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Abstract: Terrestrial ecosystem carbon storage plays an important role in mitigating global warming.
Understanding the characteristics and drivers of changes in carbon storage can provide a scientific
basis for urban planning and management. The objective of this study was to reveal the ways in
which urbanization influences the spatial and temporal variations in carbon storage. In this study,
we investigated the changes in carbon storage from 1990–2000, 2000–2010, and 2010–2018 in the
Su-Xi-Chang region, which is a typical fast-growing urban agglomeration in China, based on the
InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) model. Moreover, we analyzed
the impacts of urbanization-induced land-use changes on carbon storage. The results showed that in
terms of space and time, the greatest loss of carbon storage occurred in developing urban areas and
during the rapidly urbanizing stage. Our study revealed that the reduction in cultivated land was
the greatest contributor to carbon stock losses. In addition, we found that some types of land use
conversion can enhance carbon storage. Based on the results, some suggestions are proposed aimed
at promoting urban sustainable development. This study also provides insights into enhancing urban
sustainability for other urban agglomerations throughout the world.
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1. Introduction

As an important part of the global carbon cycle, carbon storage in terrestrial ecosystems has
attracted extensive attention from scientists and governments worldwide [1–4]. Terrestrial ecosystems
can reduce and mitigate climate change by absorbing atmospheric carbon and storing it in soil and
plant organic matter [5,6]. However, excessive human activities lead to unbalanced carbon budgets
in terrestrial ecosystems, which aggravate global warming [7]. Wildfires, timber harvesting, land
management, and land use/land cover change (LUCC) all result in changes in ecosystem carbon
storage [8–10]. Among them, LUCC is considered to be one of the most important factors causing
carbon storage changes in global terrestrial ecosystems [11,12].

“Urbanization” refers to the population shift from rural to urban areas and the continuous
expansion of urban scale [13]. To date, more people than ever live in cities, and the level of urbanization
is continually increasing. It is predicted that by 2050, the proportion of the global population living
in cities and towns will reach 70% [14]. Another study shows that the total global urban land area is
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expected to triple from approximately 0.65 million km2 in 2000 to 1.86 million km2 in 2030 [15]. These
findings indicate that the trend of urbanization will continue into the future. However, urbanization
not only leads to economic development and population growth but also causes significant LUCC [16].
Relevant studies have shown that unreasonable LUCC in urbanization processes leads to declines in
carbon storage, thus further affecting the climate regulation service of ecosystems and the sustainable
development of human society [17,18]. Therefore, exploring the relationship between urbanization
and carbon storage is helpful for a better understanding of the interaction between human beings and
ecosystems and providing a basis for formulating sustainable urban development policies.

The methods used to estimate the relationship between urbanization and carbon storage change
mainly include field surveys [19,20], remote sensing [21,22], and model assessment [23–26]. In recent
years, the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model has been commonly
used by researchers to evaluate carbon storage because of its low demand for input parameters and
high accuracy of assessment results [27,28]. The InVEST model was developed by the Natural Capital
Project (www.naturalcapitalproject.org), which is an integration of a series of modules for evaluating
ecosystem services such as water yield, sediment retention, and carbon storage [29]. The carbon storage
and sequestration module in the InVEST model can efficiently assess carbon storage in terrestrial
ecosystems by using land-use type maps and carbon density values as input data. For example,
Delphin et al. [30] revealed the driving mechanism of urbanization changes affecting carbon storage in
two disparate watersheds in Florida, USA, based on the InVEST model. Tao et al. [31] applied the
InVEST model to estimate the change in terrestrial carbon storage in Changzhou, China and found
that the carbon density decreased with an increase in urban development intensity. Jiang et al. [23]
used the InVEST model to investigate the impact of urban ecosystem changes on carbon storage in
the Changsha-Zhuzhou-Xiangtan urban agglomeration under different scenarios. By combining the
InVEST model and a new land-use monitoring method, Sallustio et al. [32] analyzed the impact of
land-use changes on carbon storage in Rome and Molise in Italy.

Carbon storage not only changes with different stages of urbanization but also displays spatial
heterogeneity across different regions, such as urban centers, suburbs, and rural areas. It is a challenging
task to comprehensively investigate the impact of urbanization on spatial and temporal changes in
carbon storage. For example, many studies analyzed the spatial patterns of carbon storage in the
urban-rural gradient, however, they failed to reveal the impact of urbanization on carbon storage
over time [33–35]. Other studies analyzed the relationship between urbanization and carbon storage
for different periods but did not explore the differences in the spatial distributions of carbon storage
in urban-rural structures [36–38]. Further, many studies have focused on the carbon stock losses
caused by urban expansion [23,39–41], but urbanization can also increase carbon storage, which is
often neglected. Therefore, the research efforts mentioned above are unable to provide comprehensive
suggestions for the sustainable development of urban areas.

Since the reform and opening up of the country, China’s urbanization has developed rapidly, with
the urbanization rate increasing from 17.9% in 1978 to 58.5% in 2017 [42]. In addition to economic growth,
rapid urbanization has also led to many ecological problems [43–45]. Therefore, promoting sustainable
urbanization has become a major task that China must confront. To prevent land degradation, air
pollution, and climate change, China has established a series of plans to protect and expand forests,
these have contributed significantly to increases in ecosystem services such as carbon sequestration and
soil retention [46,47]. Moreover, in the Paris Climate Agreement, China committed to reaching its peak
carbon emissions in approximately 2030 and then achieving declines thereafter [48]. China’s terrestrial
ecosystems have played and will continue to play an important role in carbon storage [49]. Evaluating
the spatial and temporal impacts of urbanization on carbon storage will help to reveal the problems
facing urban development and provide inspiration for future urban planning.

In this study, the Su-Xi-Chang region, a typical fast-growing urban agglomeration in China, was
selected as a case study to estimate the spatiotemporal dynamics of carbon storage in response to
urbanization from 1990–2018. We first obtained the spatial patterns and different stages of urbanization
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based on nighttime light imagery data and demographic data. Then, by using the InVEST model, we
assessed the changes in carbon storage and analyzed the reasons for the changes. The main objectives of
our study were to (1) reveal how landscape patterns change spatially along the urban-rural gradient and
temporally through the process of urbanization and (2) analyze the impacts of urbanization-induced
land-use changes on carbon storage. Our results are expected to provide scientific support for the
sustainable development of the Su-Xi-Chang region and a methodology that can be applied to other
urban agglomerations with similar characteristics throughout the world.

2. Materials and Methods

2.1. Study Area

The Su-Xi-Chang region (119◦08′–121◦15′ E, 30◦46′–32◦04′ N) (Figure 1), which includes the three
cities of Suzhou, Wuxi and Changzhou, is located on a plain of the lower reaches of the Yangtze River
in the south part of Jiangsu Province, which is one of the fastest-growing regions in China [50]. The
study area belongs to the north subtropical monsoon climate, with an average annual precipitation of
1092.4 mm and an average annual temperature of 15.3 ◦C [51]. The total land area of the three cities
is 1.78 million ha, of which Suzhou accounts for 49%, Wuxi, 26% and Changzhou, 25%. By the end
of 2018, the total population of the Su-Xi-Chang region had reached 22.225 million, with an average
population density of 1233 people/km2 [50]. The three cities are adjacent and are culturally connected
and of similar size, which is very rare in China’s urban patterns.

From the 1980s to the 1990s, a large number of rural enterprises with collective ownership emerged
in the Su-Xi-Chang region, which greatly promoted local economic development. This mode of
development is known as the “Sunan model” [52]. After 2000, the expansion of the urban development
zones, the construction of transportation infrastructure and the influx of foreign capital drove the
development of the high-tech manufacturing industry, which caused the study area to enter a stage of
rapid urbanization. However, with rapid population growth and urban expansion, the demand for
urban built-up areas continues to expand, and competition for agricultural and construction land has
increased. At the same time, rapid urbanization has also caused water and soil pollution, increasing
haze weather and seriously affecting local sustainable development [51,53].Processes 2019, 7, x FOR PEER REVIEW 4 of 19 
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2.2. Data preparation

In this study, ArcGIS 10.2 (http://www.esri.com/software/arcgis) was used as the GIS software
platform. All vector and raster data were converted to the same projection coordinate system
(Krasovsky_1940_Transverse_Mercator). The land use data from 1990, 2000, 2010, and 2018, at a spatial
resolution of 30 m × 30 m, were provided from the Resource and Environment Data Cloud Platform
(http://www.resdc.cn/Default.aspx) and were based on Landsat TM/ETM + remote sensing images
from multiple dates. The land use data were classified into six types: cultivated land, forest, grassland,
water area, built-up area, and unused land. Two nighttime light imagery datasets, DMSP/OLS and
NPP/VIIRS (https://www.ngdc.noaa.gov/eog/index.html), were used to quantify the urbanization of the
study area. The raster data for populations in 1990, 2000, 2010, and 2015 were also obtained from the
Resource and Environment Data Cloud Platform. The vector data for urban boundaries were obtained
from the National Earth System Science Data Sharing Infrastructure, National Science & Technology
Infrastructure of China (http://www.geodata.cn).

2.3. Classification of Urbanization

DMSP/OLS data became available in 1992, but the land use data used in this study began in
1990. Therefore, the DMSP/OLS data for 1992 were used to approximate the land use data in 1990.
Additionally, DMSP/OLS data were terminated in 2013. Since 2012, NPP/VIIRS data, which are based
on stronger night light detection capability, have been widely used and have become the successor to
DMSP/OLS. However, there are differences in the properties of the satellite sensors, spatial resolutions
and spectral response modes between the two types of data. Referring to the study of Li et al. [54],
we evaluated urbanization in 2010–2018 based on the fused DMSP/OLS and NPP/VIIRS data. The main
steps are as follows: we first conducted radiometric calibrations and interannual series corrections on
the DMSP/OLS data, then, we established a regression relationship between DMSP/OLS and NPP/VIIRS
data in 2013, and finally, we used NPP/VIIRS data fitting to generate the simulated DMSP/OLS data
for 2014–2018.

Digital numbers (DNs) of nighttime light imagery data were used to analyze and reveal urban
expansion from 1992–2018. Higher DN values indicate higher levels of urbanization. The study area
was divided into three urbanization levels: developed urban, developing urban, and rural. Referring
to the study of Li et al. [55], we determined the urbanization levels as follows (Table 1).

Table 1. Conditions for dividing different urbanization level zones by the ranges of DN values.

Conditions Urbanization Levels

DN1992value ≥ 50 and DN2018value ≥ 50, Developed urban area
DN1992value < 50 and DN2018value ≥ 50, Developing urban area
DN1992value < 50 and DN2018value < 50, Rural area

Moreover, based on statistical analysis in ArcGIS 10.2, we analyzed the variations in population
totals and the proportions of developed urban, developing urban and rural areas for different periods,
as these can reveal the immigration and emigration of people and further determine the different
urbanization stages in the Su-Xi-Chang region.

2.4. Detection of Land Use Changes

To explore the temporal changes in land use, the areas (ha) of different land-use types were
calculated, and the increasing or decreasing quantities of each type were compared and specified.
Moreover, we used the change rates in land-use types to represent the change trends of different
land-use types in a certain period. The calculation is as follows:

RL =
Ub −Ua

Ua
(1)

http://www.esri.com/software/arcgis
http://www.resdc.cn/Default.aspx
https://www.ngdc.noaa.gov/eog/index.html
http://www.geodata.cn
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where RL represents the change rate in one land use type and is expressed in %, Ua and Ub are the
areas of this land-use type in the early and late stages of the research period, respectively.

Spatial overlay analysis in ArcGIS 10.2 was used to detect the spatial changes in land use.

2.5. Assessment of Carbon Storage

In this study, the InVEST model was used to simulate the change in carbon stocks in response to
urbanization. Carbon stock refers to the quantity of carbon stored in a carbon pool at a specified time.
The InVEST model divides the ecosystem carbon stock into four basic carbon pools: aboveground
biomass, belowground biomass, soil organic matter, and dead organic matter. Aboveground biomass
includes all living plant materials above the soil (e.g., bark, trunk, branches, and leaves), belowground
biomass refers to the living root systems of the aboveground biomass, soil organic matter represents
the organic component of soil, which is the largest terrestrial carbon pool, dead organic matter includes
litter as well as lying and standing deadwood [29]. InVEST is a geospatial modeling framework tool
that can aggregate the biophysical amount of carbon stored in these four carbon pools [56]. The input
data required for the operation of the carbon storage and sequestration module of the InVEST model
include the land use maps of the study area and the carbon densities of different land-use types [29].
Taking land use type as an evaluation unit, the amount of carbon storage is calculated by multiplying
the carbon stock of each land-use type per unit area by its area. The calculations are as follows:

Ci = Ci−above + Ci−below + Ci−soil + Ci−dead (2)

Ctotal =
6∑

i=1

Ci × Si (3)

where i is a certain type of land use, Ci−above, Ci−below, Ci−soil, and Ci−dead represent the aboveground
carbon density, belowground carbon density, soil organic matter carbon density, and dead organic
matter carbon density, respectively. Ci is the carbon stock for a certain type of land use, Ctotal is the
total amount of carbon storage, and Si is the area of a certain land-use type i.

Due to limited time and funding, the carbon density data in this study were derived from the
results of several local studies and not from actual measurements. However, because carbon density
values vary according to climate, soil properties, and land use, we referred to the carbon density
values in studies conducted in or near the Su-Xi-Chang region. Referring to the study of Guo et
al., which conducted a carbon storage assessment in the Yangtze River city group using the field
survey method [57], we obtained the mean aboveground, belowground, and soil organic matter carbon
densities of different land-use types (Table 2). Since no previous studies have measured the dead
organic matter carbon density in or near the Su-Xi-Chang region, this parameter was determined by
referring to the study of Tang et al., which estimated the carbon pools in China’s terrestrial ecosystems
based on an intensive field survey [58].

Table 2. Mean carbon densities for each land-use type in the Su-Xi-Chang region (Mg C/ha).

Land Use Types Ci−above Ci−below Ci−soil Ci−dead Sources

Cultivated land 13.1 2.5 35.0 0 [57,58]
Forest 19.4 3.9 35.7 1.9 [57,58]
Grassland 2.1 9 34.5 0.1 [57,58]
Water area 0.6 0 38.5 0 [57,58]
Built-up area 1.1 0 37.3 0 [57,58]
Unused land 0.1 0 34.6 0 [57,58]

3. Results

3.1. Urbanization in the Su-Xi-Chang Region

The mean DN values in the study area were 9.32, 11.98, 37.37 and 39.43 in 1992, 2000, 2010, and
2018, respectively, showing an increase of more than four times. The mean DN value of the developed
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urban areas (62.82) was larger than that of the developing urban areas (51.44) and larger than that for
the rural areas (21.91) in 2018 (Figure 2). From 1992 to 2018, urban expansion accounted for 46.35% of
the total area of the study area. During the periods of 1992–2000, 2000–2010, and 2010–2018, the areas
of urban expansion were 2.79 × 104, 7.23 × 105, and 1.45 × 105 ha, respectively.

From 1990 to 2000, the total population of the entire study area showed an increasing trend.
However, the proportion of the population in the developed urban areas increased, while that in the
other two areas decreased (Table 3). From 2000–2010, the trend of population growth continued: the
proportion of the population in developing urban areas increased significantly and that of the other
two areas decreased. After 2010, both the total number and the proportion of the population in the
developed urban areas showed a decreasing trend, while these two indicators both increased in the
developing urban areas and rural areas. Based on the law of population migration, our study classified
these three periods as the different stages of urbanization: the initially urbanizing stage, the rapidly
urbanizing stage, and the highly urbanized stage.Processes 2019, 7, x FOR PEER REVIEW 7 of 19 
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Figure 2. (a) Processes of urban expansion from 1992–2018 (different colors represent regions where
the DN values were 50 or greater, indicating urban expansion.), (b) Areas with different levels of
urbanization (see Table 1 for the division basis).

Table 3. Population of areas with different urbanization levels (Unit: ten thousand).

1990 Proportion 2000 Proportion 2010 Proportion 2015 Proportion

Developed urban area 70.90 6% 161.14 10% 179.13 8% 141.07 6%
Developing urban area 729.17 57% 881.02 56% 1354.49 63% 1412.05 64%

Rural area 447.33 37% 524.57 33% 623.29 29% 667.82 30%
Total 1274.40 1566.74 2156.91 2220.95

3.2. Land Use Changes

From 1990 to 2018, the number of cultivated lands and built-up areas changed substantially,
followed by the number of water areas, while the other land-use types changed only marginally
(Figure 3). The total area of cultivated land showed a continuously decreasing trend (410.92 × 103 ha),
and the largest change rate (23.70%) occurred from 2000–2010. From 1990–2018, the decrease in the
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area of cultivated land in the developed urban areas, developing urban areas, and rural areas was
7.42 × 103, 330.89 × 103, and 72.40 × 103 ha, accounting for 1.81%, 80.57%, and 17.63% of the total,
respectively. The amount of built-up area tended to increase continuously (387.13 × 103 ha), and its
change rate reached a maximum of 86.31% in the period from 2000–2010. During the period from
1990–2018, the built-up area in the developed urban areas, developing urban areas, and rural areas
increased by 7.60 × 103, 327.90 × 103, and 51.64 × 103 ha, accounting for 1.85%, 79.84%, and 12.57% of
the total, respectively. The water area showed a trend of first increasing and then decreasing, but the
area fluctuated little. The areas of forest, grassland, and unused land changed slowly by 5.07 × 103,
6.46 × 103, and 2.87 × 103 ha, respectively.Processes 2019, 7, x FOR PEER REVIEW 8 of 19 
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(b) Developed urban area, (c) Developing urban area, (d) Rural area.

As seen from the spatial distributions and transition matrix of land-use changes (Figure 4,
Tables 4–6), cultivated land, built-up areas, and water areas changed significantly, while the other
land-use types changed only slightly during the study period. From 1990 to 2000, much of the cultivated
land was converted to built-up areas in developing urban areas, which were radially distributed
around the city center, the conversion of cultivated land to water area was scattered in Changzhou and
Suzhou. During this period, the urbanization of the study area was just beginning, and the land-use
changes were dominated by an increase in built-up areas (mainly industrial lands and residential
lands) and water areas (mainly aquacultural lands). In terms of the increased area of the built-up land,
the development levels of Suzhou, Wuxi, and Changzhou were similar.

From 2000–2010, the conversion of cultivated lands to built-up areas occurred in many parts of
the Su-Xi-Chang region, indicating that urbanization had developed rapidly during this period. When
comparing the increasing built-up areas of different cities, we see that Suzhou (13.47 × 104 ha) > Wuxi
(5.63 × 104 ha) > Changzhou (3.83 × 104 ha), showing that Suzhou had a faster urbanization process.
The conversion of cultivated lands to water areas mainly occurred in the developing urban areas and
rural areas of Changzhou and Suzhou, the conversion of water areas to built-up areas mainly occurred
in the developing urban areas of Wuxi and Suzhou. Around the city center of Wuxi, some cultivated
land was converted into the forest, which may be related to the ecological protection policy in force
during this period.

From 2010–2018, the conversion of cultivated land to built-up areas was still the main land-use
change, but the converted area was much less than that from 1990–2000 or 2000–2010. In this period,
the urbanization process slowed dramatically. In addition to the increase in built-up area, there was
a considerable increase in cultivated land and grassland. Some built-up areas (mostly abandoned
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industrial land and rural residential land) were converted into cultivated land in the northeastern part
of the study area, which is far from the city center of Suzhou and near the Yangtze River. Compared to
the other two cities, the land-use changes for Suzhou in this period were more diversified.Processes 2019, 7, x FOR PEER REVIEW 9 of 19 
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Figure 4. Spatial distribution of land-use changes from (a) 1990–2000, (b) 2000–2010, and (c) 2010–2018.

Table 4. Transition matrix of land-use change during 1990–2000 (ha).

Land Use
2000

Cultivated
Land Forest Grassland Water

Area
Built-Up

Area
Unused

Land
Transfer-Out

Area

1990

Cultivated
land 1,038,847 5177 234 23,395 127,338 21 156,165

Forest 4638 94,579 104 704 3117 124 8687

Grassland 204 68 3873 280 159 2 713

Water area 11,723 610 406 481,568 1973 28 14,740

Built-up area 18,688 471 20 854 125,072 4 20,037

Unused land 24 27 3 54 19 625 127

Transfer-in
area 35,277 6353 767 25,287 132,606 179 —
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Table 5. Transition matrix of land-use change from 2000–2010 (ha).

Land Use
2010

Cultivated
Land Forest Grassland Water

Area
Built-up

Area
Unused

Land
Transfer-Out

Area

2000

Cultivated
land 810,139 3125 25 40,403 219,412 1379 264,344

Forest 550 96,208 0 432 2012 1900 4894

Grassland 85 10 3596 595 237 117 1044

Water area 3052 42 51 494,152 9914 1 13,060

Built-up area 5993 257 1 2595 248,444 410 9256

Unused land 0 42 0 29 94 643 165

Transfer-in
area 9680 3476 77 44,054 231,669 3807 —

Table 6. Transition matrix of land-use change during 2010–2018 (ha).

Land Use
2018

Cultivated
Land Forest Grassland Water

Area
Built-Up

Area
Unused

Land
Transfer-Out

Area

2010

Cultivated
land 769,440 0 387 2680 47,263 49 50,379

Forest 16 98,493 375 108 679 13 1191

Grassland 145 0 3233 47 248 0 440

Water area 11,495 0 6830 512,206 7646 29 26,000

Built-up area 3694 0 185 506 475,728 0 4385

Unused land 123 0 40 44 714 3529 921

Transfer-in
area 15,473 0 7817 3385 56,550 91 —

3.3. Carbon Storage Changes

3.3.1. Changes in the Amount of Carbon Storage from 1990–2018

Over the past 28 years, carbon storage in the entire study area has been continuously decreasing
(Table 7). During the period from 2000–2010, carbon storage decreased by 3.14 Tg C, which was 2.08
and 7.85 times that for the corresponding amounts between 1990–2000 and 2010–2018, respectively
(1 Tg C = 106 t C). This indicates that the rapid urbanization from 2000 to 2010 had a strong negative
impact on carbon storage. Among the three cities, the largest carbon stock losses over the past 28 years
occurred in Suzhou, followed by Wuxi and Changzhou. Although the increase in a built-up area
in the three cities was similar between 1990 and 2000, the carbon storage reduction in Suzhou was
greater than that in Wuxi and Changzhou. This gap continued to widen between 2000 and 2010. It is
worth noting that although the increase in built-up area in Suzhou was twice that of Changzhou, the
reduction in carbon storage in Suzhou was less than that in Changzhou.

Table 7. Quantitative changes in carbon storage during 1990–2018 (Tg C).

1990 2000 2010 2018 1990–2000 2000–2010 2010–2018

Whole study area 91.97 90.46 87.32 86.92 −1.51 −3.14 −0.40
Suzhou 44.12 43.40 41.55 41.41 −0.72 −1.85 −0.14
Wuxi 24.33 23.90 23.20 23.10 −0.43 −0.70 −0.10

Changzhou 23.52 23.16 22.57 22.41 −0.36 −0.59 −0.16
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3.3.2. Spatial Heterogeneity of Carbon Storage Changes

From 1990–2000, carbon stock losses were widely distributed in the study area and were
characterized by being more concentrated near the city centers and more dispersed near rural areas
(Figure 5). This is consistent with the spatial distribution of built-up area increases during this period
(Figure 4a). From 2000–2010, the area of carbon storage reduction further increased and was distributed
in most areas except for Taihu Lake and the mountainous areas in the south. Compared to the previous
period, the reduction in carbon storage in many areas changed from sporadic distributions to planar
aggregation distributions. Additionally, there were a few areas with carbon storage increases occurring
around the urban centers of Wuxi and Suzhou. From 2010–2018, there were significantly fewer areas
with carbon stock losses than in the previous period, indicating that the urbanization process slowed
down in this period. It is noteworthy that increases in carbon storage occurred in the central and
southern parts of Suzhou and along the Yangtze River in the north.Processes 2019, 7, x FOR PEER REVIEW 11 of 19 
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The spatial heterogeneity of carbon storage changes is also reflected in regions with different
urbanization levels (Figure 6). Carbon storage in the study area decreased the most in the developing
urban areas, followed by rural areas and developed urban areas. From 1990–2018, carbon stock losses
in the developing areas of Suzhou, Wuxi, and Changzhou were 2.39, 0.98, and 0.68 Tg C, representing
88.04%, 79.65%, and 61.20% of the total in each city, respectively. In addition, the carbon stock losses in
rural areas were also large, especially in Changzhou, whose carbon storage has decreased by 0.43 Tg C
over the past 28 years. It should be noted that carbon storage in the rural areas of Suzhou increased
by 0.09 Tg C from 2010–2018. Among the three different urbanization regions, the developed urban
areas have the lowest carbon stock losses. In general, the ratio of carbon stock loss in developed urban
areas, developing urban areas, and rural areas of the study area were 1:48:11. In addition, the carbon
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storage of the study area decreased most from 2000 to 2010, which is also true for Suzhou, Wuxi, and
Changzhou. For example, the total reduction in carbon storage for Suzhou from 2000–2010 (1.85 Tg C)
was 2.55 and 13.17 times that for the periods of 1990–2000 and 2010–2018, respectively.Processes 2019, 7, x FOR PEER REVIEW 12 of 19 
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3.4. Influence of Land Use Change on Carbon Storage

As seen from the statistical analyses (Tables 8–10), the decrease in cultivated land has been the
largest continuous cause of carbon stock loss over the past 28 years. Due to the urbanization process
in the study area, many unbuilt areas were forced to convert to built-up areas. Among them, the
conversion from cultivated lands to built-up areas accounted for the largest proportion, followed by
conversions from water areas and forests, which mainly occurred in developing urban areas (Figure 4).
For the periods from 1990–2000 and 2000–2010, much-cultivated land in the rural areas was converted
to water areas, also resulting in a large amount of carbon stock loss. In addition, land-use changes can
also lead to increases in carbon storage. After 2000, for example, the conversion of built-up areas and
water areas to cultivated land, of cultivated lands to forests, and of water areas to grasslands resulted
in considerable growth in carbon storage.

Table 8. The effects of the conversion of the main land-use types on carbon storage during 1990–2000.

Land Use Type Conversion Area (107 ha) Changes in Carbon Storage (Gg C)

Cultivated land to built-up area 109.49 −1334.51
Cultivated land to water area 11.45 −131.57

Forest to built-up area 2.44 −54.90
Water area to built-up area 0.60 −0.42

Water area to cultivated land 0.43 4.94
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Table 9. The effects of the conversion of the main land-use types on carbon storage from 2000–2010.

Land Use Type Conversion Area (107 ha) Changes in Carbon Storage (Gg C)

Cultivated land to built-up area 219.41 −2674.41
Cultivated land to water area 40.40 −464.19

Water area to built-up area 9.91 −6.94
Built-up area to cultivated land 5.99 73.05

Cultivated land to forest 3.13 32.16
Water area to cultivated land 3.05 35.06

Table 10. The effects of the conversion of the main land-use types on carbon storage during 2010-2018.

Land Use Type Conversion Area (107 ha) Changes in Carbon Storage (Gg C)

Cultivated land to built-up area 47.26 −576.08
Water area to cultivated land 11.50 132.07
Water area to built-up area 7.65 −5.35

Water area to grassland 6.83 45.28
Built-up area to cultivated land 3.69 45.01
Cultivated land to water area 2.68 −30.79

4. Discussion

Urbanization brings population and economic growth, but it also leads to ecological
problems [43–45]. Many studies have shown that urbanization has an impact on carbon storage
in terrestrial ecosystems [36–41]. In contrast to previous studies, this study comprehensively analyzes
the “spatial” and “temporal” changes in carbon stocks from the urbanization process. In this section,
the results from the study area are analyzed in conjunction with China’s development policy and are
compared with the findings for cities examined in other studies. The issues we tried to discuss were
threefold: (1) to theoretically determine if there are regularities in carbon storage changes in time and
space through the process of urbanization, (2) to discuss the pros and cons among different carbon
stock modeling approaches, and (3) to provide practical inspiration and suggestions for sustainable
urban development.

4.1. Spatiotemporal Changes in Carbon Storage Due to Urbanization

In this study, we found that the maximum carbon stock losses occurred in the developing urban
areas (Figures 5–7). This result is consistent with the results of [41,55]. In locations characterized by
rapid urbanization, the increase in the built-up area occurs at the cost of occupying other land use
types, such as cultivated land, water, and forest [59,60]. The area of the urban centers is limited, and
the increase in built-up areas tends to extend outward from developed urban areas, so carbon storage
decreased the most in developing urban areas. This finding is consistent with a study conducted in
the Seattle metropolitan region that argued that the increase in built-up area was the most important
reason for the carbon stock losses [61]. In addition, carbon stock losses were also high in rural areas
(Figures 5–7) because, unlike in Beijing and Shanghai, whose urbanization benefits from sustained
investment by the country, the urbanization in the Su-Xi-Chang region belongs to the bottom-up
model. This development model reflects rural enterprises achieving urbanization through rural
industrialization [62]. Rural enterprises occupy a large amount of cultivated land due to a lack of
planning, which leads to reductions in carbon storage. The developed urban areas were saturated at
the beginning of the research period, hence, little change in carbon storage was detected. Some studies
have explored the spatial distribution characteristics of carbon storage in urban-rural gradients, but
they were static studies only focused on a specific time [33,34]. It is difficult to obtain information
about the trends and reasons for carbon stock changes from this research stream. In contrast, this study
analyzed the dynamic changes in carbon storage in areas at different urbanization levels, which can
provide more references for decision-making.
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The temporal variations in carbon storage during the urbanization process are similar to those
obtained from spatial analysis. Carbon storage declined most in the rapidly urbanizing stage
(2000–2010), followed by the initially urbanizing stage (1990–2000) and the highly urbanized stage
(2010–2018). In the initially urbanizing stage (1990–2000), many migrants, as well as those who
originally lived in the suburbs and villages, were attracted to the city centers for better job opportunities
and quality of life (Table 2). In addition, this was also the economic development period of the “Sunan
model”. Rural enterprises mushroomed, constantly being established and developed during this
period. Therefore, built-up areas increased by spreading around the urban centers and appearing
sporadically in rural areas. These changes reduced carbon storage to a certain extent. The maximum
carbon stock loss occurred in the rapidly urbanizing stage (2000–2010), which is consistent with
the results of [14]. During this period, the built-up areas increased by spreading outside the city
centers, resulting in substantial reductions in carbon storage. The increase in the built-up areas in this
period was mainly due to three reasons: (1) with the popularity of highways and private cars, cities
spread farther into the suburbs, (2) to obtain greater economic benefits, factories tended to cluster
together, which required more land to build factories and ancillary facilities, and (3) the increase
in urban populations and the desire to improve living conditions led to the construction of large
numbers of urban houses. In the highly urbanized stage (2010–2018), there was no more space for
urban development. Moreover, as the environmental problems caused by disorganized long-term
development became increasingly prominent, the government began to pay attention to cultivated
land and environmental protection, so the carbon stock loss in this period was minimal.

4.2. Comparison of Assessment Methods

In addition to the InVEST model, field surveys, remote sensing, and the Carnegie-Ames-Stanford
approach (CASA) model have been used in many studies for carbon storage assessment. Field survey
data are of great significance for parameter calibration in model evaluation and for verification of
remote sensing results [12,63]. However, field surveys take a great deal of time and manpower, so
they are often used in single ecosystems, such as grassland and soil carbon pool [14]. In addition,
some studies use remote sensing data and the CASA model to assess carbon storage [25,26]. Since
remote sensing data can reflect the actual growth of vegetation, this method can obtain more accurate
results and reflect the spatial heterogeneity of carbon reserves in each land-use type. However, this
method also has shortcomings. For example, the evaluation results of the CASA model can only reveal
carbon stocks in aboveground biomass but not in belowground biomass, soil, or dead organic matter.
Moreover, running the CASA model requires extensive remote sensing, vegetation, and meteorological
data and parameters, making it less operable than the InVEST model. In contrast, the InVEST model
is able to assess carbon stocks based only on the land use types map and carbon densities for the
four-carbon pools, which is a much simpler and more convenient approach. Many recent studies have
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shown that the InVEST model offers advantages for studying the relationship between land use and
carbon stocks and can produce reliable results [8,14,23,40,41].

4.3. Implications

Our study investigated the impacts of land-use changes on carbon storage in the Su-Xi-Chang
region. The results showed that the decrease in cultivated land was the main reason for the carbon
stock loss, which is consistent with previous studies of [23,64]. We found that the expansion of
built-up areas in developing urban areas and the development of aquaculture in rural areas resulted in
significant reductions in carbon storage. Unlike previous studies, we found that the conversion of
cultivated lands to forests in developed urban areas, the conversion of built-up areas to cultivated
lands in developing urban areas, and the conversion of water areas to cultivated lands and grasslands
in rural areas can enhance carbon storage. Based on our findings (Figure 8), some recommendations for
mitigating the carbon stock losses in the Su-Xi-Chang region are proposed. (1) Due to its small area, the
developed urban areas are not suitable for agriculture. We suggest planting trees on plots that are not
suitable for farming, for example, establishing urban forest parks, to increase carbon storage in these
areas. (2) In developing urban areas, a policy for reducing built-up areas should be implemented, and
abandoned factories and residential lands should be reclaimed for cultivated land. The development
of cities in the vertical direction should be explored, and the intensive use of land resources should
be adopted as an effective way to balance the challenges of accommodating both carbon storage and
rapid urbanization. (3) Rural areas are the main areas producing agricultural products, so the quantity
and quality of cultivated land should be guaranteed. In addition, we recommend that grasslands
be planted appropriately in lakeside and riparian areas, as this can also enhance carbon storage in
the region.
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4.4. Uncertainties and Limitations

Although the results of this study reflect the temporal and spatial regularity of carbon storage
changes in the context of urbanization, there are also uncertainties. First, the land use data in
this study were manually interpreted, which produces some errors and affects the accuracy of the
results [65]. Second, the selection of carbon density values affects the accuracy of the results. Under
the influence of human activities and environmental changes, the carbon density values will change
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dynamically. However, the InVEST model assumes that carbon density values are constant, which
creates uncertainties in the assessment of carbon storage [14]. Finally, the InVEST model simplifies
complex ecological processes and enhances the operability of the assessment. However, the model
cannot reflect the spatial heterogeneity of carbon storage within each type of land use, which also leads
to uncertainties in the assessment results. To improve the accuracy of carbon storage assessments,
future research should verify the carbon density values by field surveys and pay attention to the impact
of spatial differences within land-use types on carbon densities.

5. Conclusions

This study investigated the spatiotemporal dynamics of carbon storage and analyzed the impacts
of urbanization-induced land-use changes on carbon storage in the Su-Xi-Chang region. The results
revealed that carbon storage exhibits differential responses to urbanization across different urbanization
areas and over time. Spatially, the largest loss of carbon storage occurred in developing urban areas,
while temporally, the largest loss of carbon storage appeared in the rapidly urbanizing stage. This
study further analyzed the drivers of carbon storage changes. Overall, the reduction in cultivated land
was the biggest contributor to carbon stock losses. The expansion of built-up areas in developing urban
areas and the development of aquaculture in rural areas also resulted in reductions in carbon storage.
In addition, the conversion of cultivated lands to forests in developed urban areas, the conversion
of built-up areas to cultivated lands in developing urban areas, and the conversion of water areas to
cultivated lands and grasslands in rural areas could lead to increases in carbon storage. Based on
these results, we recommend that local governments plant trees (e.g., establish urban forest parks) in
developed urban areas, implement vertical development and intensive land use in developing urban
areas, and increase the area of cultivated lands and grasslands in rural areas. This study can enhance
understanding of how to achieve sustainable urbanization. In addition, the methodology and results
of our study can be used for reference by researchers of other urban agglomerations around the world.
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