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Abstract: A mathematical model for the transmission dynamics of human immunodeficiency virus
(HIV) within a host is developed. Our model focuses on the roles of immune response cells or
cytotoxic lymphocytes (CTLs). The model includes active and inactive cytotoxic immune cells.
The basic reproduction number and the global stability of the virus free equilibrium is carried
out. The model is modified to include anti-retroviral treatment interventions and the controlled
reproduction number is explored. Their effects on the HIV infection dynamics are investigated.
Two different disease stage scenarios are assessed: early-stage and advanced-stage of the disease.
Furthermore, optimal control theory is employed to enhance healthy CD4+ T cells, active cytotoxic
immune cells and minimize the total cost of anti-retroviral treatment interventions. Two different
anti-retroviral treatment interventions (RTI and PI) are incorporated. The results highlight the
key roles of cytotoxic immune response in the HIV infection dynamics and corresponding optimal
treatment strategies. It turns out that the combined control (both RTI and PI) and stronger immune
response is the best intervention to maximize healthy CD4+ T cells at a minimal cost of treatments.

Keywords: HIV transmission dynamics within a host; cytotoxic immune response; anti-retroviral
treatment; optimal control theory

1. Introduction

Human immunodeficiency virus (HIV) is the pathogen responsible for one of the world’s most
lethal diseases, acquired immune deficiency syndrome (AIDS). The pathogen attacks the immune
system in a human body, particularly, CD4+ T cells, which help the immune system fight off infections
and disease. Untreated HIV can destroy CD4+ T cells and an infected person can be exposed to many
opportunistic diseases [1,2]. When HIV invades the body, it targets the CD4+ T cells where the viral
RNA is converted into viral DNA, thus producing more viral particles. CD4+ T cells are responsible for
sending signals to the immune system such as cytotoxic cells (cytotoxic lymphocytes (CTL), CD8 T cells
and natural killer cells). Then, cytotoxic cells respond to this message and set out to kill infected cells
by lysing infected cells, causing them to explode. Thus, cytotoxic cells can remove infected cells from
the the body and inhibit viral replication, but they do not directly kill free viruses. Over time, HIV is
able to deplete the population of CD4+ T cells, preventing that cytotoxic cells from being deployed.
CD4+ T cells count in a healthy person is about 1000 mm−3, when the cell count reaches 200 mm−3 or
below in a HIV-patient, and some opportunistic diseases arises, then the person is classified as having
AIDS [3,4].

World health institutions provide different combinations of medicines and treatments that lead
to mitigate symptoms and reduce susceptibility to opportunistic diseases, increasing life quality and
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expectancy. It is difficult to establish the kind of treatment and its intensity, due to the conditions
related to the virus, a patient (as immunological conditions) and social and economical issues in each
country [5]. Anti-retroviral guidelines have established the primary goal of antiretroviral treatment
(ART) as the reduction of the HIV-associated morbidity and mortality in 2011 [6]. The guideline
recommends drug treatments for patients with CD4+ T cells between 350–500 cells/mm3 and as
optional when it is over 500 cells/mm3. Reverse transcriptase inhibitors (RTI)-based therapy inhibits
reverse transcription by being incorporated into the newly synthesized viral DNA and thus preventing
its further elongation, or by directly binding to the enzyme and interfering with its function. On the
other hand, protease inhibitors (PI)-based therapy causes infected cells to produce non-infectious
virions (virions created prior to drug treatment remain infectious) [7].

There have been remarkable attentions on the HIV dynamics among scientists in medicine and
mathematical biology. Significant efforts have been made in order to understand and to characterize the
underlying mechanism of the disease. Particularly, the mathematical framework has been employed to
model the transmission dynamics of HIV/AIDS [8–12]. Earlier mathematical models have considered
HIV/AIDS dynamics within a host using delay differential equations [13–17] and some models have
focused on the viral and CD4+ T cell dynamics [18,19]. Recently, there has been some work to explore
the impact of the immune response in the HIV dynamics [20–22]. Furthermore, mathematical models
have incorporated explicitly the effect of the immune response and their results have been analyzed
and investigated [3,4,23]. In relation to the immune responses, studies suggest to take into account
the possibility of small or no immune response in some situations and a strong response in others.
No matter which approach is considered, research has suggested that treatment strategies must
incorporate RTI and PI, which leads to a therapy based on drug cocktails of multiple treatments taken
in combination [24]. Indeed, the fact that HIV replicates rapidly (producing 1010 viral particles per
day) shows that HIV infection progresses too fast to be treated under a single drug treatment [7,24].
Recent research has shown that the benefits of RTI and PI drugs can be reduced by the development of
drug resistance [25,26]. This process of accelerated replication leads to the genetic variability of the
virus and a high degree of genetic variability can quickly generate drug-resistant variants in response
to the therapy. The evolution of an HIV patient is influenced by several factors such as lifestyle, current
immune system state, drug resistance, other health conditions as well as the economic capability to
afford an efficient medical treatment. Hence, when a drug treatment is recommended to a patient,
these aspects should be taken into account.

The aim of this paper is twofold. First, a SIR-type mathematical model is used to investigate
the roles of cytotoxic immune response (CTL) in HIV dynamics within a host, as proposed in [27].
The SIR-type model is a compartmental model using a system of nonlinear ordinary differential
equations. The model consists of three compartments—S for the number susceptible, I for the number
of infectious, and R for the number recovered. Cytotoxic cells are divided into two compartments,
corresponding to inactive and active cytotoxic cells, which prevent the extinction of cytotoxic immune
cells in the absence of HIV. The basic reproduction number R0 is computed, then we establish the
global stability of the virus free equilibrium (VFE). Secondly, the model is modified to include RTI and
PI treatment interventions to determine the effectiveness needed to mitigate the infection. Moreover,
due to a time-varying evolution of the disease, time-varying treatments should be scheduled as
well [3,4,28]. Drugs can be costly and can be harmful when high dosages are given. Therefore,
an optimal control problem is formulated to highlight the importance of a high level of CD4+ T cells
and strong active immune response while minimizing the cost of treatments.

2. A HIV Model with Immune Responses

A mathematical model for HIV dynamics within a host has been proposed in our previous
work [27]. First, T and T∗ are the average concentration of healthy CD4+ T cells and infected CD4+ T
cells, respectively. Further, M and M∗ are the average concentration of inactive and active cytotoxic
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cells, respectively. Lastly, V is the average concentration of viral particles (viral load). Hence, the model
can be written as the following nonlinear ordinary differential equations:

Ṫ = σ− βTV − µT
Ṫ∗ = βTV − γT∗M∗ − δT∗

Ṁ = λ− ψT∗M− ρM
Ṁ∗ = αT∗M∗ + ψT∗M− ρM∗

V̇ = ηT∗ − cV,

(1)

where σ denotes the constant recruitment of healthy cells from the thymus and bone marrow. It is
assumed that a healthy T cell becomes infected through effective contact with an infected virus V
at a constant rate β. Parameter δ denotes the natural death rate of healthy CD4+ T cells. The active
immune cells M∗ kill infected cells by the rate γT∗M∗. α is the active cytotoxic cells replication rate
and αT∗M∗ denotes the average of new active cytotoxic cells by replication. Under the assumption
γ ≥ α, immune cells kill more than they replicate themselves by this process.

The inactive immune response is produced by the body at a constant rate λ; considering that
infected cells stimulate the inactive immune cells at a rate ψ, an average of ψT∗M inactive immune
cells become active. The natural death rate of both inactive and active immune cells is denoted
by ρ. Viral particles are replicated by infected cells during their lifespan. This viral replication is
usually proportional to the number of dead infected cells δT∗. Hence, a viral replication term can be
described as ηT∗ = NδT∗, where N is an average number of viruses produced by cells lysis (note that
η = Nδ). The natural death rate of virus is c and the loss of viral particles during infection is neglected,
as in [2,7,27,29]. The description of parameters is collected in Table 1.

Table 1. Parameter definitions and baseline values (and their corresponding sources) used in
numerical simulations.

Description Early-Stage Advanced-Stage Ref.

σ Source term for uninfected CD4+ T cells 10 mm3·d−1 10 mm3·d−1 [3,23]
β Rate CD4 T+ cell becomes infected by virus 2.5× 10−5 mm3·d−1 2.5× 10−5 mm3·d−1 [23]
µ Death rate of uninfected CD4+ T cells 1× 10−2 d−1 1× 10−2 d−1 [3]
δ Death rate of infected CD4+ T cells 0.26 d−1 0.26 d−1 [3,23]
N Number of viruses produced by cells lysis 500 500 [3]
c Death rate of virus 2.4 d−1 2.4 d−1 [23]
ψ Rate of immune response activation 2× 10−3 mm3·d−1 2× 10−2 mm3·d−1 -
α Rate of immune response proliferation 5× 10−5 mm3·d−1 5× 10−4 mm3·d−1 [23]
ρ Death rate of immune response 0.1 mm3·d−1 0.1 mm3·d−1 [3,23]
γ Rate infected cells killed by CTL 2× 10−3 mm−3·d−1 4× 10−3 mm−3·d−1 [23]
λ Source term for immune response 5 mm3·d−1 5 mm3·d−1 [23]
b Upper bound for RTI and PI effectiveness 1 1 [23]

T0 Initial value for uninfected CD4+ T cells 1000 500 [23]
T∗0 Initial value for infected CD4+ T cells 0 350 [23]
M0 Initial value for non-active mmune cells 0 25 [23]
M∗0 Initial value for active mmune cells 1 20 [23]
V0 Initial value for virus 1× 10−3 2.5× 104 [23]

2.1. The Basic Reproduction Number and Stability Analysis

Theorem 1. If γ ≥ α, the set Ω =
{
(C, V) ∈ R5

+|T ≤ σ
µ ; T + T∗ + M + M∗ ≤ σ+λ

ε ; V ≤ η(σ+λ)
cε

}
is

a positively invariant set for the system (1).
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Proof. The dynamics of healthy cells satisfies Ṫ ≤ σ − µT; hence, it is true that lim sup
t→+∞

T ≤ σ
µ .

Similarly, lim sup
t→+∞

C ≤ σ+λ
ε , where C = T + T∗ + M + M∗ and ε = max{µ, δ, ρ}; finally,

lim sup
t→+∞

V ≤ η(σ+λ)
cε . Hence, the set:

Ω =

{
(T, T∗, M, M∗, V) ∈ R5

+|T ≤
σ

µ
; T + T∗ + M + M∗ ≤ σ + λ

ε
; V ≤ η(σ + λ)

cε

}
is a compact, attractive positively invariant set for the system (1) if γ ≥ α. Hence, all solutions of the
system (1) with positive initial conditions remain positive and bounded.

The virus free equilibrium (VFE) of the system (1) is given by E0 = (T0, 0, M0, 0, 0), where T0 = σ
µ

and M0 = λ
ρ , which always belong to Ω. The basic reproduction number is calculated by using the

methodology (the next generation matrix approach) outlined in [30,31]. Now, we let F(x) represent the
rate of appearance of new infections. The net transition rates out of the corresponding compartment
are represented by V(x). Then, we find the Jacobian matrix of F(x) and V(x) (denoting F = [ ∂F

∂xj
] and

V = [ ∂V
∂xj

]) and evaluate it at the virus free equilibrium of the system (1) is given by E0 = (T0, 0, M0, 0, 0)

with T0 = σ
µ and M0 = λ

ρ , which

F =


0 0 0 0 0
0 0 0 0 βT0

0 0 0 0 0
0 ψM0 0 0 0
0 0 0 0 0

 ,V =


µ 0 0 0 βT0

0 δ 0 0 0
0 ψM0 ρ 0 0
0 0 0 −ρ 0
0 −η 0 0 c

 . (2)

The spectral radius of the matrix FV−1 can give the basic reproduction number as

R0 =
η

δ

βT0

c
. (3)

Recall that R0 means the number of secondary cases on average produced by one infected cell
during its lifespan in a completely susceptible population. An infected cell produces η

δ viral particles
during its lifespan. These viral particles infect ηβ

δc T0 T cells during their lifespan. This dimensionless
quantity is a key concept in mathematical epidemiology. In fact, it determines whether the disease
(virus) dies out (when R0 < 1) or persists (when R0 > 1).

Theorem 2. The virus free equilibrium is globally asymptotically stable if R0 ≤ 1.

Proof. Let us consider the Lyapunov functional, L = T∗ + δ
η V. Then, the derivative of L along the

trajectories of the system can be written as

L̇ = βTV − γT∗M∗ − δT∗ +
δ

η
(ηT∗ − cV)

=
δc
η

(
βη

δc
T − 1

)
V − γT∗M∗

=
δc
η

(
R0

T0
T − 1

)
V − γT∗M∗

≤ δc
η
(R0 − 1)V ≤ 0.
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If L̇ = 0, then
(

βη
δc T − 1

)
V = 0 and T∗M∗ = 0. Hence, the largest invariant set included in

{L̇ = 0} is reduced to the virus free equilibrium. Thus, by LaSalle’s invariance principle [32,33],
the VFE is globally asymptotically stable.

2.2. An HIV Model with Constant ART Interventions

In this section, the model (1) is modified to include ART based on the application of reverse
transcriptase inhibitors (RTI) and protease inhibitors (PI) as the primary strategies to reduce the number
of new infections. Drug efficiency is represented by the controls u1 and u2, which account respectively
for reverse transcriptase (RTI) and protease inhibitor (PI) actions. Assume that u1 and u2 are constant
valued functions, where ui ∈ [0, 1] for i = 1, 2 (ui = 0 means no drug and ui = 1 means 100% effective).
By introducing these constant treatments into the model (1), we obtain the following system:

Ṫ = σ− β(1− u1)TV − µT
Ṫ∗ = β(1− u1)TV − γT∗M∗ − δT∗

Ṁ = λ− ψT∗M− ρM
Ṁ∗ = αT∗M∗ − ρM∗ + ψT∗M
V̇ = η(1− u2)T∗ − cV
Ẇ = ηu2T∗ − cW.

(4)

Here, W = W(t) represents the average concentration of non-infectious viral particles at time
t. The terms η(1− u2)T∗ and ηu2T∗ should be interpreted as the average number of infectious and
non-infectious viral particles produced per infected cell, respectively.

For the new model (4), the basic reproduction number with controls (treatments), denoted by Rc,
is calculated by using the next generation method, given as:

Rc(u1, u2) =
β(1− u1)η(1− u2)T0

δc
. (5)

Please note that Rc is a function of the controls u1 and u2, as shown in Figure 1. Rc(u1, u2)

monotonely decreases as both controls u1 and u2 approach to 1. When two controls are near zero, Rc

gets very large and in such a case, HIV infection is almost uncontrollable. Hence, it is ideal to have
a higher level of both controls (u1 and u2 near 1).

Figure 1. The controlled reproduction number Rc(u1, u2) is displayed as varying two controls with
u1 ∈ [0, 1] and u2 ∈ [0, 1]. Rc(u1, u2) monotonely decreases as both controls u1 and u2 approach 1.
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Based on the stability analysis of system (1), it can be proven that Rc ≤ 1 guarantees VFE is
globally asymptotically stable. The aim is to find control thresholds uc

1 and uc
2 that guarantee the

infection dies out; i.e., threshold values of u1 and u2 that ensure Rc < 1. In case of RTI treatment only,
0 ≤ u1 ≤ 1 and u2 = 0, and expression (5) takes the form:

Rc(u1) =
β(1− u1)ηT0

δc
.

From the condition Rc < 1, and using the expression for R0 given in (3), we find the threshold for
RTI intervention is given by

u1 >
R0 − 1

R0
= uc

1. (6)

This expression makes sense only if R0 > 1 (a necessary condition to have long-term infection).
Therefore, theoretically, the infection could be eliminated from the body when the effectiveness of RTI
satisfies the above condition (6).

Similarly, we find that the threshold for PI treatment only, that is u1 = 0 and 0 ≤ u2 ≤ 1, is given by,

u2 >
R0 − 1

R0
= uc

2. (7)

Again, when R0 > 1, the infection persists. The infection could be eliminated from the body when
the effectiveness of PI satisfies the above condition (7).

3. Optimal Control Formulation

In this section, an optimal control problem is formulated to highlight the importance of a high
concentration level of CD4+ T-cells and strong active immune response to minimize the cost of
treatments. Specifically, the goal is to determine optimal control functions u1(t) and u2(t) that
maximize the number of healthy CD4+ T-cells and the active immune response at a minimal treatment
cost. Therefore, the objective functional is given by

J(u1(t), u2(t)) =
∫ τ

0

(
w1T(t) + w2M∗(t)− A

2
u2

1(t)−
B
2

u2
2(t)

)
dt, (8)

where w1 and w2 are weight (or balance) constants on the infected hosts and vectors, respectively.
The weight constants A and B are the relative costs of the implementation of u1 (RTI) and u2 (PI),
respectively. We model the control efforts as a linear combination of quadratic terms, u2

i (t) (i = 1, 2),
due to the convexity of the controls in the objective functional. Now, the goal is to obtain an optimal
pair (Ũ, X̃) such that

J(Ũ) = max{J(U)|U ∈ Γ}, (9)

where

Γ =
{
(u1(t), u2(t)) ∈ (L1([0, τ]))2|0 ≤ u1(t), u2(t) ≤ b, t ∈ [0, τ]

}
.

In other words, we want to maximize the functional J over Γ subject to the state system (4) with
U = (u1, u2) and X = (T(t), T∗(t), M(t), M∗(t), V(t), W(t)). The existence of optimal controls is
guaranteed from standard results on optimal control theory. Pontryagin’s Maximum Principle is used
to establish necessary conditions that must be satisfied by an optimal solution [34]. This leads to the
following theorem.

Theorem 3. Given the optimal control Ũ(t) ∈ Γ and the optimal solution (T̃, T̃∗, M̃, M̃∗, Ṽ, W̃) from the state
system (4), there exist adjoint functions φi (i = 1, · · · , 6) satisfying the following system of differential equations,
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dφ1
dt = −(w1 − φ1β(1− u1)V + φ2β(1− u1)V − µφ1)

dφ2
dt = −(−φ2γM∗ − φ2δ + φ3ψM + φ4αM + φ4ψM + φ5η(1− u2) + φ6ηu2)

dφ3
dt = −(φ3ψT∗ − φ3ρ + φ4ψT∗)

dφ4
dt = −(w2 − φ2γT∗ + φ4αT∗ − φ4ρ)

dφ5
dt = −(−φ1β(1− u1)T + φ2β(1− u1)T − φ5c)

dφ6
dt = cφ6

(10)

subject to the transversality condition φi(τ) = 0, for i = 1,. . .,6, where

ũ1 = max
(

0, min
(

βTV(φ1 − φ2)

A
, b
))

and ũ2 = max
(

0, min
(

ηT∗(φ6 − φ5)

B
, b
))

. (11)

Proof. The Hamiltonian system is defined as

H = w1T + w2M∗ − A
2 u2

1 −
B
2 u2

2 + φ1(σ− β(1− u1)TV − µT)

+φ2(β(1− u1)TV − γT∗M∗ − δT∗)

+φ3(λ− ψT∗M− ρM) + φ4(αT∗M∗ − ρM∗ + ψT∗M)

+φ5(η(1− u2)T∗ − cV) + φ6(ηu2T∗ − cW)

+z1u1 + z2(b− u1) + z3u2 + z4(b− u2)

where zi for i = 1, . . . , 4 are non-negative penalty multipliers for 0 ≤ u1(t), u2(t) ≤ b such that

z1u1 = 0, z2(b− u1) = 0, z3u2 = 0, z4(b− u2) = 0. (12)

The Hamiltonian H is maximized with respect to the controls, so we differentiate H with respect
to ui on the set Γ, respectively. Hence, we obtain the following optimality conditions, ∂H

∂u1
= 0 and

∂H
∂u2

= 0:

u1 =
βTV(φ1 − φ2)− z1 + z2

A
and u2 =

ηT∗(φ6 − φ5)− z3 + z4

B
The next step is to use the penalty functions zi for i = 1, . . . , 4 and (12) to determine the bounded

controls for ũ1 and ũ2.

In the case 0 < u1, u2 < b, we have z1 = z2 = z3 = z4 = 0, thus

ũ1 =
βTV(φ1 − φ2)

A
and ũ2 =

ηT∗(φ6 − φ5)

B
.

If u1 = 0 and u2 = 0 then z1 ≥ 0, z2 = 0, z3 ≥ 0 and z4 = 0, and so

0 =
βTV(φ1 − φ2)

A
− z1

A
and 0 =

ηT∗(φ6 − φ5)

B
− z3

B
.

It is evident from the last two expressions that βTV(φ1−φ2)
A ≥ 0 and ηT∗(φ6−φ5)

B ≥ 0. Hence,

ũ1 = min
(

βTV(φ1 − φ2)

A
, b
)

and ũ2 = min
(

ηT∗(φ6 − φ5)

B
, b
)

.

Finally, if u1 = b and u2 = b, we have z1 = 0, z2 ≥ 0, z3 = 0 and z4 ≥ 0, so
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b =
βTV(φ1 − φ2)

A
+

z2

A
and b =

ηT∗(φ6 − φ5)

B
+

z4

B
.

Hence, βTV(φ1−φ2)
A ≤ b and ηT∗(φ6−φ5)

B ≤ b. Now in order to guarantee those expressions are
greater than 0, we have the following

ũ1 = max
(

0,
βTV(φ1 − φ2)

A

)
and ũ2 = max

(
0,

ηT∗(φ6 − φ5)

B

)
We obtain the following optimality conditions by unifying all the arguments above for the

bounded controls 0 ≤ ui(t) ≤ b for i = 1, 2:

ũ1 = max
(

0, min
(

βTV(φ1 − φ2)

A
, b
))

and ũ2 = max
(

0, min
(

ηT∗(φ6 − φ5)

B
, b
))

. (13)

Next, the existence of optimal controls follows since the integrand of J is a convex function of
U(t) and the the state system satisfies the Lipschitz property with respect to the state variables [35].
The following can be derived from Pontryagin’s Maximum Principle [34]:

dφ1

dt
= −∂H

∂T
dφ2

dt
= − ∂H

∂T∗
dφ3

dt
= − ∂H

φM
dφ4

dt
= − φH

∂M∗
dφ5

dt
= −∂H

∂V
dφ6

dt
= − ∂H

∂W
,

where 

dφ1
dt = −(w1 − φ1β(1− u1)V + φ2β(1− u1)V − µφ1)

dφ2
dt = −(−φ2γM∗ − φ2δ + φ3ψM + φ4αM + φ4ψM + φ5η(1− u2) + φ6ηu2)

dφ3
dt = −(φ3ψT∗ − φ3ρ + φ4ψT∗)

dφ4
dt = −(w2 − φ2γT∗ + φ4αT∗ − φ4ρ)

dφ5
dt = −(−φ1β(1− u1)T + φ2β(1− u1)T − φ5c)

dφ6
dt = cφ6

(14)

subject to the transversality condition φi(τ) = 0, for i = 1, . . . , 6, and evaluated at the optimal controls
and corresponding states, which results in the adjoint system given above.

The above optimality system is a two-point boundary value problem. This problem can be solved
by the following process, first, the state system (4) is solved with initial conditions using an initial
guess for the control. Secondly, the adjoint system (14) is solved with transversality conditions. Then,
the controls are updated in each iteration using formula (13) for optimal controls. Last, the iterations
continue until the predefined convergence criteria is achieved.

4. Numerical Simulations

4.1. Numerical Simulations in the Absence of Interventions

In this section, we present numerical simulations by solving the system (1) in the absence
of treatments (or controls). Particularly, we are interested in two scenarios incorporating the
level of disease progress in the HIV transmission dynamics. The first is an early-stage case for
an average patient who just became infected. For an initial healthy T cell population at early-stage,
T(0) = 1000 cells/mm3 is used. The second is an advanced-stage corresponding to a patient who
became infected some time ago. Hence, for the advanced-stage, an initial condition of the healthy
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T cell population is set to be half of the early stage one, T(0) = 500 cells/mm3. Other initial conditions
for the advanced-stage have been estimated from simulations (as shown in Table 1).

Also, these cases can be characterized by how successfully the immune response can destroy
infected cells; this leads to changes in parameters α, ψ and γ. Therefore, parameter values for α, ψ,
γ as well as initial conditions are varied to simulate the early-stage and the advanced-stage scenarios.
Parameter values for the immune cells have been taken from [3,23], except that ψ that is used ad hoc.
Once the organism is attacked by the infected virus, the cytotoxic immune response begins maintaining
an effort to keep the immune system at a normal condition, leading to an increase in α and ψ. On the
other hand, its capability to destroy infected cells might decrease (a reduction in γ), which is due
to changes in the viral particles and their fast replication rate. Simulation time is chosen as 100-day
period (τ = 100) since a treatment is considered as effective provided it lowers strongly viral load
within two months [23]. The baseline parameter values used in these simulations are given in Table 1.

First, the impact of the transmission rate β on the HIV dynamics is illustrated under both scenarios.
Figure 2 illustrates the time series of HIV infection for an early-stage in the absence of treatments.
Here it is assumed the patient has a normal count of CD4+ T-cells and develops infectious viral
particles around t = 20 days. The greater the probability in the transmission rate β, the greater the
average of infected cells and viral particles (see the solid curve in the right most panel for the viral load,
which is almost identical with infected CD4+ T cells). This causes a sharp decrease in the concentration
of healthy CD4+ T-cells (see the left most panel), which becomes more pronounced under larger values
of β. The organism responds by activating immune response cells, which fight against the virus in
a highly nonlinear way (see the middle panels for immune cells).
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Figure 2. Early-stage HIV dynamics in the absence of controls under four different values of β

(γ = 0.002 is fixed): β = 0.000015 (dotted), β = 0.000025 (dash-dot): β = 0.000035 (dashed) and
β = 0.000045 (solid).

Figure 3 shows the HIV dynamics for an advanced-stage case in the absence of controls. That is,
a patient with a lower level of healthy CD4+ T-cells whose cells are already being attacked by the
virus. Please note that a higher level of viral particles causes a sharp decrease in the concentration of
healthy CD4+ T-cells within a very short time period (see the left most panel). Again, this becomes
more pronounced under larger values of β. For the advanced-stage case, the organism has a stronger
response by activating immune response cells in a higher level (see the middle panels for active
immune cells).

Next, the impact of cytotoxic cells on the HIV dynamics is shown by varying γ (the rate of infected
cells killed by CTL). Figure 4 illustrates the HIV dynamics in the early-stage patient. It is clear that the
greater the effectiveness of cytotoxic cells in killing infected cells, the lower the average of infected
cells and viral particles and the greater the average number of healthy CD4+ T cells. Using γ = 0.9,
virus and infected CD4+ T cells are mostly under control (see the solid curve in all panels). Under larger
values of γ, the average number of active (inactive) cytotoxic cells increase (decrease), as seen in the
middle panels.
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Figure 3. Advanced-stage HIV dynamics in the absence of controls under four different values of
β (γ = 0.004 is fixed): β = 0.000015 (dotted), β = 0.000025 (dash-dot); β = 0.000035 (dashed) and
β = 0.000045 (solid).
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Figure 4. Early-stage HIV dynamics in the absence of controls under four different values of γ

(β = 0.000025 is fixed): γ = 0 (dotted), γ = 0.02 (dash-dot), γ = 0.05 (dashed) and γ = 0.09 (solid).

Figure 5 shows the HIV dynamics for an advanced-stage patient varying γ to illustrate the effect
of cytotoxic immune response on the evolution of infection. Similarly, it is observed that larger values
of γ lead to more uninfected CD4+ T-cells (over 300 cells per mm3; see the solid curve in the left most
panel). Under larger values of γ, the average of active (inactive) cytotoxic cells increase (decrease) as
seen in the middle panels. Even though virus and infected CD4+ T cells are most manageable when
γ = 0.008, infection cannot be eliminated from the body by cytotoxic immune cells alone.
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Figure 5. Advanced-stage HIV dynamics in the absence of controls under four different values of γ

(β = 0.000025 is fixed): γ = 0.002 (dotted), γ = 0.004 (dash-dot); γ = 0.006 (dashed) and γ = 0.008 (solid).

These results highlight the roles of the immune response to intervene with the organism either to
control or reduce the evolution of the disease in order to avoid deterioration of patient health. In this
case, we propose implementation of optimal treatment interventions by increasing the population of
healthy CD4+ T cells and the activation level of immune response cells. In the next section, we discuss
the results with optimal treatments.
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4.2. Numerical Simulations in the Presence of Optimal Treatments

In this section, we present numerical simulations by solving the optimality system described
in the previous section. Again, two scenarios on the level of HIV infection progress are carried out.
For both cases, we run simulations under several different values of weight constants. These weight
constants are selected since the magnitude of the virus population is much larger than the magnitude
of the cost of controls in the objective functional (8) (this difference in magnitude is balanced by this
choice of A and B). The resulting HIV dynamics with the corresponding optimal control functions are
presented in Figures 6 and 7.

First, the results for early-stage disease are illustrated in Figure 6. Four different weight constants
have been chosen to compare the impact of costs in two controls. The bottom two right panels show
time-dependent optimal controls for reverse transcriptase inhibitor (u1) and protease inhibitor (u2).
The two controls RTI (u1) and PI (u2) should be applied at a medium level during the entire simulation.
The top leftmost panel shows the corresponding uninfected CD4+ T cells. Overall uninfected CD4+ T
cells remain at a high level almost until the final time, where the two treatments are reduced to zero
(no controls are given at around t = 100, as shown in the bottom two right panels).

Under smaller values of weight constants A and B, which thereby decrease the cost of treatments,
the optimal control function increases in a linear manner (monotone increases). Hence, the best
treatment protocols are when A = B = 12, 500 (see the solid curves in the panels), which maintain the
active immune response at a lower level. This may indicate that implementation of both treatments take
control of infection, inducing a kind of laziness in the immune response. In other words, the immune
system puts forth more effort to fight against infections when there are fewer treatments. Nonetheless,
optimal treatment interventions (combination of RTI and PI) effectively control infection regardless of
these weight constants.

0 50 100
0

200

400

600

800

1000

Time (days)

U
n
in

fe
c
te

d
 C

D
4
+

 T
 c

e
ll

0 50 100
0

50

100

150

200

250

300

350

400

Time (days)

In
fe

c
te

d
 C

D
4
+

 T
 c

e
ll

0 50 100
0

10

20

30

40

50

Time (days)

N
o
n
−

a
c
ti
v
e
 i
m

m
u
n
e
 c

e
ll

0 50 100
0

10

20

30

40

50

Time (days)

A
c
ti
v
e
 I
m

m
u
n
e
 c

e
ll

0 50 100
0

0.5

1

1.5

2
x 10

4

Time (days)

In
fe

c
ti
o
u
s
 v

ir
a
l 
p
a
rt

ic
le

s

0 50 100
0

500

1000

1500

2000

Time (days)

N
o
n
−

in
fe

c
ti
o
u
s
 v

ir
a
l 
p
a
rt

ic
le

s

0 50 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (days)

R
e
v
. 
T

tr
a
n
s
c
ri
p
ta

s
e
 I
n
h
b
it
o
rs

0 50 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (days)

P
ro

te
a
s
e
 I
n
h
ib

it
o
rs

 

Figure 6. Early-stage dynamics of infection with two controls under four different values of weight
constants (β = 0.000025 and γ = 0.002 are used): A = B = 100,000 (solid), A = B = 50,000 (dashed),
A = B = 25,000 (dash-dot) and A = B = 12,500 (dotted). The bottom two right panels show optimal
controls for reverse transcriptase inhibitor (u1) and protease inhibitor (u2) for 100 days. The two
controls RTI and PI should be applied at a medium level during the entire simulation.
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Next, Figure 7 shows the results for the advanced-stage using γ = 0.004. The bottom two right
panels show time-dependent optimal controls for reverse transcriptase inhibitor (u1) and protease
inhibitor (u2). Initially, a maximum level of RTI should be implemented, followed by decreasing
the RTI, while the PI should be applied at a medium level during the entire simulation. Similarly,
the overall number of uninfected CD4+ T cells remains relatively high almost until the final time
(see the top leftmost panel). Under smaller values of weight constants A and B, which thereby decrease
the cost of treatments, the optimal control function is increasing in a nonlinear manner.
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Figure 7. Advanced-stage dynamics of infection with two controls under four different values of
weight constants (β = 0.000025 and γ = 0.004 are used): A = B = 100,000 (solid), A = B = 50,000
(dashed), A = B = 25,000 (dash-dot) and A = B = 12,500 (dotted). The bottom two right panels
show optimal controls for reverse transcriptase inhibitor (u1) and protease inhibitor (u2) for 100 days.
Initially, a maximum level of RTI should be implemented, followed by decreasing the RTI, while the PI
should be applied at a medium level during the entire simulation).

Please note that the most effective treatments are the case of the lowest weight constants A =

B = 12,500 (a greater level of healthy CD4+ T cells is obtained; see the solid curves in the panels).
Interestingly, the use of ART increases the reservoir of inactive cytotoxic cells M, resulting in reduced
activation of these cells since ART takes control of the HIV infection (see the solid curves in the top right
two panels). These findings establish that the treatment does most of the hard work of inhibiting viral
replication and raising the number of healthy CD4+ T cells, but this is counteracted by the weakened
cytotoxic response of the body to fight off the infection naturally.

This phenomenon is clearer in Figure 8 using A = B = 12,500 under different values of γ to
illustrate the effects of stronger cytotoxic response on the corresponding HIV dynamics and controls.
The bottom two right panels show time-dependent optimal controls for reverse transcriptase inhibitor
(u1) and protease inhibitor (u2). Under larger values of γ, both controls are decreasing and the average
number of active immune cells M∗ is decreasing (see the solid curves in the top panels). Therefore,
the combined control and stronger immune response is the best intervention to maximize the level of
healthy CD4+ T cells at a minimal cost of treatments.
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Figure 8. Advanced-stage dynamics of infection with two controls under four different values of
γ (β = 0.000025 and A = B = 12,500 are used): γ = 0.016 (solid), γ = 0.012 (dashed),
γ = 0.008 (dash-dot) and γ = 0.004 (dotted). The bottom two right panels show optimal controls for
reverse transcriptase inhibitor (u1) and protease inhibitor (u2) for 100 days. Under larger values of γ

(solid), both controls are decreasing and the average number of active immune cells M∗ is decreasing.

5. Conclusions

In this paper, we have presented an HIV transmission model by incorporating immune response
and anti-retroviral (ART) interventions. The immune response has been divided into two components:
active and inactive immune cells. Two different disease stages (early-stage and advanced-stage) have
been assessed in our numerical simulations. Moreover, optimal control theory has been utilized to
obtain optimal treatments to maximize healthy CD4+ T cells and active immune response at a minimal
cost of treatments. The combined interventions of RTI and PI are implemented in both the early-stage
and the advanced-stage scenarios.

Our results indicate that the optimal strategy succeeds in reducing infection and improves the
number of CD4+ T cells. Also, in practice, ART by itself is strong enough to control infection and
maintain a high level of healthy CD4+ T cells. However, combined interventions of RTI and PI have
some undesirable effects of reducing the activation of cytotoxic immune response, therefore, they can
interrupt the natural process of the immune system of acquiring memory against the virus.

As observed in the results of larger values of γ, both controls are decreasing and the average
number of active immune cells M∗ is decreasing. Therefore, the combined control and stronger
immune response is the best intervention to maximize the level of healthy CD4+ T cells at a minimal
treatment cost. This allows the immune system to regain control over infection. Such strategies should
contribute to build effective immune memory against the virus, and hence reduction of treatment costs
and the side effects associated with the treatments for a longer term therapy. If the immune system is
efficient (strong immune response), then it is possible to maintain the effectiveness of treatment for
longer and at lower levels. This remarkable fact motivates us to carry out a new research direction,
which involves the evolution of immune response cells in sub-optimal control strategies or controlled
interrupted treatments. That is, treatments are given only when CD4+ T cells and immune cells are
lower than a certain threshold.
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Certainly, HIV dynamics in the presence of immune response is more complicated than the results
presented by our model. It is important to consider viral mutations and the acquisition of drug
resistance as critical factors that interfere with HIV dynamics and optimal treatments. Therefore,
optimal antiretroviral treatment strategies can be improved with the aid of HIV resistance tests.
Unfortunately, this issue is beyond the scope of this paper and it should be addressed in the future
HIV research. However, the findings in this paper can exhibit some possibilities and approaches of
using numerical analysis and optimal control theory to obtain a better understanding HIV dynamics
with treatments. Hence, we hope to achieve new insights in the HIV infection evolution via optimal
treatments in the near future.
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ART Anti-retroviral treatment
RTI Reverse transcriptase inhibitors
PI Protease inhibitors
SIR Susceptible-Infectious-Recovered
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