG
cost total annual cost of DN with DGs

Closs annual loss of DN without DGs
Cb annual purchase cost of DN without DGs.
Cp unit price of electricity consumed per unit
τmax annual maximum load loss hour (h) of the DN
∆P j active power loss (kW) of the jth branch
Pload DN total active load
P′loadi the active power after installing DG
Tmax DN annual maximum load utilization hours
Cdgm annual investment and maintenance cost of DGs
Cploss annual cost of DN with DGs
CB annual purchase cost of DN with DGs
Csub financial subsidy of new energy generation
Cdgi distributed generation equipment investment cost ($/kWh)
Cmi annual operation and maintenance cost ($/kWh) for the ith distributed generation
Pdgi installed capacity (kW) of the ith distributed generation
Csp subsidy amount ($) of distributed generation unit
gi j admittance of the branch (i, j)
Uspeci f ied

i
voltage-rated value

PDGiQDGi ith node active and reactive power of the DGs injected
PLiQLi ith node active and reactive powers of load output
Bik the branch susceptance∑

SDGi the total capacity of distributed generation
SL maximum load value of DN
KIII

sen,i the sensitivity coefficient of current III segment protection of branch i as backup protection
II
set,i the setting values of the current I protection of the branch i, respectively

I(3)k,i−1.max the maximum reverse current through branch i

LDGi the ith node is the DG installation location
cdk

i the crowding distance on the kth objective function of xi

f k
i+1

the value of objective function corresponding to the last solution on the axis of the kth objective
function
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EDmax
j the maximum error degree of infeasibility under the jth constraint

S_t the type of the solution set
newxk the selected kth descendant solution
ωi

j the unbiased parameter of the ith solution in the Pareto-optimal set on the jth objective function
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