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Abstract: Mesoporous alumina and magnesia were prepared using various polymers, poly(ethylene
glycol) (PEG), poly(vinyl alcohol) (PVA), poly(N-(2-hydroxypropyl) methacrylamide) (PHPMA),
and poly(dimethylacrylamide) (PDMAAm), as porogenic structure matrices. Mesoporous alumina
exhibits large Brunauer–Emmett–Teller (BET) surface areas up to 365 m2 g−1, while mesoporous
magnesium oxide possesses BET surface areas around 111 m2 g−1. Variation of the polymers has
little impact on the structural properties of the products. The calcination of the polymer/metal oxide
composite materials benefits from the fact that the polymer decomposition is catalyzed by the freshly
formed metal oxide.
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1. Introduction

Mesoporous metal oxides with large specific surface areas and uniform pore sizes have recently
attained great interest, particularly regarding potential applications in such areas as catalysis [1],
energy conversion and storage [2], and gas sensing [3,4]. By definition, mesopore widths range from
2 to 50 nm [5]. For metal oxides with uniform and ordered mesopores, a variety of synthesis methods
have been established, mostly by utilization of porogens; said porogens may be supramolecular entities
of amphiphilic species dispersed in liquid media (‘soft templates’ [6]) or solid structure matrices such
as porous silica (‘hard templates’) in the so-called ‘nanocasting’ process [6–9].

Alumina (aluminum oxide, Al2O3) and magnesia (magnesium oxide, MgO) with high surface-to
volume ratios play an important role as catalyst/catalyst support materials [10–13] and as
adsorbents [14–16]. Both materials can be prepared by nanocasting, which leads to ordered and
uniform mesopores. However, unlike for most other metal oxides, mesoporous silica is not suitable as
a structure matrix here, because its removal requires chemical etching under strongly basic (e.g., NaOH)
or acidic (HF) conditions. Both Al2O3 and MgO are amphoteric oxides that cannot withstand these
conditions. Instead, mesoporous carbon materials have been employed as structure matrices for
amphoteric oxides such as mesoporous Al2O3 [17,18], MgO [19,20], and ZnO [21–24], since their
removal can be accomplished under milder condition by thermal oxidation [25,26]. Likewise, organic
hydrogels have also been shown to be versatile porogenic matrices for porous oxidic materials [27–31].
We have recently described the utilization of photo cross-linked poly(dimethylacrylamide)-based
hydrogels [32,33] as matrices for mesoporous alumina [34,35]. Here we report on the utilization
of non-cross-linked water-soluble polymers as porogenic species for mesoporous Al2O3 and MgO;
the synthesis process is thus simplified.
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Polymer chains begin to overlap and form entanglements when the polymer solution is above
a critical concentration. Hence, a physical network is formed between different polymer chains in
a concentrated solution [36,37]. Therefore, a concentrated polymer solution could also theoretically
work as a structure matrix to prepare mesoporous metal oxides. In this paper, we describe the
synthesis of mesoporous alumina and magnesium oxide using simple polymers, such as poly(ethylene
glycol) (PEG), poly(vinyl alcohol) (PVA), poly(N-(2-hydroxypropyl) methacrylamide) (PHPMA),
and poly(dimethylacrylamide) (PDMAAm), as matrices. The strategy proposed here to prepare
porous alumina and magnesium oxide is based on a one-pot synthesis approach using saturated
aluminum/magnesium nitrate as precursor solutions and introducing direct polymers.

2. Materials and Methods

2.1. Materials

Poly(ethylene glycol) (PEG, Fluka, Darmstadt, Germany, Mn 6000 g mol−1), poly(vinyl alcohol)
(PVA, Acros, Geel, Belgium,≥98%, Mn 16,000 g mol−1), aluminum nitrate nonahydrate (Sigma-Aldrich,
Darmstadt, Germany, ≥98.0%), magnesium nitrate hexahydrate (Sigma-Aldrich, Darmstadt, Germany,
≥97%), 1-amino-2-propanol (TCI, Eschborn, Germany, >98%), methacryloyl chloride (Fluka,
Darmstadt, Germany, >97%), and 1,2-diaminoethane (Acros, Geel, Belgium, >99%) were used as
received. N,N-dimethylacrylamide (DMAAm, TCI, Eschborn, Germany, 99%) was distilled under low
pressure. α,α′-Azobisisobutyronitrile (AIBN, Fluka, Darmstadt, Germany, >98%) was recrystallized
from methanol. Ammonia solution (Stockmeier, Bielefeld, Germany, 25%), diethyl ether (Hanke +
Seidel, Steinhagen, Germany), tetrahydrofuran (THF, BASF, Ludwigshafen, Germany), 1,4-dioxane
(Carl Roth, Karsruhe, Germany, ≥99.5%) ethyl acetate (Stockmeier, Bielefeld, Germany,), methanol
(Stockmeier, Bielefeld, Germany,), magnesium sulfate (Grüssing, Filsum, Germany, 99%), acetone
(Stockmeier, Bielefeld, Germany,), and sodium sulfate (Grüssing, Filsum, Germany, 99%) were used
as received.

2.2. Characterization

1H and 13C NMR spectra were recorded on a Bruker (Billerica, Massachusetts, USA) AV
500 spectrometer at 500 MHz and 125 MHz, respectively. Reference solvent signals at 7.26 and
2.56 ppm were used for spectra in CDCl3 (99.8 atom-% Deuterium) and DMSO-d6 (O=S(CD3)2,
99.9%), respectively.

Gel permeation chromatography (GPC) was performed in chloroform for PEG and PDMAAm
at 30 ◦C and at a flow rate of 0.75 mL min−1 on a Jasco (Groß-Umstadt, Germany) 880-PU Liquid
Chromatograph connected to a Shodex (Yokohama, Japan) RI-101 detector. The instrument was
equipped with four consecutive columns (PSS-SDV columns filled with 5 µm gel particles with a
defined porosity of 106 Å, 105 Å, 103 Å, and 102 Å, respectively), and both samples were calibrated by
poly(methyl methacrylate) standards. GPC was performed in hexafluoroisopropanol for PVA at 0 ◦C
and at a flow rate of 1 mL min−1 on a Merck (Darmstadt, Germany) LC-6200 liquid chromatograph
connected to a Shodex (Yokohama, Japan) RI-101 detector. The instrument was equipped with
a PSS-PFG 103 Å and PSS-PFG 102 Å column, and the sample was calibrated by poly(methyl
methacrylate) standards. GPC was performed in N,N-dimethylacetamide for PHPMA at 50 ◦C and
at a flow rate of 0.5 mL min−1 on a Merck (Darmstadt, Germany) LC 655A-11 liquid chromatograph
connected to a Waters (Milford, Massachusetts, United States) RI 2410 detector. The instrument was
equipped with PSS-GRAM 104 Å, PSS-GRAM 103 Å, and PSS-GRAM 102 Å columns, and the sample
was calibrated by poly(methyl methacrylate) standards. Thermogravimetric analysis (TGA) was
conducted under synthetic air at a heating rate of 10 ◦C min−1 using a Mettler Toledo (Columbus, Ohio,
USA) TGA/SDTA851. N2 physisorption analysis was performed at 77 K on a Quantachrome (Boynton
Beach, Florida, United States) Autosorb 6B instrument; samples were degassed at 120 ◦C for 12 h
prior to measurement. Specific surface areas were assessed via multi-point Brunauer–Emmett–Teller
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(BET) analysis [38] in the range of 0.1 ≤ p/p0 ≤ 0.3. Pore volumes were calculated at p/p0 = 0.99.
Pore size distributions were calculated via Barrett–Joyner–Halenda (BJH) analysis [39] from the
desorption branches of the isotherms. Powder X-ray diffraction was performed with a Bruker (Billerica,
Massachusetts, USA) AXS D8 Advance diffractometer with Cu Kα radiation (40 kV, 40 mA) with a step
size of 0.02◦ and a counting time of 3 s per step.

2.3. Monomer Synthesis

N-(2-hydroxypropyl) methacrylamide (HPMA) was synthesized as described in the literature [40].
1-Amino-2-propanol (45.5 mL, 589 mmol) and ethyl acetate (450 mL) were added in a 1 L three-neck
round-bottom flask equipped with addition funnel. The flask was cooled to 10 ◦C and purged
with argon for 15 min. Methacryloyl chloride (28 mL, 287 mmol) and ethyl acetate (50 mL)
were added to the addition funnel and purged with argon for 15 min and left under an argon
atmosphere. The methacryloyl chloride/ethyl acetate mixture was then added dropwise to the
1-amino-2-propanol/ethyl acetate mixture. The mixture was reacted in an ice bath for 1 h. Afterwards,
the mixture was washed three times with an aqueous sat. sodium sulfate solution (250 mL) in a
separatory funnel to remove any excess of reactants and side products. The aqueous phase was
discarded and the organic phase was dried over magnesium sulfate and concentrated in vacuo to
approximately 50 mL. The concentrate was then allowed to age for 1 h at 10 ◦C. The product was
collected as colorless solid by filtration, dried under vacuum, and stored in the freezer. (11.52 g, 28%)
1H NMR (500 MHz, CDCl3): δ (ppm) = 1.21 (d, J = 6.3 Hz, 3 H, =CCH3), 1.97 (dd, J = 1.5, 1.0 Hz,
3 H, (HO)CCH3), 2.36 (s,1H, OH), 3.18 (ddd, J = 14.0, 7.6, 5.2 Hz, 1 H, CH2), 3.51 (ddd, J = 14.0, 6.5,
3.0 Hz, 1 H, CH2), 3.96 (ddd, J = 7.6, 6.3, 3.0 Hz, 1 H, CH), 5.33–5.37 (m, 1 H, =CH2), 5.69–5.74 (m, 1 H,
=CH2), 6.24 (br. s, 1 H, NH). 13C NMR (125 MHz, CDCl3): δ (ppm) = 18.64 (CH3), 21.04 (CH3), 47.17
(NH–CH2), 67.52 (CH–OH), 119.88 (=CH2), 139.77 (=C), 169.39 (C=O).

2.4. Polymer Synthesis

Homopolymer PDMAAm was synthesized by free radical polymerization initiated with AIBN as
described in the literature [41]. Monomer DMAAm (5.2 mL, 50.4 mmol) and AIBN (10 mg, 0.06 mmol)
were dissolved in 1,4-dioxane (92 mL) and purged with argon for 20 min. The polymerization was
carried out at 70 ◦C for 7 h under an argon atmosphere. Afterwards, the polymer was precipitated in
diethyl ether and reprecipitated from THF into diethyl ether for the purification. Finally, the product
was obtained by low pressure drying and characterized by NMR spectroscopy and GPC (see Table 1).
(3.39 g, 68%) 1H NMR (500 MHz, CDCl3): δ (ppm)= 1.51–1.83 (m, CH2), 2.30–2.74 (m, CH), 2.75–3.22
(m, CH3).

Homopolymer PHPMA was synthesized by free radical polymerization initiated with AIBN as
described in the literature [42]. Monomer HPMA (1.5 g, 10.5 mmol) and AIBN (1.7 mg, 0.010 mmol)
were dissolved in 1,4-dioxane (20 mL) in a 50 mL nitrogen flask and was degassed three times by
freeze/thaw cycles. The HPMA was polymerized at 65 ◦C for 8 h under an argon atmosphere.
The mixture was poured into acetone to get a white solid, which was collected and washed with
acetone repeatedly. Further purification was carried out by dissolving the polymer in methanol
and precipitating into acetone. The product was collected and dried under vacuum to obtain the
homopolymer as a white powder and characterized by NMR spectroscopy and GPC (see Table 1).
(1.16 g, 77%) 1H NMR (500 MHz, DMSO): δ (ppm) = 0.70–1.13 (m, CH3), 1.43–2.04 (m, CH2), 2.92 (m,
NH–CH2, OH), 3.69 (m, NH–CH2), 4.69 (m, CH), 7.14 (br, NH).
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Table 1. Characterization of the used homopolymers.

Polymer Mn/(g mol−1) D Yield/%

PEG 1 12,000 1.1 -
PVA 1 23,000 2.4 -

PDMAAm 1 26,000 2.8 68
PHPMA 1 43,000 6.3 77

1 Poly(ethylene glycol) (PEG) and poly(dimethylacrylamide) (PDMAAm) determined by gel permeation
chromatography (GPC) in CHCl3, poly(vinyl alcohol) (PVA) determined in hexafluoroisopropanol, and poly(N-(2-
hydroxypropyl) methacrylamide) (PHPMA) determined in N,N-dimethylacetamide, all of which were calibrated by
poly(methyl methacrylate) (PMMA) standards.

2.5. Preparation of Mesoporous Metal Oxides

One hundred ninety six milligrams of polymer were dissolved in 800 µL of a saturated
aqueous solution of aluminum nitrate (1.9 mol L−1) or magnesium nitrate (4.9 mol L−1).
The Al(NO3)3-containing solution was treated at 60 ◦C with a vapor of an aqueous ammonia solution
(12.5%) for 3 h to convert Al(NO3)3 to Al(OH)3/AlO(OH); the resulting material was dried overnight
at 60 ◦C and then calcined in a tube furnace for 4 h at 500 ◦C (heating rate 1 ◦C min−1) to form
Al2O3 and to combust the polymer. The Mg(NO3)2-containing solution was dried overnight at 120 ◦C;
the resulting material was calcined in a tube furnace for 2 h at 300 ◦C and for 2 h at 500 ◦C (heating
rate 1 ◦C min−1) to convert Mg(NO3)2 to MgO and to combust the polymer.

3. Results and Discussion

A variety of four simple water soluble polymers were used as porogenic structure directors for
mesoporous Al2O3 and MgO. The polymers possess different hydrophilicity and distinct ability to
coordinate to Al3+ and Mg2+ metal cations: (i) poly(ethylene glycol) (PEG; ether groups), (ii) poly(vinyl
alcohol) (PVA; hydroxyl groups), (iii) poly(dimethylacrylamide) (PDMAAm; tertiary amido groups),
and (iv) poly(N-(2-hydroxypropyl) methacrylamide) (PHPMA; secondary amido with hydroxyl
groups). The latter two polymers were synthesized by free-radical polymerization, as shown in
Figure 1b,c. Their properties are summarized in Table 2; molecular weights, dispersities, and yields are
typical of free-radical polymerization synthesis.
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(b) PDMAAm and (c) PHPMA.

The aim of this study was to investigate the impact of the polymers on the porosity of the
metal oxides. For this purpose, the respective polymer was dissolved in a saturated aqueous
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solution of aluminum nitrate, followed by treatment in ammonia vapor at 60 ◦C to convert Al(NO3)3

to Al(OH)3/AlO(OH), as described in the experimental section. After evaporation of the water,
the material was then calcined at 500 ◦C to turn Al(OH)3/AlO(OH) into Al2O3 and simultaneously
combust the polymer. For MgO, the same procedure was applied, but without the ammonia
treatment step; magnesium nitrate was directly converted to magnesium oxide by calcination. By this
procedure, a composite of the metal oxide precursor (Al(OH)3/AlO(OH) or Mg(NO3)2, respectively)
and the polymer was formed first, with the polymer being entangled within the inorganic phase.
Then, simultaneous conversion of the precursor into the metal oxide and thermal combustion of the
polymer led to a mesoporous product.

To study the calcination/polymer combustion step in some detail, thermogravimetric analysis
(TGA) was carried out. As an example, the TGA curves of the Al(OH)3/PDMAAm composite and
of the pure PDMAAm polymer were compared and are shown in Figure 2. A mass loss of ca. 72%
can be observed for the composite material in the temperature range up to 230 ◦C, which can be
attributed to both the dehydration of Al(OH)3/AlO(OH) (i.e., Al2O3 formation) and the combustion of
the polymer. Further mass loss of ca. 14% can be observed between 230 and 570 ◦C. By comparison,
the pure polymer shows an initial mass loss of 6% below 200 ◦C, probably due to loss of residual
water, then a mass loss of about 74% between 300 to 400 ◦C, followed by another 18% up to ca. 600 ◦C.
Obviously, the presence of the aluminum hydroxide/oxide led to a combustion of the polymer at lower
temperature; this effect has already been observed for the combustion of amorphous carbon [18,26]
and organic hydrogel matrices [35]. Very similar results were obtained for Al2O3 prepared using the
other polymers (see Figures S1–S3).
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The porogenic impact of the polymers on the polymer-free metal oxides was confirmed by N2

physisorption analysis. Figure 3 (left) shows the sorption isotherms of four Al2O3 materials prepared
with different polymers. All isotherms exhibit a faint type-IV(a) behavior [43] with a more or less
well-pronounced hysteresis. This indicates mesopores with an ill-defined shape, but with a fairly
uniform size, as confirmed in the BJH pore size distribution curves [41] derived from the isotherms
(Figure 3, right). Pore widths from 3 to 8 nm can be observed, with a clear peak occurring at 3.6 nm
in all materials. The pore size distribution is somewhat narrower in the two samples prepared with
PVA and PEG, respectively. The specific pore volumes and BET surface areas are shown in Table 2,
confirming that a reproducible synthesis of porous alumina with a large surface area up to 365 m2 g−1

is possible by the utilization of these polymers as porogens. Comparison of all prepared Al2O3

materials reveals similar mesopore sizes, mesopore volumes, and specific BET areas. The choice of
the porogenic polymer matrix has little impact on the porosity. Although polymers with different
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binding sites were used, the appearance of a polymer rich phase due to physical network formation in
concentrated solution can be considered the sole reason for pore formation.Processes 2017, 5, 70  6 of 10 
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Table 2. Specific Brunauer–Emmett–Teller (BET) surface areas ABET, pore volumes V, and mean pore
widths r obtained from N2 physisorption of mesoporous alumina synthesized using various polymers.

Polymer Used ABET/m2 g−1 V/cm3 g−1 r/nm

PDMAAm 365 0.51 3.6
PHPMA 312 0.54 3.6

PEG 325 0.44 3.6
PVA 343 0.48 3.6

Figure 4 shows the powder X-ray diffraction patterns of the alumina materials. Again, the differences
between the materials are rather low. All samples exhibit only a few broad reflections, two of which
can be attributed to the cubic defect spinel structure of γ-Al2O3. (JCPDS card number 75-0921).
The formation of this phase with low crystallinity is commonly observed for Al2O3 syntheses under
these conditions [17,18]. The crystallite sizes calculated by the Scherrer method are between 5 and
6 nm.
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Since the choice of polymer turned out not to have any significant impact on the Al2O3 synthesis,
only one polymer, PDMAAm, was chosen for the preparation of porous MgO. The TGA curves of the
Mg(NO3)2/PDMAAm composite and of the pure PDMAAm polymer are shown in Figure 5. For the
composite, the mass loss occurs in two distinct steps: by ca. 54% up to a temperature of 265 ◦C and by
another 32% between 265 and 500 ◦C. It is fair to assume that the first step is mainly attributable to the
conversion of magnesium nitrate into magnesium oxide, while the second step corresponds mostly
to the polymer decomposition. This seems likely because the pure polymer starts to combust only
above ca. 300 ◦C (after some initial mass loss of 6% below 200 ◦C, presumably due to loss of residual
water); a steep reduction in mass by ca. 74% occurs between 300 and 400 ◦C, followed by another
18% between 400 and 600 ◦C. Again, the presence of the magnesium species results in a polymer
decomposition at a slightly lower temperature, although this effect is less pronounced than in the case
of the aluminum species.
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Figure 6 shows the N2 physisorption data of the porous MgO sample. The isotherm shape is
mostly type II, with a slight type-IV character and little hysteresis, indicating a fairly low degree of
porosity. Accordingly, the pore size distribution peak is very low in intensity. The specific BET surface
area and pore volume are 111 m2 g−1 and 0.37 cm3 g−1, respectively. Obviously, the polymer failed to
have a pronounced porogenic impact in the case of MgO, which may be explained by the sintering
of MgO particles during calcination upon combustion of the polymer. During the Al2O3 synthesis,
by contrast, a solid network of Al(OH)3/AlO(OH) was formed before the combustion of the polymer.
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The powder X-ray diffraction diagram of MgO is shown in Figure 7, confirming the cubic rock
salt structure of MgO (JCPDS card number 77-2179) with a substantially higher degree of crystallinity
than in case of Al2O3. This is consistent with the above-made assumption of strong sintering upon
polymer combustion. The crystallite size calculated by the Scherrer method is ca. 12 nm.
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4. Conclusions

Mesoporous γ-Al2O3 and mesoporous MgO with large specific BET surface areas were
successfully synthesized using simple polymers (PEG, PVA, PDMAAm, and PHPMA) as porogenic
matrices under relatively mild conditions. The polymers were mixed with a metal nitrate solution.
The polymer matrices were removed by thermal combustion, while the metal oxides were formed
at the same time. The mesoporous alumina products exhibit mesopore sizes in the range from
3.6 to 6.4 nm, large specific BET surface areas up to 365 m2 g−1, and specific pore volumes up to
0.54 cm3 g−1. Variation of the polymer has little impact on the structural properties of the products.
The mesoporous magnesium oxide product has a mesopore size of 3.6 nm, a specific BET surface area
of 111 m2 g−1, and a specific pore volume of 0.37 cm3 g−1. The calcination of the polymer/metal
oxides composite materials benefits from the fact that polymer decomposition is catalyzed by the
freshly formed metal oxides.
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and of the pure PEG.
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