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Abstract: Electric energy sources are the foundation for supporting for the industrialization and
modernization; however, the processes of electricity generation increase CO2 emissions. This study
integrates the Holt–Winters model in number cruncher statistical system (NCSS) to estimate the
forecasting data and the undesirable model in data envelopment analysis (DEA) to calculate
the efficiency of electricity production in 14 countries all over the world from past to future.
The Holt–Winters model is utilized to estimate the future; then, the actual and forecasting data
are applied into the undesirable model to compute the performance. From the principle of an
undesirable model, the study determines the input and output factors as follows nonrenewable and
renewable fuels (inputs), electricity generation (desirable output), and CO2 emissions (undesirable
output). The empirical results exhibit efficient/inefficient terms over the period from 2011–2021
while converting these fuels into electricity energy and CO2 emissions. The efficiency reveals the
environmental effect level from the electricity generation. The analysis scores recommend a direction
for improving the inefficient terms via the principle of inputs and undesirable outputs excess and
desirable outputs shortfalls in an undesirable model.

Keywords: productivity efficiency; Holt–Winters model; undesirable model; data envelopment
analysis (DEA)

1. Introduction

In recent years, the electricity industry has been extended to meet the demands of growth
economic sustainably [1], which provides an energy source for lighting, heating, cooling, transportation,
information exchange, i.e., electrical energy is derived from nonrenewable and renewable fuels [2],
whereas the renewable fuels include sun, wind, and water, and nonrenewable fuels include oil
and natural gas [3]. These fuels are processed to convert to the electricity via rotating turbines;
simultaneously, CO2 emissions are produced in electricity production [4]. Thus, the operation process
not only generates the electric energy to enhance the economic development [5] but also emits CO2

emissions to increase pollutants and climate change [6]. The aim of this study is to evaluate the
conversion valuation from renewable and nonrenewable fuels to electricity and CO2 emissions of
14 countries all over the world from the past to future; thus, we integrate the Holt–Winters and
undesirable models to observe the efficiency of the conversion process.

The Holt–Winters model in number cruncher statistical system (NCSS) is used for calculating
the forecasting data during the period from 2018–2021 because it can predict the future based on
the long time-series, trends, and seasonality [7]. The estimated data are tested by parameters such
as alpha, beta, and gamma, and the mean absolute percentage (MAPE) indicator. Next, all actual
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and estimated data are applied into the undesirable model in data envelopment analysis (DEA) to
figure out the performance of the conversion process from fuels to electricity generation and CO2

emissions. In DEA, the function of the undesirable model is as same as the directional distance model
deal with good (desirable) and bad (undesirable) outputs; however, the directional distance model
requires complex input and output factors, i.e., nondirectional input and output variables; further, the
undesirable model can solve with desirable and undesirable outputs independently [8]. Moreover,
this model presents slacks of each variable in every decision-making unit (DMU), which suggest the
improvement direction to the inefficient terms, i.e., increasing the desirable outputs, deducting the
inputs and undesirable outputs [9]. By the way, the research discovers the transformation valuation
from the primary fuels to the electrical energy and CO2 emissions from past to future. The empirical
results assess the efficiency of electricity generation; in addition, they also point out the effect level of
electricity production on the environment. Moreover, the analysis results offer a feasible solution to
raise the efficiency and reduce the bad effects.

Therefore, to have an electrical energy source that provides for electronic equipment and machines,
all primary sources including nonrenewable and renewable, must be put into a production process.
This process creates not only electricity production but also CO2 emissions. To reckon out the efficiency
of electricity generation from past to future, the Holt–Winters model in NCSS software with the
function of forecasting data based on the historical time-series helps to estimate the future data;
besides, the undesirable model with the principle of solving both desirable and undesirable outputs
equips us to compute the performance of electricity generation in every term.

The research is disposed as follows: Section 1 indicates the basic description of electricity
generation, Holt–Winters and undesirable models; Section 2 shows the concept of electricity and
the major elements that relate to manufacture the electrical energy, and common application of
Holt–Winters and undesirable models; Section 3 explores the source of data and builds up the research
methods; Section 4 points out the empirical analysis results and seeks out methods to solve inefficient
terms; Section 5 shows the key results, limitations, and future research.

2. Literature Review

Electricity is a necessary energy source that assists the daily activities of living, industrial
manufacturing, and business. The electrical energy is generated by two kinds of fuels including
nonrenewable and renewable fuels, whereas nonrenewable fuels are formed and cannot replenish
in a short term; renewable fuels can replenish but the limitation of amount. The primary energy is
converted into the electricity by the electric generator and turbine [10]. When the combustion of fuels
in the power plants captures CO2 emissions [11,12] that are harmful for environment. As the previous
researches, the coal-fired power plant in central Taiwan provided 19% of electricity consumption
in Taiwan, simultaneously emitted large CO2 emissions which caused a serious air pollution in
Taichung and neighboring areas [6]. An investigation of CO2 emissions from coal in India power plant
showed that one ton of fossil fuels are burned, three quarters of a tone CO2 emissions are emitted [13].
The combustion of fossil fuels generate heat needed to power steam turbines as electricity production,
this electricity generation produced approximately 40% of global CO2 emissions [14]. As a result,
these primary fuels are transformed into both electricity and CO2 emissions, the electrical energy
source is a useful output which provides energy for light, heating, machine, i.e.; the CO2 emission
is an undesirable output of electricity generation process because this emission causes bad effects
on environment such as pollutant, and climate change. The usage level of fuels and outputs from
electricity production activities in the future is predict by Holt–Winters model in this paper.

NCSS is a statistics software that integrates the exponential smoothing to escalate the prediction
data based on the time series, the exponential smoothing consists three procedures, i.e., horizontal,
trend, and trend/seasonal [7]. The horizontal only works with the short-term of time series when
utilizing a weighted average of the most recent observations without trends or seasonal patterns [15].
The trend expands the forecast series with upward and downward trends; however, this model
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restricts no seasonality [16]. The trend/seasonal procedure can reckon out the upward and downward
trends, and seasonal technique with using the Holt–Winters exponential smoothing algorithm [17].
Therefore, the Holt–Winters model was utilized to forecast the future in various researches. For instance,
a prediction of Bayesian depended on the additive Holt–Winters model [18]; an investigation of the
rainfall pattern in Langat River Basin, Malaysia with the time series within more than 25 years was
chosen to discover the future [19]; a forecasting of revenue of Bangabandhu Multipurpose Bridge was
computed when focusing on the monthly time series data [20]; a research of future cloud resource
provisioning was employed by the algorithm of the Holt–Winters exponential smoothing method to
model clod workload with multi-seasonal cycles [21]; and a study of the amount of income at the
Department of Transportation Yoyakarta was estimated by the Holt–Winters model and confirmed by
the parameters and MAPE indicator [22]. With these characteristics, the Holt–Winters model is a high
accuracy forecasting tool with trend and seasonality when observing the long time series. The estimated
data are checked by parameters including alpha, beta, and gamma, next the MAPE indicator is also
calculated to confirm the accuracy of forecasting valuation. From the previous researches and the rule
of Holt–Winters model, the research uses Holt–Winters model for estimating the prediction data based
on the selected data of relative factors to electricity generation within seven years.

Slack-based measure (SBM) in DEA can measure the performance with the input excesses and
the output shortfalls of decision making unit (DMU) [23], the maximum efficiency is equal 1. Then,
the efficiency of SBM is enlarged in order to overcome a limitation for highest score. Its maximum score
can be higher than 1 and no DMU has the same score; nevertheless, the super-SBM only approaches
desirable outputs [24]. Therefore, Tone (2003) [25] proposed the undesirable model with the presence
of bad outputs. This model can solve directly the input and undesirable output excesses and desirable
output shortfalls. In the operation process, the bad elements are produced, i.e., carbon dioxit, methan,
waste, and so on, thus the undesirable model supports for measuring the productivity efficiency with
the presence of bad output factors. For instance, in terms of agriculture, farming not only produces
the food but also causes the bad impacts for the environment, Kuo utilized the undesirable model to
evaluate the economic and environment factors and recommended the reduction of pollution through
the slack analysis of DEA [26]; generating the electricity in nuclear power plants emitted CO2 emissions,
the measurement of operational efficiency was applied by the undesirable model [27]; manufacturing
cement caused the pollutant environment because of producing CO2 emissions, Ozkan gave an effect
level of cement factories in Turkey and suggested a solution to improve the environment based on the
efficiency values [28]. As regards the presence of undesirable output, this research uses the undesirable
model for assessing the productivity efficiency of generating electricity.

3. Methods

3.1. Data Collection

Electricity is generated by renewable and nonrenewable fuels that provide an energy source for
the light, cooling, heating, and machines. The efficient transformation from these fuels to electricity
generation and CO2 emission is analyzed particularly in the study. The selected data of inputs
and outputs in 14 countries over the world from 2008 to 2017 are posted on BP [29] (names of the
14 countries are shown in Table 1).

With the principle of dealing among inputs, desirable output, and undesirable output,
the undesirable model is a good tool to measure the efficiency of operation processes that produces
both good and bad factors. Thus, to measure the efficiency of electricity generation, this study selected
nonrenewable and renewable as inputs, generation electricity as desirable output, and CO2 emissions
as undesirable output. The basic characteristics of variables are given as follows:

# Nonrenewable (input): Coal, natural gas, oil, and nuclear energy are nonrenewable [30] which
take part in producing electricity process. The fuels were formed from the buried remains
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of plants and animals that lived millions of years ago; they cannot replenish in a short time.
The equation of nonrenewable fuels is given as follows:

Nonrenewable = ∑ (coal + gas + oil + nuclear) (1)

# Renewable (input): Renewable energy sources are available and virtually inexhaustible in
duration, but the amount of energy is limited. The main kinds of renewable energy are
biomass, hydropower, geothermal, wind, and solar [31]. The equation of renewable fuels is
given as follows:

Renewable = ∑ (biomass + hydropower + geothermal + wind + solar) (2)

# Electricity generation (desirable output): The nonrenewable and renewable fuels are metabolized
into electricity energy.

# CO2 emissions (undesirable output): The heat or combustion of fuels in electricity generation
process produces CO2 emissions. These emissions are undesirable elements that cause bad effects
such as environmental pollution and climate change.

Table 1. Name of country.

No. Country No. Country

1 Argentina 8 India
2 Brazil 9 Mexico
3 Canada 10 South Korea
4 China 11 Spain
5 Finland 12 Sweden
6 France 13 United Kingdom
7 Germany 14 United State

Source: BP [29].

3.2. Holt–Winters Model

Holt–Winters model is a prediction tool of exponential smoothing with one for level, one for
trend, and one for seasonality in NCSS that was integrated by two methods of Holt (1957) [32] and
Winters (1960) [33]. This model allows to calculate short-term forecast with the presence of long-term
time series in previous term. Thus, the actual data which relate to electricity generation in 14 countries
all over the world with the long time series from 2008 to 2017 are applied into the Holt–Winters model
to estimate the short future term from 2018 to 2021. The model can help users to select the best optimal
smoothing parameters including α, β, γ from available valuations to compute an authentic forecasting
when depending on the historical time series.

The primary time series is set up as At, At+1, . . . , At+n(t = 0, 1, 2, . . . , n), and the prediction
time series is observed as Pt, Pt+1, . . . , Pt+n(t = 0, 1, 2, . . . , n) “n is the size of the sample”). In the
history and forecasting time series, t is also started at a time point with the value from 0 to 1, and the
original algorithm of exponential smoothing is established by the following formula:

Pt+1 = αAt + (1− α)Pt

(0 ≤ α ≤ 1)
(3)

With the multiplicative seasonality, the seasonal variation is adjusted with the proportional to the
level of the time series, the seasonal adjustment is divided by the component. We set up the exponential
smoothing with one for level lt, one for trend dt, and one for seasonality yt. The mathematical prediction
equation is given as below:
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The exponential smoothing estimate of the level at time t:

lt = α
(

At
Pt−n

)
+ (1− α)(lt−1 + dt−1)

0 < α ≤ 1
(4)

The exponential smoothing estimate of the change with the trend at time t:

dt = β(lt − lt−1) + (1− β)dt−1

0 < β ≤ 1
(5)

The exponential smoothing estimate of the seasonal component at time t:

yt = γ Pt
(lt−1+dt−1)

+ (1− γ)yt−n

0 < γ ≤ 1
(6)

Let step ahead prediction at time t is h. Hence, the forecasting algorithm at the time t is given
as follows:

Pt+h = (lt + hdt)yt+h−n (7)

To have high accuracy, the forecasting values must be checked by the mean absolute percentage
error (MAPE) index.

MAPE =
1
n

n

∑
t=1

∣∣∣∣At − Pt

At

∣∣∣∣× 100 (8)

The categorization of MAPE indicator shows that the forecasting value is highly accuracy when
the MAPE is lower than 10%; the indicator between 10% and 20% is a good prediction valuation;
the reasonable forecasting value is from 20% to 50%; the prediction data are inaccurate when being
more than 50% [34]. Therefore, the model or data will be reselected if the forecasting valuations receive
MAPE above 50%, or optimal smoothing parameters without range from 0 to 1.

3.3. Undesirable Model

In data envelopment analysis, the undesirable model is an extended model that provides a
solution of non-parametric DEA scheme for measuring the efficiency among inputs, good outputs
and bad outputs variables, this model deals with the undesirable outputs of production. In this study,
we use the undesirable model for solving the electricity generation in 14 countries all over the world.
The countries are called DMUs; nonrenewable and renewable are called inputs; electricity generation
and CO2 emissions are called good, and bad outputs, respectively. We set up DMUs with three factors
including inputs U = (uij) ∈ R+, good output Vg = (vg

ij) ∈ R+, bad output Vb = (vb
ij) ∈ R+. Selected

data set are positive so that U, Vg, and Vb are higher than 0. The production possibility of A DMU is
given as follows:

P = (u, vg, vb) (9)

whereas
u ≥ Uλ, vg ≤ Vgλ, vb ≥ Vbλ, λ ≥ 0

A DMU
(

u0, vg
0 , vb

0

)
has efficiency when there is no vector (u, vg, vb) ∈ P, and u0 ≥ u, vg

0 ≥
vg, vb

0 ≥ vb.
The slacks, i.e., s−, sb, s+ are inputs and undesirable output excesses, and desirable output shortfall,

respectively; and λ is the weight vector. The number of inputs, desirable output, and undesirable
output factors are h, s1, s2 respectively. Based on the equation of SBM model [23], the undesirable
outputs model is modified as below:
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ρ∗ = min
1− 1

h ∑h
i=1

s−i
ui0

1 + 1
s1+s2

(
∑s1

r=1
sg

r
vg

r0
+ ∑s2

r=1
sb

r
vb

r0

) (10)

whereas

u0 = Uλ + s−; vg
0 = Vgλ− sg; vb

0 = Vbλ + sb; s− ≥ 0, sg ≥ 0, sb ≥ 0, λ ≥ 0

All slacks and λ are positive.
When wi, wg

r , wb
r are weights to input i, desirable output wg

r , and undesirable output wb
r ,

respectively, the equation of undesirable outputs model [24,25] is given as below:

ρ∗ = min
1− 1

h ∑h
i=1

w−i s−i
ui0

1 + 1
s1+s2

(
∑s1

r=1
wg

r sg
r

vg
r0

+ ∑s2
r=1

wb
r sb

r
vb

r0

) (11)

whereas
s1

∑
r=1

wg
r = s1;

s2

∑
r=1

wb
r = s2; (wg

r ≥ 0, wb
r ≥ 0)

The value of ρ∗ is between 0 and 1. Set up an optimal solution, the parameters are
λ∗, s−∗, sg+∗, and sb+∗. When ρ∗ = 1, simultaneously s−∗ = 0, sg+∗ = 0, and sb+∗ = 0, A
DMU

(
u0, vg

0 , vb
0

)
obtains the efficiency. If ρ∗ < 1, A DMU

(
u0, vg

0 , vb
0

)
is inefficient. Hence, the

productivity efficiency value is worse and needs to improve, the efficiency of A DMU
(

u0, vg
0 , vb

0

)
must

be improved to reach the efficiency by deleting the excesses in inputs and bad outputs, and rising the
shortfalls in good outputs as follows:

u0 − s−∗ ⇒ u0

vg
0 + sg∗ ⇒ vg

0
vb

0 − sb∗ ⇒ vb
0

(12)

According to Equation (12), in this research, the inefficient terms will be treated by increasing
electricity generation, and deducting renewable fuels, nonrenewable fuels, and CO2 emissions.
Moreover, the environmental efficiency value will be better when CO2 emissions are cut down.

Next, set the dual variable vectors x, yd, yu. The dual program in the variable x, yd, yu for constant
return to scale [24] is determined basing on the dual side of the linear program.

maxygvg
0 − xu0 − ybvb

0 (13)

where
ygVg − xU − ybVb ≤ 0

x ≥ 1
h

[
1

u0

]
yg ≥ 1+ygvg

0−xu0−ybvb
0

s

[
1
vg

0

]
yb ≥ 1+ygvg

0−xu0−ybvb
0

s

[
1
vb

0

]
The virtual prices of inputs and bad outputs are x and yb, respectively, and the price of good

outputs is yg. The optimal virtual costs and prices for DMU0 approach the dual program when the
profit ygvg

0 − xu0 − ybvb
0 does not exceed zero. The weights of desirable and undesirable variables [24]

are presented as below:
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ρ∗ = min
1− 1

h ∑h
i=1

w−i s−io
uio

1 + 1
s1+s2

(
∑s1

r=1
wg

r sg
r

vg
ro

+ ∑s2
r=1

wb
r sb

r
vb

ro

) (14)

whereas
h = ∑h

i=1 w−i , (w−i ≥ 0)
s1 + s2 = ∑s1

r=1 wg
r + ∑s2

r=1 wb
r , (wg

r ≥ 0; wb
r ≥ 0)

Variables including wi, wg
r , and wb

r are the weights to input i; and r is desirable and undesirable
output, these weights are positive data.

DMU0 has efficiency if ρ∗ = 1. On the other hand, DMU0 does not have inefficiency if
ρ∗ < 1. Thus, the efficiency will be improved if the input excesses are reduced; the output shortfalls
are increased.

4. Results

4.1. Data Analysis

From the list of 14 countries and selected variables in Section 3.2, we calculate the actual valuation
of each factor in every country based on primary data [30]. Argentina is chosen as an example.

From (1), the value of nonrenewable fuels:

Nonrenewable = ∑ 1.5 + 37.1 + 25.5 + 1.7

From (2), the value of renewable fuels:

Renewable = ∑ 0.635 + 8.4 + (geothermal + wind + solar)0.4

The output variables, including electricity generation and CO2 emissions are available to post on
BP [29]. The summarized data of 14 countries over the period 2008–2017 are presented in Tables A1
and A2. The valuations of input and output factors are ranged from 1.146 to 9232.6, so that they are
positive and meaning. Hence, these values are highly appraised utilizing the Holt–Winters model to
predict the future and the undesirable model for determining the efficiency.

4.2. Forecasting Valuations

Based on the historical data, the research carries out an investigation of future terms. An accuracy
prediction valuation of the Holt–Winters model in exponential smoothing must be satisfied with the
space of smoothing constants from 0 to 1. In this study, the parameters, including alpha, beta, and
gamma, are set up as standard points, i.e., 0.3, 0.4, and 0.001, respectively. Moreover, the forecasting
data will be rechecked by MAPE index to ensure a high accuracy level.

Table 2 expresses the classification of MAPE indications of prediction values. The percentages
of nonrenewable, renewable, electricity, and CO2 emissions in 14 countries are from 1.22% to 17.67%,
and their average is 3.74%. By the way, the MAPEs of the forecasting data receive an appreciate
qualification. Therefore, the Holt–Winters model is a good forecasting tool of electricity aspects in
14 countries over the world during the term from 2018–2021; these valuations are highly accurate
and will be used for employing the performance measurement in the future time for the next step.
The forecasting results are presented in Tables A3–A6.
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Table 2. MAPE indications of forecasting valuations.

Country NRL (Mtons) REL (Mtons) EGN (TWh) CO2 (Mtons)

Argentina 2.61% 4.40% 1.57% 2.82%
Brazil 6.58% 3.31% 3.69% 7.60%

Canada 2.17% 2.36% 2.06% 2.48%
China 3.95% 5.33% 4.57% 4.36%

Finland 3.90% 7.00% 3.23% 6.55%
France 1.39% 6.04% 2.13% 3.17%

Germany 2.45% 3.73% 1.98% 1.96%
India 1.23% 4.82% 1.52% 1.26%

Mexico 2.21% 9.95% 1.34% 2.30%
South Korea 2.45% 4.31% 3.26% 3.36%

Spain 5.01% 13.88% 1.49% 5.68%
Sweden 3.43% 5.68% 4.08% 3.35%

United Kingdom 1.88% 9.31% 1.53% 3.90%
United State 1.51% 4.01% 1.22% 1.95%

Average 3.74%

Note: NRL: Nonrenewable; REL: Renewable; EGN: Electricity generation; CO2: CO2 emissions.

4.3. Productivity Efficiency

Nonrenewable and renewable fuels are utilized to generate the electrical energy that supports the
daily life and activities in manufacturing process. However, the electricity generation process emits
CO2 emissions which are derived from combusting fuels. The productivity efficiency from fuels to
electricity and CO2 emissions in 14 countries is determined by undesirable model.

From the actual and estimated data of 14 countries during the period 2008–2021, the research
applied the undesirable model in DEA into counting the efficiency of generating electricity process.
According to the principle of DEA, input and output factors must have an isotonic relationship.
The undesirable model is proposed by a non-parametric DEA scheme for measuring the efficiency [24]
so the rank correlation coefficient of Spearman with a nonparametric measure of rank correlation
is utilized to assess the relationship between variables, their correlations are from −1 to +1. When
the correlation is equal 1, it will have a perfect monotonic relationship. Francis et al indicated that
there are three types of correlation in DEA including between inputs and outputs; among inputs only;
among outputs only [35], but this study explores five types of correlation including between inputs
and desirable output; between inputs and undesirable output; among inputs only; among desirable
outputs only; and among undesirable outputs only, their values are ranged from 0.75768 to 1 as shown
in Tables A7 and A8. These results denote that the inputs, desirable and undesirable outputs have a
strong positive and meaningful relationship. In particular, the relationships among inputs only; among
desirable outputs only; and among undesirable outputs only have a perfect monotonic correlation
when their values are equal 1; remaining relationships have a good monotonic correlation when their
values are ranged from 0.75768 to 0.99699. Thus, these variables have an appreciate qualification.

Observing Tables 3 and 4, most efficiencies of 14 countries during the period 2008–2021 fluctuate
consecutively excluding France, Korea, and Sweden. Three countries including France, Korea, and
Sweden always obtain the performance and keep a stable valuation while converting fuels into
electricity and CO2 emissions. The productivity efficiency is proved by their slacks, the excesses and
shortfall are equal 0. Besides, Finland received the efficiency in two years 2009–2010 when its score
was 1; and its slacks were 0. As a result, these terms have a high effectiveness in electric generation
process; in addition, the CO2 emissions are emitted while producing renewable and nonrenewable
fuels, they reach a standard and balance level.

On the other hand, others countries and remaining terms of Finland reach the shortfalls as 0,
but their scores are under 1; and most excesses are more than 0. The empirical results show that the
efficiencies have a downward and upward trend smoothly within 0.405 and 0.785, simultaneously
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reveal inefficient terms. India and Mexico have a same performance movement, they also augment
the efficiency in four consecutive years with the previous term 2013–2016 and four years in future
time. Although, they make efforts, the maximum efficiency of India and Mexico is 0.785 and 0.595,
respectively. Remaining terms of Finland display a large fluctuation, it has a period that is decreased
in five continual years 2014–2018; the forecasted score shows that it can be dropped deeply to 0.665
in 2020. Brazil and United Kingdom exhibit a similar dramatic efficiency increase and then reduce
smoothly in whole term except 2013 and 2015. Argentina and United State rise and deduct with a same
variation over the period of 2010–2012 and 2014–2021; besides, Argentina extended its score in 2009
and 2013, United State reserved back. Germany has an unceasing change, i.e., one year rises and one
year decreases softly except the period 2011–2015 was felt consecutively. China always expands with
previous time and future time, but its score is still at the median values from 0.405 to 0.671. The scores
of Canada are between 0.532 and 0.627, its efficiency was downed within four continual years from
2010 to 2013. Spain only advances in 2013 and 2020, in contrary slumps in others terms.

Table 3. Productivity efficiency over the period 2008–2014.

Country 2008 2009 2010 2011 2012 2013 2014

Argentina 0.484 0.499 0.464 0.428 0.479 0.485 0.455
Brazil 0.503 0.524 0.508 0.488 0.476 0.476 0.487

Canada 0.603 0.627 0.593 0.582 0.571 0.566 0.569
China 0.405 0.409 0.439 0.463 0.469 0.533 0.552

Finland 0.852 1.000 1.000 0.833 0.798 0.831 0.806
France 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Germany 0.646 0.627 0.629 0.574 0.607 0.602 0.595
India 0.481 0.458 0.466 0.505 0.492 0.505 0.561

Mexico 0.442 0.441 0.436 0.447 0.446 0.452 0.469
Korea 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Spain 0.685 0.678 0.625 0.568 0.63 0.632 0.591

Sweden 1.000 1.000 1.000 1.000 1.000 1.000 1.000
United Kingdom 0.553 0.565 0.562 0.559 0.521 0.510 0.521

United State 0.720 0.711 0.691 0.637 0.684 0.647 0.637

Table 4. Productivity efficiency over the period 2015–2021.

Country 2015 2016 2017 2018 2019 2020 2021

Argentina 0.472 0.498 0.479 0.487 0.483 0.499 0.494
Brazil 0.471 0.481 0.479 0.471 0.469 0.468 0.467

Canada 0.576 0.555 0.555 0.541 0.546 0.532 0.536
China 0.568 0.618 0.630 0.642 0.650 0.658 0.671

Finland 0.774 0.770 0.757 0.718 0.719 0.665 0.669
France 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Germany 0.576 0.597 0.562 0.565 0.542 0.550 0.528
India 0.596 0.657 0.656 0.696 0.711 0.774 0.785

Mexico 0.514 0.498 0.510 0.519 0.552 0.555 0.595
Korea 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Spain 0.587 0.585 0.581 0.570 0.559 0.560 0.549

Sweden 1.000 1.000 1.000 1.000 1.000 1.000 1.000
United Kingdom 0.536 0.564 0.550 0.508 0.461 0.453 0.418

United State 0.656 0.666 0.631 0.650 0.638 0.654 0.643

The above analysis denotes that the average valuation of Argentina is lowest; China is a unique
country that always raises its scores with the large exertion. The scores in Tables 3 and 4 describe the
efficient/inefficient terms of every country during the period from 2008 to 2021 particularly; whereas
many inefficient terms are pointed out. Based on the rule of undesirable model, the inefficient terms are
suggested to improve their scores by reducing the excesses such as nonrenewable, renewable, and CO2

emissions; or deducting these excesses, simultaneously increasing the shortfall (electricity generation).
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4.4. Discussion

The position of the pathway of the production in 14 countries from past to future is shown in
Figure 1.Processes 2019, 7, 6  11  of  17 
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France, Korea, and Sweden over the period from 2008–2021, and Finland from 2009 to 2010 are
explored to obtain a good productivity efficiency of conversation progress from nonrenewable and
renewable fuels to electricity and CO2 emissions through electric generators and turbines. France,
Korea, and Sweden are excellent countries, as their scores always maintain a stable and qualified
valuation. The empirical results denote that Finland from 2009 to 2010 and these countries are ranked
in the first position of electricity generation.

In contrary, the remaining countries and terms of Finland do not attain the productivity efficiency
because their estimated scores are less than 1 and always fluctuate in every year. According to the
final analysis result, 12 remaining countries, excluding Finland, always have the worst performance.
These countries do not approach the top ranking, which only ranges from 5 to 14 from past to future.
Especially, the forecasting scores indicate that the efficiency of Argentina, Brazil, Canada, Germany,
and the United Kingdom will be dropped consecutively in the future; in addition, their position will
remain at the bottom points. China and India demonstrate an upward trend over the whole term,
and they can increase sharply in the future; however, their efforts have not reached the productivity
efficiency. Mexico, Spain, and United State display fluctuations smoothly in every year.

The empirical results discover some inefficient terms that they must be improved. Section 4.3
suggests a solution based on the principle of an undesirable model. According to the previous
researches, the CO2 emissions from the renewable fuels are less than non-renewable fuels [36].
Thus, the CO2 emissions can be cut down by augmenting the renewable fuels and by reducing
the non-renewable fuels. By the way, the air pollutants from emissions will be reduced, and the
environment will be restored.

5. Conclusions

Economic development requires a large demand of electricity energy sources to operate machines
in households and factories, so the extension of electricity generation is necessary to meet with the need
of users. Augmenting the electrical energy is accompanied by increasing CO2 emissions. The efficient
conversation from primary fuels to electricity generation and CO2 emissions over the period from 2008
to 2021 is employed by combining the Holt–Winters and undesirable models.
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Estimated data in the period of 2018–2021 are calculated by the Holt–Winters model based
on the historical data over the period from 2008–2017. The forecasting result describes the usage
of nonrenewable and renewable fuels, electricity generation, and CO2 emissions in the future.
The prediction data reveal high accuracy valuations when the average of MAPE indicator is 3.74%.

From the actual and estimated data of variables, including nonrenewable fuel, renewable fuel,
electricity generation, and CO2 emissions in 14 countries all over the world during the period from
2008–2021, the study observes the scores that are calculated by the undesirable model to evaluate the
productivity efficiency of the electricity production process in electricity industry. The empirical results
manifest the impact level of electricity industry on the environment. In addition, the slacks propose a
solution to improve the inefficient terms.

The study determines the productivity efficiency while converting the primary fuels to electricity
generation and CO2 emissions, but limitations remain. First, inputs and outputs are not posted, so
the next study needs to have more variables, e.g., employees, equipment, and profit, to assess depth
and specification of electricity generation. Second, the undesirable model only gives the maximum
efficiency as 1; and, as any countries (DMU) approach the performance, they are at the same top
position. Thus, ranking countries will be more specific if the further research applies a super-SBM
model into computing the scores. Moreover, estimating the efficiency change of each country will
more specific, and future research should use models such as Windows, Malmquist Productivity Index,
or bootstrap DEA [37].

Author Contributions: C.-N.W. guided the analysis method, and the research direction, found the solutions, and
edited the content; Q.-C.L. designed research framework, collected the data, analyzed the empirical result and
wrote the manuscript; T.-K.-L.N. analyzed the data. All authors contributed in issuing the final result.

Funding: This research was partly supported by National Kaohsiung University of Science and Technology,
and MOST107-2622-E-992-012-CC3 from the Ministry of Sciences and Technology in Taiwan.

Acknowledgments: The authors appreciate the support from National Kaohsiung University of Science and
Technology and Ministry of Sciences and Technology in Taiwan.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Description of historical data over the period of 2008–2012.

Indicator Year REL (Mtons) NRL (Mtons) CO2 (Mtons) EGN (TWh)

Max

2008

151.690 2181.400 7351.800 4390.100
Min 1.150 25.200 57.400 77.900

Average 42.280 466.610 1342.850 913.870
SD 46.990 688.120 2166.050 1265.210

Max

2009

151.520 2179.300 7680.700 4206.500
Min 1.360 24.300 53.900 72.500

Average 43.380 461.630 1329.730 909.810
SD 48.650 687.280 2184.110 1266.610

Max

2010

178.480 2314.400 8104.900 4394.300
Min 1.810 26.400 57.000 81.100

Average 47.230 483.960 1393.680 976.610
SD 53.670 721.690 2295.140 1375.740

Max

2011

180.470 2511.700 8792.300 4713.000
Min 1.910 23.900 53.500 73.700

Average 50.240 496.970 1439.470 1020.180
SD 57.070 752.410 2425.530 1457.840

Max

2012

226.700 2574.400 8966.300 4987.600
Min 2.080 21.900 50.300 70.500

Average 54.030 500.420 1447.790 1045.390
SD 64.310 756.710 2440.610 1498.040
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Table A2. Description of historical data over the period of 2013–2017.

Indicator Year REL (Mtons) NRL (Mtons) CO2 (Mtons) EGN (TWh)

Max

2013

250.450 2659.000 9204.200 5431.600
Min 2.520 22.300 49.000 71.400

Average 57.590 512.840 1483.610 1085.410
SD 69.370 780.740 2508.360 1585.880

Max

2014

291.510 2684.600 9206.500 5649.600
Min 3.040 21.100 45.800 68.200

Average 61.840 516.860 1490.500 1109.860
SD 77.890 789.920 2519.750 1634.970

Max

2015

318.950 2693.500 9163.200 5814.600
Min 3.590 20.600 44.300 68.800

Average 64.760 517.460 1480.660 1128.480
SD 83.800 788.820 2495.860 1664.680

Max

2016

344.510 2704.700 9113.600 6133.200
Min 4.090 21.400 46.900 68.800

Average 68.740 520.460 1479.260 1158.490
SD 91.100 789.040 2477.970 1730.360

Max

2017

370.350 2763.900 9232.600 6495.100
Min 4.710 20.500 45.000 67.900

Average 73.270 526.060 1493.240 1188.810
SD 98.260 799.380 2501.370 1796.990

Table A3. Prediction values of 14 countries in 2018.

Country NRL (Mtons) REL (Mtons) EGN (TWh) CO2 (Mtons)

Argentina 81.26 13.21 153.8 198.26
Brazil 213.19 125.39 633.56 530.81

Canada 249.84 101.55 685.86 553.95
China 2923.33 445.59 7154.89 9743.92

Finland 19.89 7.78 66.96 42.19
France 213.37 26.54 565.97 300.54

Germany 280.23 57.41 662.76 761.88
India 743.59 55.15 1617.32 2494.94

Mexico 184.01 12.72 330.23 489.67
South Korea 302.31 5.59 599.16 700.69

Spain 108.87 26.85 271 275.28
Sweden 32.91 22.38 167.7 46.05

United Kingdom 165.18 27.44 326.33 396.08
United State 2090.91 198.62 4367.92 5109.01

Table A4. Prediction values of 14 countries in 2019.

Country NRL (Mtons) REL (Mtons) EGN (TWh) CO2 (Mtons)

Argentina 81.11 13.83 156.72 197.39
Brazil 213.31 126.45 636.56 530.44

Canada 250.09 104.66 701.89 552.9
China 3000.26 469.16 7574.8 9936.29

Finland 19.13 7.58 64.74 39.9
France 210.48 25.49 558.64 296.26

Germany 275.53 63.05 657.07 752.73
India 777.14 59.5 1716.54 2615.76

Mexico 183.97 11.54 333.37 487.96
South Korea 305.1 6.36 606.48 708.29

Spain 107.27 26.31 265 274.9
Sweden 31.61 22.57 165.43 44.3

United Kingdom 159.11 35.18 319.99 373.97
United State 2067.36 216.23 4306.83 5006.32
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Table A5. Prediction values of 14 countries in 2020.

Country NRL (Mtons) REL (Mtons) EGN (TWh) CO2 (Mtons)

Argentina 84.12 13.77 160.67 204.89
Brazil 221.04 128.21 657.96 550.18

Canada 256.1 105.33 704.45 565.09
China 3041.58 559.47 8031.01 9986.88

Finland 18.95 8.42 65.04 39.05
France 208.26 28.4 563.34 291.42

Germany 277 68.5 674.34 758.73
India 817.27 61.96 1846.08 2757.14

Mexico 187.49 13.64 342.59 496.78
South Korea 312.33 7.62 623.2 719.94

Spain 106.97 27.48 264.55 272.97
Sweden 32.91 23.01 171.55 44.46

United Kingdom 156.47 38.77 315.46 364.17
United State 2086.24 222.26 4361.02 5027.5

Table A6. Prediction values of 14 countries in 2021.

Country NRL (Mtons) REL (Mtons) EGN (TWh) CO2 (Mtons)

Argentina 83.96 14.43 163.72 203.97
Brazil 221.15 129.29 661.02 549.74

Canada 256.34 108.58 720.94 564
China 3121.72 587.73 8502.27 10184.25

Finland 18.22 8.19 62.89 36.94
France 205.45 27.23 556.05 287.27

Germany 272.36 75.24 668.51 749.62
India 854.1 66.87 1959.11 2890.56

Mexico 187.45 12.33 345.83 495.04
South Korea 315.21 8.63 630.78 727.73

Spain 105.39 26.93 258.7 272.59
Sweden 31.61 23.21 169.22 42.77

United Kingdom 150.74 50.08 309.33 343.91
United State 2062.74 242.11 4300.05 4926.57

Table A7. Correlation over the period of 2008–2011.

Variable Year REL (Mtons) NRL (Mtons) CO2 (Mtons) EGN (TWh)

REL (Mtons)

2008

1 0.75768 0.77861 0.75977
NRL (Mtons) 0.75768 1 0.98410 0.99290
CO2 (Mtons) 0.77861 0.98410 1 0.9579
EGN (TWh) 0.75977 0.99290 0.95790 1

REL (Mtons)

2009

1 0.77524 0.77863 0.78978
NRL (Mtons) 0.77524 1 0.98345 0.99295
CO2 (Mtons) 0.77863 0.98345 1 0.95714
EGN (TWh) 0.78978 0.99295 0.95714 1

REL (Mtons)

2010

1 0.80595 0.81691 0.81697
NRL (Mtons) 0.80595 1 0.98469 0.99615
CO2 (Mtons) 0.81691 0.98469 1 0.96781
EGN (TWh) 0.81697 0.99615 0.96781 1

REL (Mtons)

2011

1 0.82944 0.81951 0.84875
NRL (Mtons) 0.82944 1 0.98535 0.99717
CO2 (Mtons) 0.81951 0.98535 1 0.97215
EGN (TWh) 0.84875 0.99717 0.97215 1
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Table A8. Correlation over the period of 2012–2021.

Variable Year REL (Mtons) NRL (Mtons) CO2 (Mtons) EGN (TWh)

REL (Mtons

2012

1 0.85974 0.86648 0.87249
NRL (Mtons) 0.85974 1 0.98524 0.99775
CO2 (Mtons) 0.86648 0.98524 1 0.97446
EGN (TWh) 0.87249 0.99775 0.97446 1

REL (Mtons)

2013

1 0.87951 0.88855 0.89565
NRL (Mtons) 0.87951 1 0.98592 0.99895
CO2 (Mtons) 0.88855 0.98592 1 0.98336
EGN (TWh) 0.89565 0.99895 0.98336 1

REL (Mtons)

2014

1 0.89626 0.91316 0.91220
NRL (Mtons) 0.89626 1 0.98655 0.99903
CO2 (Mtons) 0.91316 0.98655 1 0.98699
EGN (TWh) 0.91220 0.99903 0.98699 1

REL (Mtons)

2015

1 0.89945 0.92038 0.91707
NRL (Mtons) 0.89945 1 0.98594 0.99885
CO2 (Mtons) 0.92038 0.98594 1 0.98795
EGN (TWh) 0.91707 0.99885 0.98795 1

REL (Mtons)

2016

1 0.90685 0.92432 0.92826
NRL (Mtons) 0.90685 1 0.98612 0.99802
CO2 (Mtons) 0.92432 0.98612 1 0.99105
EGN (TWh) 0.92826 0.99802 0.99105 1

REL (Mtons)

2017

1 0.92175 0.93392 0.94388
NRL (Mtons) 0.92175 1 0.98692 0.99664
CO2 (Mtons) 0.93392 0.98692 1 0.99385
EGN (TWh) 0.94388 0.99664 0.99385 1

REL (Mtons)

2018

1 0.92470 0.94471 0.95030
NRL (Mtons) 0.92470 1 0.98739 0.99573
CO2 (Mtons) 0.94471 0.98739 1 0.99514
EGN (TWh) 0.95030 0.99573 0.99514 1

REL (Mtons)

2019

1 0.93467 0.94914 0.95893
NRL (Mtons) 0.93467 1 0.98769 0.99438
CO2 (Mtons) 0.94914 0.98769 1 0.99611
EGN (TWh) 0.95893 0.99438 0.99611 1

REL (Mtons)

2020

1 0.93012 0.95159 0.96158
NRL (Mtons) 0.93012 1 0.98791 0.99233
CO2 (Mtons) 0.95159 0.98791 1 0.99681
EGN (TWh) 0.96158 0.99233 0.99681 1

REL (Mtons)

2021

1 0.93875 0.95468 0.96768
NRL (Mtons) 0.93875 1 0.9882 0.99076
CO2 (Mtons) 0.95468 0.98820 1 0.99699
EGN (TWh) 0.96768 0.99076 0.99699 1
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