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Abstract: In recent years gas–liquid flow in microchannels has drawn much attention in the
research fields of analytics and applications, such as in oxidations or hydrogenations. Since surface
forces are increasingly important on the small scale, bubble coalescence is detrimental and leads
to Taylor bubble flow in microchannels with low surface-to-volume ratio. To overcome this
limitation, we have investigated the gas–liquid flow through micronozzles and, specifically, the bubble
breakup behind the nozzle. Two different regimes of bubble breakup are identified, laminar and
turbulent. Turbulent bubble breakup is characterized by small daughter bubbles and narrow daughter
bubble size distribution. Thus, high interfacial area is generated for increased mass and heat
transfer. However, turbulent breakup mechanism is observed at high flow rates and increased
pressure drops; hence, large energy input into the system is essential. In this work Design of
Experiment assisted evaluation of turbulent bubbly flow redispersion is carried out to investigate
the effect and significance of the nozzle’s geometrical parameters regarding bubble breakup and
pressure drop. Here, the hydraulic diameter and length of the nozzle show the largest impacts.
Finally, factor optimization leads to an optimized nozzle geometry for bubble redispersion via a
micronozzle regarding energy efficacy to attain a high interfacial area and surface-to-volume ratio
with rather low energy input.

Keywords: gas–liquid capillary flow; high interfacial area; bubble breakup; micronozzle bubble
dispersion; energy dissipation rate; energy efficacy

1. Introduction

Gas–liquid chemical reactions include a broad range of highly relevant chemistries such as
halogenation, oxidation, and hydrogenation, which are of great importance for fine chemical and
pharmaceutical industries [1–7]. Gaseous reagents are prone to be atom economic [8]; however,
they are often used in large stoichiometric excess because of insufficient interfacial mixing [9]. This can
lead to extended reaction times and, consequently, prohibitively slow processes, which underlines
the importance of gas–liquid mixing [10]. Here, microstructured fluidic systems with increased
surface-to-volume ratio can enhance reaction rates, especially when mass transfer is limiting [11].
Heat transfer rate is simultaneously raised, making highly exothermic reactions easier to control and
reducing safety risks at microscale [12]. For these reasons, gas–liquid reactions can be improved by
employing flow conditions [13]. As a consequence, interfacial area mixing and flow of gas–liquid
systems in confined spaces have been subject to extensive research by academia [14–21].

Once the two phases are brought in contact, the type of flow pattern depends on the channel
characteristics, respective fluid properties, e.g., surface tension and wetting behavior, and process
parameters such as the flow rates and ratio of the two phases [8]. Typical flow regimes encountered in
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gas–liquid flow in capillaries are parallel flow, Taylor bubble flow, and bubbly flow, with increasing
interfacial area per unit volume from first to last [22,23].

In general, two principles exist for the contact of gaseous and liquid phases. On one side,
both phases can be kept continuous, while the contactor device creates a stabilized interface [24].
Dispersion of the one phase into the other using appropriate inlets or micromixers can be utilized on the
other side, which is of interest in this study. While active micromixers are employed in gas–liquid–solid
systems to handle solid phase, passive micromixers are often used for phase contacting of gaseous
and liquid phase only [25]. Here, T- or Y-mixers are most common for microstructured reactors at the
laboratory scale [21]. Multilamination, flow focusing, and split-and-recombine can be employed as
well [11,26–28]. However, mainly Taylor bubble flow is achieved due to dominating surface forces
in microchannels [29], if no surfactants are present. Here, refinement of gas–liquid dispersion using
converging–diverging micronozzles has been found to be highly effective by breaking up larger
bubbles into considerably smaller ones [30–35]. This results in a bubbly flow regime with increased
interfacial area per unit volume and, hence, increased interfacial area. However, most studies use micro
bubble generators for industrial applications and there is a lack of deeper analysis of fundamental
bubble breakup phenomena behind Venturi micro bubble generators [34].

The intensity of bubble breakup behind micronozzles is strongly affected by energy dissipation
rates, which depend on nozzle-induced pressure drop [13]. Once external forces surpass the
bubble-stabilizing Laplace pressure, the mother bubble is broken up. Various micronozzle-induced
bubble breakup regimes have been identified and related breakup mechanisms have been proposed
in fundamental studies [36,37]. Laminar breakup regime is characterized by binary breakup or the
shearing off of small daughter bubbles at the rear cap of the mother bubble at moderate flow rates and
energy dissipation rates. Rather large daughter bubble diameters are prominent and a broad daughter
bubble size distribution is obtained, often featuring a bimodal shape. Turbulent bubble disruption is
obtained at higher flow rates, which results in increased energy dissipation rates due to larger pressure
drops across the micronozzle. Therefore, large energy input is needed, leading to the generation of
interfacial area. The mother bubble is broken up into numerous daughter bubbles of similar size and a
unimodal and narrow daughter bubble size distribution is obtained at smaller mean bubble diameters.
Furthermore, observations of internal jet flow formation within bubbles have been made, which can be
used for bubble breakup, too [38].

In this work generating microdispersions employing a microchannel nozzle and the turbulent
bubble breakup are investigated for energy efficacy using a microreactor concept developed by the
Laboratory of Equipment Design at the TU Dortmund University [39]. A combination of flow-through
millistructured channels with integrated micronozzles is employed for high flow rates along with
reduced pressure loss. Therefore, throughput is increased while micro-scale effects are maintained,
which is beneficial for industrial applications. First-phase contacting is realized via T-junction and
further refinement of two phase flow is achieved by means of micronozzle. This investigation
is carried out for bubbly flow and turbulent bubble breakup regime since the highest values are
exhibited for the phase boundary area. A Design of Experiment (DoE) is employed to evaluate the
significance of the nozzle’s geometrical parameters in turbulent bubble breakup and their quantitative
impact. Energy efficacy for bubble breakup is then assessed, taking the daughter bubble diameter
and the respective pressure drop into account. An optimal redispersion nozzle is designed by factor
optimization within a response surface design. The novel optimized nozzle design can be used for
gas–liquid industrial applications.

2. Theoretical Background

2.1. Gas–Liquid Flow and Bubble Generation

Bubble generation is a highly dynamic process including surface forces with fluid flow and
structure interaction on short time and length scales. A distinction has to be made between primary
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bubble generation and further refinement of gas–liquid flow. However, both processes depend on the
hydrodynamics of continuous phase liquid flow [40].

Reynolds number Re characterizes single phase liquid flow and classifies laminar, transient,
and turbulent flow regimes [41]. The definition of Re is

Re =
u × dh

νl
=

inertia force
viscous force

, (1)

with mean velocity u and kinematic viscosity of the liquid phase νl . Typically for single phase, tubular
flow, the transient regime range is 2300 < Re < 10,000, while the laminar flow regime is existent at
lower and turbulent flow at higher Re numbers. Since rectangular ducts are employed in this study,
a hydraulic diameter dh has to be adopted to determine the Re number. The hydraulic diameter is
defined by the ratio of cross-sectional area S and perimeter U of the rectangular cross section, which can
also be expressed by channel width b and channel height h [42]:

dh = 4 × S
U

=
2 × (b × h)
(b + h)

. (2)

The reduction of the channel dimensions significantly increases the impact of frictional forces.
Hence, high energy input is necessary to sustain flow. Therefore, rather low Reynolds numbers are
often prominent in microchannels [43]. Turbulent flows can only be achieved with comparatively high
energy input. In this study, turbulent conditions are obtained at a relatively low pressure drop due to
combination of millichannels and micronozzles.

2.2. Two-Phase Flow

Various flow regimes are established for gas–liquid flow depending on the process parameters,
particularly, void fraction resulting from respective flow rates, material properties of the two
phases e.g., density, interfacial tension, and viscosity as well as the geometric dimensions of the
microchannel [44]. Void fraction ϕ is defined by the ratio of gas to total volumetric flow rate:

ϕ =

.
Vg
.

Vtot
× 100% =

.
Vg

.
Vg +

.
V l

× 100% . (3)

In gas–liquid systems bubble, slug, and parallel/annular flows are observed in most cases.
Additionally, transition regimes can be observed between the main regimes. Inertia force is predominant
in parallel flow, whereas surface force is prominent in bubble and plug flow [21]. Flow regimes, which are
obtained during experiments after primary bubble generation, are shown in Figure 1.
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Transitions between the individual flow regimes can be visualized by employing flow maps. 
For example, void fraction can be plotted over flow velocity or a characteristic dimensionless 
number and flow behavior for each experimental point is entered into the diagram. Subsequently, 
the flow maps enable the definition of an operating window, for which the desired flow regime is 
present. In this study the focus is on bubbly flow as this regime exhibits the highest interfacial area 
per unit volume. 

Figure 1. Experimentally observed gas–liquid flow regimes in millichannel (1.0 × 1.0 mm) upstream of
the micronozzle. Arrows indicate direction of flow. Gaseous phase is marked with “g”, liquid phase
with “l”. (a) Bubbly flow at ϕ = 15%,

.
Vtot = 40 mL/min; (b) slug flow at ϕ = 25%,

.
Vtot = 40 mL/min;

(c) parallel flow at ϕ = 40%,
.

Vtot = 60 mL/min.

Transitions between the individual flow regimes can be visualized by employing flow maps.
For example, void fraction can be plotted over flow velocity or a characteristic dimensionless number
and flow behavior for each experimental point is entered into the diagram. Subsequently, the flow
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maps enable the definition of an operating window, for which the desired flow regime is present. In this
study the focus is on bubbly flow as this regime exhibits the highest interfacial area per unit volume.

In general, dispersions are characterized by arithmetic mean bubble diameter or Sauter
diameter [45]. The latter is defined as the mean diameter with the same ratio of volume to surface area
as the entire ensemble [46].

2.3. Primary Bubble Generation at T-Junction

The formation of bubbles depends on the predominant forces in continuous phase liquid flow [27].
Systems always tend to adopt the energetically most favorable state. Therefore, immiscible fluids
minimize their phase boundary surface. External energy must be introduced into the system for
the generation of dispersions [47]. As pressure in the gas inlet exceeds the pressure in the liquid
channel in a T-junction, the gaseous phase enters the continuous phase’s channel. Pressure and
shear force gradients from the continuous phase cause disturbances at the phase boundary surface
equilibrium. Once a critical value of external forces is exceeded, a bubble is released into the main
channel. In T-junctions, three mechanisms of bubble formation are described: dripping, squeezing,
and jetting. These depend on the geometry of the mixer, respective flow rates, and the material
properties (interfacial tension, viscosity, and density) [48].

The classification of bubble formation mechanisms can be carried out using dimensionless
numbers [42]. Here, capillary number Ca is characteristic, which is defined as

Ca =
ηl × u

σ
=

viscous forces
surface tension

. (4)

The dynamic viscosity of the liquid is indicated by ηl , u is the velocity, and σ is the interfacial
tension. Dripping mechanism is observed at 0.01 < Ca < 0.1, where the surface tension force is
dominant [49]. First, a meniscus forms at the gas inlet and the gaseous phase penetrates into the main
channel and subsequently tears off due to local shear stress gradients within the continuous liquid
phase. The resulting bubbles are smaller than the channel diameter and have little effect on the flow of
the continuous phase. Squeezing, jetting, and dripping mechanisms were all observed in experiments.
However, only the latter produced a stable bubbly flow regime, which is focused on in this study.

2.4. Bubbly Flow Refinement via Micronozzle

In order to achieve high interfacial area, mother bubbles generated at T-junction are broken up
into smaller daughter bubbles using a micronozzle. External energy input is needed to exceed the
bubble stabilizing Laplace pressure, triggering breakup of the dispersed phase:

∆p =
4 × σ

db
. (5)

The Laplace pressure depends on bubble diameter db and surface tension. Accordingly, small bubbles
feature higher resistance towards external forces than larger ones.

Bubble breakup-inducing forces result from the hydrodynamics of the liquid phase. In the
converging nozzle part, potential energy in the form of pressure is transformed into kinetic energy [50].
Hence, the constriction of the cross section leads to flow acceleration, which favors turbulence in the
diverging nozzle part as pressure is regained in the downstream channel. Depending on Re, a laminar
or turbulent regime is established downstream of the nozzle [50]. Shear stress gradients prevail in the
laminar regime due to layered flow, and laminar bubble breakup can occur [36]. These gradients act
on the phase boundaries, trigger interfacial instabilities, and deform the bubble. If the deformation is
sufficiently strong (macro deformation), the bubble breaks up, preferably into two daughter bubbles.
Another laminar breakup mechanism shows shearing off of satellite daughter bubbles at the rear cap
of the mother bubble [36]. However, the mother bubble nearly keeps its former size and the increase in
interfacial area is comparably small.
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The Weber number We forms the ratio of inertia forces to surface tension, taking relative velocity
urel , liquid density ρl , bubble diameter db, and surface tension σ into account. The stability of a
dispersed bubble is described by We [51]:

We =
ρl × u2

rel × db

σ
=

inertia force
surface tension

. (6)

In this study, a detailed investigation of turbulent bubble breakup is of interest due to the increased
interfacial area per unit volume. Turbulent liquid flow regime is characterized by strong velocity
oscillations and, therefore, high velocity and pressure gradients are present [52]. As a result, stronger
forces are present compared to the laminar regime. The extent of the turbulent field highly depends on
nozzle geometry and flow rate and can be classified into macro and micro turbulence, taking vortex
size into account [53]. Macro turbulence scale is in the order of magnitude of the turbulence generator,
which is the hydraulic diameter of the smallest cross section. The scale for micro turbulence ls
determines the range of the smallest eddies. According to Kolmogorov [54], the dimension of micro
turbulence is given by

ls =
(

ν3

ε

)0.25

. (7)

Local energy dissipation rate ε displays the local gradient of velocity oscillation and, hence, mean
energy dissipation rate ε represents the energy that is available for bubble breakup. It can be obtained
using the pressure loss ∆ploss, the total volumetric flow rate

.
Vtot, density of continuous liquid phase

ρl , and the dissipation volume Vdiss [13]. The energy dissipation rate can be determined by

ε =
∆ploss ×

.
Vtot

ρl × VDiss
, (8)

and dissipation volume is calculated by [55]:

VDiss = d0 × l0 × h0 +
d0 + 3.84 × d0

2
× 16 × d0 × h1(l) . (9)

Thus, Vdiss depends on the geometry of the turbulence generator (hydraulic diameter d0, length
l0, and height h0 of smallest cross section) and the downstream channel depth h1. Characteristic nozzle
parameters are given with respective angles (α−1 and α1), hydraulic channel diameters (d−1, d0 and
d1), aspect ratios (a−1, a0 and a1), and length of the smallest cross section. The index “−1” is linked
to the converging inlet nozzle region, index “0” indicates parameters in the smallest cross section,
and index “1” relates to parameters of the diverging outlet nozzle part. This is shown in Figure 2 next
to a turbulent field of single-phase liquid flow in the diverging nozzle section.
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Figure 2. (a) Characteristic geometrical parameters of the micronozzle; (b) turbulent field in diverging
nozzle section. Dissipation volume is marked grey and regions of macro and micro turbulence are given.
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The prevailing velocity and pressure gradients act on the phase boundary between the liquid
continuum and a bubble and lead to the turbulent breakup of the mother bubble into numerous
daughter bubbles with narrow daughter bubble size distribution. Turbulent eddies equaling the
bubbles’ size can also trigger their breakup in case of eddy–bubble collision [56]. However, at some
point daughter bubbles are too small for further breakup, since the Laplace pressure is high. Therefore,
it is of interest to determine the nozzle geometry and process settings at which the energy dissipation
rate efficiently breaks up bubbles in a turbulent regime, indicating the aim of this study. Bubbly flow
refinement is shown in Figure 3.
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3. Materials and Methods

3.1. Design of Experiment for Efficient Turbulent Redispersion

For the design of an efficient process, such as the energy-efficient turbulent bubble breakup
in micronozzles, the effects of individual process inputs on the respective process outputs have to
be known and predictable. Hence, a DoE is employed in order to reveal significant geometrical
parameters of the nozzle, significant process parameters, and determine their quantitative impact
on turbulent refinement of bubbly flow behind micronozzles. A DoE not only includes the
selection of suitable input and outcome variables, but planning the delivery of the experiment under
statistically optimal conditions given the constraints of available resources. All the experimental points
span an experimental space. Interpolation between the experimental points reduces experimental
effort compared to One-Factor-at-Time method. In a DoE, several influencing factors are varied
simultaneously and systematically during a single experiment. A regression model can be obtained,
which describes the influence of single parameters and their interactions on a process output. For a
case in which two or more process outputs are present, the models can be used for factor optimization,
resulting in optimized processes [57].

3.1.1. Determination of Process Inputs, Process Outputs, and Disturbance Variables

To begin with process inputs, process outputs, and potential disturbance variables, which would
falsify the results, have to be specified. According to the aim of the study, the mean daughter bubble
size db,1 is the process output of particularly high interest as the interfacial area increases to the power
of a third during the breakup of a mother bubble into numerous small daughter bubbles. Since the
energy input needs to be low at the same time, the pressure drop is the other process output of interest.
The energy dissipation rate depends on the pressure drop according to Equation (7) and it is linked to
the bubble breakup.

For process inputs, potential bubble breakup-influencing parameters have to be determined.
It is worthwhile to exclude process inputs from the DoE, which obviously lack influence on the
bubble breakup, because every process input considered significantly increases the number of
experiments necessary.
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The range of adjustable process inputs covers nozzle geometry parameters and process
parameters for gas–liquid refinement behind micronozzles. For chemical gas–liquid reaction systems,
fluid properties such as the surface tension and wettability of the channel material would have to be
taken into account. Here, nitrogen and deionized water are employed for phenomenological studies
and chemical system parameters are neglected. All adjustable process and nozzle parameters are
summed up in Table 1.

Table 1. All adjustable process inputs with potential influence on turbulent bubble breakup.

Process Parameters Nozzle Parameters

• volumetric flow rate
.

Vi
• temperature T

• hydraulic diameter d−1, d0, d1
• aspect ratio a−1, a0, a1
• length of smallest cross section l0
• nozzle angle α−1, α1
• bend in smallest cross section

The liquid volumetric flow rate
.

V l is an important process input as it directly influences the
obtained Re number and the hydrodynamics of the liquid phase and, thus, bubble breakup. Gaseous
volumetric flow rate

.
Vg is adopted to maintain a void fraction of ϕ = 0.1. Experiments have shown

stable bubbly flow for this value as shown in the results (Section 3.1.1). As the void fraction is constant,
the total volumetric flow rate

.
Vtot is considered within the DoE instead of liquid volumetric flow

rate
.

V l . The ambient temperature is kept constant at T = 22 ◦C and is not considered in the DoE.
In previous studies, Tollkötter showed that the geometry of the converging nozzle part has a negligible
effect on redispersion compared to that of the diverging nozzle section [39]. As a result, parameters
regarding the converging part are not included in the DoE and are kept constant at α−1 = 8◦ and
d−1 = 1 mm. Channels with a squared cross section (aspect ratio a = 1) are beneficial for bubbly flow
refinement via micronozzles [36]. Consequently, channels with a squared cross section are chosen for
this work. A bend in the smallest cross section leads to increased energy input; however, the daughter
bubble size is not decreased compared to straight nozzles [30]. Consequently, only straight nozzles
are investigated in this work. The length l0 and hydraulic diameter d0 of the smallest cross section
influence the pressure drop and thus bubble breakup. These two parameters are incorporated in the
DoE. The same applies for α1. Depending on the nozzle’s outlet angle, recirculation zones and flow
detachment can occur, which both increase pressure drop to a large extent. The hydraulic diameter
of the downstream channel is also included in the DoE. Larger channel diameters lead to a decrease
in flow velocity. Therefore, d1 has an effect on the turbulent field behind the nozzle and pressure
regain process.

Potential process disturbance variables are fluctuations in process parameters, which would lead
to varying void fractions. Therefore, this is studied in preliminary tests, where no significant deviation
between set point and actual value was found. Manufacturing tolerances could also lead to distorted
results. However, nozzle geometries are manufactured with a high-precision mechanical milling
machine. Therefore, disturbance variables are neglected. An overview of DoE, including process
inputs and outputs, is given in Figure 4.

In order to create the DoE, suitable ranges for process inputs have to be determined. The operating
range of 80–120 mL/min is selected for the total volumetric flow rate

.
Vtot. Preliminary experiments

showed bubbly flow and turbulent bubble breakup upstream and downstream of the nozzle,
respectively. The hydraulic diameter of the smallest cross section d0 is varied between 0.75 mm
and 0.25 mm. The dimensions of the upstream channel give the upper limit, since the nozzle diameter
has to be noticeably smaller than the upstream channel. The lower limit is determined by pressure drop
as it reaches high values, if combined with other extremes of the remaining parameters. The length of
the smallest cross section was found to be in the range of 0.5–4.5 mm, as the upper limit results from a
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lack of space in the channel arrangement to investigate even longer nozzles. The nozzle’s outlet angle
is investigated in the region of 5–90◦. The smaller angle is the limit at which jet flow is observed [39],
while 90◦ is the largest reasonable angle. Finally, the hydraulic diameter of the downstream channel
is varied between 0.75–1.75 mm. Table 2 sums up all five parameters and their investigated ranges,
which are included in the DoE.
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Table 2. Parameters included in the DoE with investigated value range.

Parameters [Unit] Minimum Value Maximum Value

d0 [mm] 0.25 0.75
l0 [mm] 0.5 4.5

α1 [◦] 5 90
d1 [mm] 0.75 1.75

.
Vtot [mL/min] 80 120

3.1.2. Selection and Generation of an Experimental Design

Statistical software Minitab® 17 (Minitab Inc., State College, PA, USA) is used to create the DoE
matrix. First, a suitable DoE method has to be chosen. With respect to the objective, a response surface
design is chosen, as they are generally used to investigate the relationships between a process output
(response variable) and a set of process inputs (experimental variables). These methods are employed
after the identification of significant and controllable variables and for the finding of an optimal factor
setting to optimize the response [57].

In combination with the chosen parameter ranges, the experimental design can be created.
The number of single experiments N can be determined by

N = 2k−n + 2 × k + z , (10)

with the number of parameters k , the extent of the experimental design l and repetition of the central
point z. According to Section 3.1.1, five parameters are included (k = 5). Furthermore, one half of a
surface response plan is chosen (n = 1), while the central point (z = 6) is measured six times. The choice
of half of the surface response plan does not allow for analyzing all single interactions; however,
this most likely does not affect the results, since interactions of the third order or higher are negligible
in most cases [58]. The DoE comprises 32 individual experiments results: six repetition experiments of
the center point, 10 star points, and 16 corner points. All parameter combinations are summed up in
Table 3.

3.2. Experimental Set-Up

The core element of the experimental set-up is the plate-type microreactor, which consists of a
reaction plate including interchangeable nozzle geometry inlays. The microreactor’s 3D-model (a);
an image of the reaction plate including the exchangeable nozzle element (b); and a close-up of the
nozzle inlay element (c) are given in Figure 5.
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Table 3. Generated DoE using statistical software Minitab® 17 for the investigation of energy optimized
turbulent bubble breakup.

Experiment No. l0 [mm] d0 [mm] ff1 [◦] d1 [mm]
.
Vtot [mL/min] Point Type

1 2.5 0.5 47.5 1.25 100 central point
2 0.9 0.7 81.5 1.65 84 corner point
3 0.9 0.7 13.5 0.85 84 corner point
4 4.1 0.7 81.5 1.65 116 corner point
5 4.1 0.3 13.5 1.65 116 corner point
6 0.9 0.3 13.5 0.85 116 corner point
7 2.5 0.5 47.5 1.25 120 star point
8 4.1 0.3 81.5 1.65 84 corner point
9 0.5 0.5 47.5 1.25 100 star point

10 2.5 0.5 47.5 1.25 100 central point
11 2.5 0.5 90 1.25 100 star point
12 2.5 0.5 47.5 1.25 100 central point
13 2.5 0.5 47.5 0.75 100 star point
14 0.9 0.3 81.5 0.85 84 corner point
15 4.1 0.7 13.5 0.85 116 corner point
16 2.5 0.5 5 1.25 100 star point
17 0.9 0.3 81.5 1.65 116 corner point
18 2.5 0.5 47.5 1.25 100 central point
19 2.5 0.5 47.5 1.25 80 star point
20 2.5 0.5 47.5 1.25 100 central point
21 2.5 0.25 47.5 1.25 100 star point
22 2.5 0.5 47.5 1.75 100 star point
23 4.1 0.3 81.5 0.85 116 corner point
24 0.9 0.7 81.5 0.85 116 corner point
25 4.1 0.7 13.5 1.65 84 corner point
26 2.5 0.5 47.5 1.25 100 central point
27 4.5 0.5 47.5 1.25 100 star point
28 0.9 0.7 13.5 1.65 116 corner point
29 4.1 0.7 81.5 0.85 84 corner point
30 4.1 0.3 13.5 0.85 84 corner point
31 0.9 0.3 13.5 1.65 84 corner point
32 2.5 0.75 47.5 1.25 100 star point
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Figure 5. (a) 3D model of the microreactor set-up with reaction plate, exchangeable nozzle element,
view glass, and outer flanges; (b) reaction plate and nozzle insert made from PMMA; (c) exchangeable
inlet element with micronozzle.

A rectangular channel (w = 5 mm and h = 1 mm) is milled into the upper side of the reaction plate
downstream of the nozzle element. Two outer flanges press a view glass onto the upper side of the
reaction plate to assure the watertightness of the channel. At the same time, the highly transparent
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polymethylmethacrylate (PMMA) plate and view glass, in combination with a light-emitting diode
(LED) panel that is placed below the microreactor, allow for optical observation of the bubble breakup
by a high-speed camera from above. The entire experimental set-up (a) and a flow chart (b) are
displayed in Figure 6.
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Figure 6. (a) Experimental set-up for energy-efficient turbulent bubble breakup investigations;
(b) accompanying flow chart.

Fluidic connections for liquid and gas supply as well as outlet flow are laterally attached
to the reaction plate. Continuous liquid phase is conveyed by means of a micro-gear pump
(type mzr-7255, HNP Mikrosysteme GmbH, Schwerin, Germany) with an upstream inline filter (F-MI2,
HNP Mikrosysteme GmbH, Schwerin, Germany) in order to avoid solid particles damaging the pump.
The deionized water is stored in an open storage vessel, wherein the level is held constant to avoid
pressure fluctuations due to a change in static pressure. This is realized by directing the water back
into the storage vessel, once it has flowed through the microreactor. The liquid flow rate is measured
with a Coriolis-type mass flow meter (mini Cori-Flow, Bronkhorst, The Netherlands) with an attached
non-return valve (H 400 SS L, HAM-LET, Sugar Land, TX, USA). The gaseous flow rate is controlled
by a pressure controller with a needle valve (MS4-LR-1/4-D6-A4, Festo AG & Co. KG, Esslingen am
Neckar, Germany) and is measured by the mass flow meter EL-Flow (Bronkhorst HIGH-TECH B.V.,
Ruurlo, The Netherlands). Subsequently, the disperse phase passes through a non-return valve and the
pressure sensor (type A-10, WIKA Alexander Wiegand SE & Co. KG, Klingenberg am Main, Germany)
at the entry of the microreactor. The flow meters are calibrated before and after the experiments; the
liquid phase with mechanical balances and the gaseous phase with volume measurement at a constant
flow rate. Here, soap solution is brought into a measuring cylinder, which was manufactured at the
faculty’s glass blowing workshop, and a soap meniscus is created at the zero level. The gas is then
introduced through a lateral entrance beneath the zero level and the rising of the soap meniscus can be
observed with influent nitrogen. All measured values are recorded for three minutes at constant flow
rate and mean values are formed. Two-phase flow is generated in the T-mixer. It then passes through
the nozzle and the adjacent channel. The pressure at the reactor outlet is measured with a second
pressure sensor (type A-10, WIKA Alexander Wiegand SE & Co. KG, Klingenberg am Main, Germany).
An LED panel is placed underneath the microreactor, while a high-speed camera (type Xtra Motion
NR4, Imaging Solutions GmbH, Eningen, Germany) is set above the viewing glass. For additional
optical zoom an objective is used (type macro zoom, Computar, Cary, NC, USA). The recording rate
during the experiments varies between 10,000 and 20,000 fps and the exposure time is set to 22 µs for
sharp contours in all experiments.

All nozzle elements are fabricated by mechanical precision milling by the faculty’s mechanical
workshop according to the DoE values. A reference element is manufactured without the micronozzle.
Therefore, the pressure drop induced by adjacent channels can be determined and subtracted from
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the measurements using nozzle inlays to obtain solely the pressure drop induced by the micronozzle.
Table 4 gives an overview of fabricated nozzles.

Table 4. Fabricated micronozzle inlay elements for investigation of turbulent bubble breakup. Nozzle
parameters are varied as shown. Close up images of the micronozzles are given. T-mixer geometry,
α−1 = 8◦, and d−1 = 1 mm are held constant for all inlay elements.

Name Picture d0 [mm] l0 [mm] ff1 [◦] d1 [mm]

A
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Table 1. Fabricated micronozzle inlay elements for investigation of turbulent bubble breakup. 
Nozzle parameters are varied as shown. Close up images of the micronozzles are given. T-mixer 
geometry,  = 8°, and  = 1 mm are held constant for all inlay elements. 

Name Picture  [mm]  [mm]  [°]  [mm] 

A 0.5 2.5 47.5 1.25 

B 0.3 0.9 13.5 0.85 

C 0.3 0.9 81.5 1.65 

D 0.7 0.9 13.5 1.65 

E 0.3 0.9 13.5 1.65 

F 0.5 0.5 47.5 1.25 

G 0.5 4.5 47.5 1.25 

H 0.25 2.5 47.5 1.25 

I 0.75 2.5 47.5 1.25 

J 0.5 2.5 5 1.25 

K 0.5 2.5 90 1.25 

L 0.5 2.5 47.5 0.75 

M  0.5 2.5 47.5 1.75 

0.5 2.5 47.5 1.25

B
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3.3. Bubble Measurement

Bubble diameter measurement is done with open-source image processing software ImageJ
v1.51d (National Institutes of Health, Rockville, MD, USA) for characterizing the dispersions. A known
reference length is taken to translate pixels to real length. To obtain reliable data and defined bubbles,
pixel errors and miniature bubbles are filtered. Serving as exclusion criteria, 0.05 mm in minimum
bubble size is introduced. Since the pictures show a 2D view from above instead of a 3D view,
bubble diameters have to be determined carefully. Bubble diameters are derived from the mean Feret
diameter, projection area of the respective bubble, and bubble perimeter. An average of the three
values is determined and employed as the representative mean bubble diameter. In order to provide
an adequate statistical basis, experiments are performed in triplicate and 600 bubbles are analyzed per
experiment, resulting in 1800 bubbles per experimental point. Therefore, resulting standard deviations
are shown in the diagrams as bubble breakup in fluctuating jet flow shows a certain distribution.
Finally, size and density distributions are obtained with [45]

Qi
(
dj
)
=

partial amount (d min. . . dj
)

total amount (d min. . . dmax)
(11)

and

qi
(
dj
)
=

Qi
(
dj
)
− Qi

(
dj+1

)
dj − dj+1

. (12)

Here Qi represents the cumulative distribution and qi the relative frequency for i = 0, length
distributions for i = 1, surface distributions for i = 2 and volume distribution for i = 3 [59]. Respective
Sauter diameters d32 are obtained from bubble size distributions.

4. Results

This section starts with a brief overview of generated flow maps. The selected parameters’
qualitative effect regarding turbulent bubble breakup and pressure drop is evaluated in Section 4.2
Subsequently, the results of the DoE are presented and models for daughter bubble size and pressure
drop are derived. Parameter optimization regarding energy-efficient turbulent bubble breakup is
carried out. Finally, a micronozzle featuring an optimized parameter setting is manufactured, tested,
and compared with obtained models.

4.1. Flow Regimes

Flow maps for primary bubble generation and bubbly flow refinement via a micronozzle are
produced to identify parameter ranges for the DoE. The focus is on bubbly flow during first-phase
contacting and the turbulent breakup pattern induced by the micronozzle. Furthermore, it is tested
how mother bubble size effects daughter bubble size.

4.1.1. Primary Bubble Generation at T-Mixer

Flow regime maps are created, using nozzle inlay A, as it represents the central point within the
DoE. Total volumetric flow rate and gas content are varied and the resulting flow regime is observed.
Additionally, capillary numbers reveal prevailing forces. Figure 7 depicts the flow maps.

Single-phase liquid flow is obtained at small total volumetric flow rates and low void fractions
according to Figure 7a. Minimum volumetric gas flow rate with the gas flow meter is

.
Vg = 3 mL/min.

At increased flow rates, bubbly flow is obtained for void fractions ϕ < 20%. Here, the liquid phase
rapidly entrains bubbles at the T-mixer and bubbles are generated in a dripping regime. Accordingly,
capillary numbers are in the range of 0.01 < Ca < 0.1, see Figure 7b. This matches the literature data
well [48]. For bubbly flow, shear stress caused by the continuous phase drove and collapsed the
gaseous thread. Values of ϕ > 20% quickly lead to a transition from dripping to squeezing regime and
from bubbly to slug flow pattern. At ϕ = 30%, exclusively slug flow is found in the investigated range.
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Here, pressure in the obstructed liquid phase is the main driver for bubble generation. Comparably
high gaseous flow rates result in complete filling of the main channel by the gaseous phase. Surface
tension is prominent, indicated by small Ca numbers. The shear stress caused by the liquid phase to
the gaseous thread is significantly smaller than the surface tension force in slug flow.Processes 2017, 5, 57  13 of 30 
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Figure 7. Flow maps for varying total volumetric flow rates and void fraction. (a) Void fraction plotted
over total volumetric flow rate with observed flow regimes; (b) void fraction plotted over capillary
number Ca with observed flow regimes. Legends are included in the diagram.

Resulting from these experiments, the region of interest is narrowed down to 10% < ϕ < 20% and
20 mL/min <

.
Vtot < 160 mL/min, as the aim of this study is the refinement of bubbly flow.

4.1.2. Jet Flow Induced Bubble Redispersion

A breakup regime map is produced using nozzle inlay A to specify an operating window for
turbulent bubble breakup behind the micronozzle. Since the potential operating window for the
process parameters has been reduced by primary bubble generation, the main focus is on the process
parameter region selected in Section 3.1.1. A bubble breakup map for total volumetric flow rate is
shown in Figure 8a and dependencies on the dimensionless We number in Figure 8b.
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.
Vtot < 160 mL/min are faded due to earlier exclusion. (a) Bubble breakup map for void

fraction plotted over total volumetric flow rate; (b) bubble breakup map for void fraction plotted over
characteristic Weber number.

A deformation of a bubble is observed for low volumetric flow rates only. The external forces
acting on the surface boundary result in phase boundary oscillation. However, they obviously cannot
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exceed the bubble’s stabilizing Laplace pressure. Therefore, the bubble keeps its size and no disruption
is observed behind the micronozzle. However, bubbles are disrupted with laminar breakup at increased
flow rates starting from

.
Vtot = 40 mL/min, with mainly binary bubble breakup. A critical Weber

number for laminar breakup is derived from Figure 8b and determined as Wecrit,lam ≈ 3. Data from
simulations [60] and experiments [61] show similar critical Weber numbers for initial bubble breakup.
The related Re number is on the order of Recrit,lam ≈ 1330.

Turbulent bubble breakup starts at total volumetric flow rates of 60 mL/min and is observed
throughout for higher flow rates. A critical We number, marking the transition from laminar to
turbulent breakup, is found for the Wecrit,turb ≈ 7–9 range depending on flow rate and void fraction.
Related Re number is in the range of Recrit,turb ≈ 2300–2660 depending on void fraction. The literature
data show similar Wecrit,turb [62]. Consecutive incoming bubbles coalesce within the smallest cross
section of the nozzle at high gaseous volumetric flow rates and void fractions ϕ > 20%. Here, two other
regimes are observed. Annular flow is obtained behind the micronozzle starting at We ≈ 6 and related
Re ≈ 1600. In case of further increase of the liquid flow rate, disturbed annular flow is observed,
which nicely displays turbulent eddies at We > 10–12 and related Re ≥ 2660–3660 depending on ϕ.
The observed breakup and flow regimes behind the micronozzle are shown in Figure 9.
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Figure 9. Observed bubble breakup and flow regimes behind the micronozzle. The arrow marks the
direction of flow. Process parameters are given next to the respective picture. From top to bottom:
Laminar bubble breakup with We ≈ 5 and Re ≈ 1660, turbulent breakup with We ≈ 7 and Re ≈ 2300,
annular flow with We ≈ 10 and Re ≈ 2330, disturbed annular flow with We ≈ 10 and Re ≈ 2660.

The bubble, which is about to break up, is highlighted in the laminar regime in Figure 9.
The bubble has taken a characteristic dumbbell shape and the neck is about to snap. Regarding
the DoE, a range of

.
Vtot = 80−120 mL/min is chosen at a constant void fraction of ϕ = 10%. Therefore,

bubbly flow as well as turbulent bubble breakup is obtained and a distance to other breakup and flow
regimes exists.

4.1.3. Relation between Mother and Daughter Bubble Size

Bubble generation is a highly dynamic process, especially in dripping mode and resulting bubbly
flow. Consequently, bubbles of slightly varying size can be generated at the same time. This raises the
question of whether the primary bubble size has a significant influence on the size of the daughter
bubbles. According to Equation (5), smaller bubbles feature higher Laplace pressures. It is likely that
smaller mother bubbles cannot be broken up as easily as comparably larger mother bubbles. In order
to determine the influence of primary bubble size on the daughter bubble size, further preliminary
experiments are carried out. In a first experimental series, the void fraction ϕ = 10% is held constant
and the total volumetric flow rate is varied in the range of 50–150 mL/min. The second experimental
series is carried out at constant liquid flow rate

.
V l = 100 mL/min and varied gas flow rate in the
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range of
.

V l = 8–18 mL/min. Results are shown in Figure 10a,b, respectively. Figure 10a shows
that mother bubble size db,1 and daughter bubble size db,−1 decrease at increasing total flow rates.
On the one hand, increased total flow rate leads to a more rapid entrainment of the bubbles during
formation. On the other hand, an increased Re number behind the micronozzle entails a higher degree
of bubbly flow refinement. Standard deviations are prominent for mother and daughter bubbles,
since bubble generation is a highly dynamic process. Interestingly, daughter bubbles show smaller
standard deviations than mother bubbles, which means the bubble size distribution is narrower.
Figure 10b shows a rather constant level of mother and daughter bubble size ratio. A slight decline
can be seen with a closer look. Accordingly, smaller bubbles are disrupted nearly in the same ratio as
larger mother bubbles. This can be explained by the rise in pressure drop; hence, energy dissipation is
induced by the micronozzle at higher flow rates. Consequently, mother bubbles are harder to break
up due to increased Laplace pressure. However, more energy is available for the bubble breakup
behind the micronozzle at the same time. The slope of a linear trend line for the ratios in Figure 10b is
determined as m = −0.0004 min/mL. This indicates that the Laplace pressure rises marginally faster
than the energy dissipation rate. Nonetheless, the effect is negligible, especially in the range of interest
for 80 mL/min <

.
Vtot < 120 mL/min.
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Figure 10. Influence of mother bubble size on daughter bubble size. The top row diagrams (a,b) show
results for constant void fraction ϕ = 10% and varied total volumetric flow rate. The bottom row
diagrams; (c,d) show same diagrams for constant liquid flow rate

.
Vl = 100 mL/min and varied gas

flow rate.

In order to exclude the effect of increasing energy dissipation rate at higher liquid flow
rates, a second experimental series is carried out at constant liquid flow rate

.
V l = 100 mL/min.

However, similar results are obtained. Figure 10c shows increasing mother bubble size at higher
gaseous flow rates. More nitrogen penetrates into the liquid channel before the mother bubble is
entrained by the liquid phase. It can also be seen that larger mother bubbles resulted in daughter
bubbles with an increased bubble diameter. Figure 10d depicts the ration of refined bubbles and
primary bubbles. Again an insignificant decline is found and a rather constant level can be assumed.
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Therefore, the effect is not included within the DoE. All preliminary experiments are completed and
the qualitative effect of the selected parameters on the turbulent bubble breakup is investigated.

4.2. Redispersion Parameters

In order to determine the qualitative effect of the redispersion influencing parameters,
an experimental series is executed. Nozzle inlays featuring the central point parameters and the
star points’ parameters from the DoE are employed. The nozzle of the central point shows mean
parameter values for all factors. The star point nozzles vary in only one parameter from each other,
which is the minimum and maximum value of each single parameter. All other factors remain constant
at mean values. This experimental series is carried out at total volumetric flow rates of 60, 80, 100,
and 120 mL/min, respectively, while the gas content is set to ϕ = 10%.

4.2.1. Influence of Hydraulic Diameter d0

For the investigation of the smallest cross section hydraulic diameter and its effect on bubble
refinement, nozzle inlays A, H, and I are investigated according to Table 4. All geometrical parameters
have the same values besides the hydraulic diameter d0. Nozzle inlay A exhibits a hydraulic diameter
of 0.5 mm in the smallest cross section, nozzle inlay H 0.25 mm, and nozzle inlay I 0.75 mm, respectively.
Figure 11 displays the results for resulting Sauter and mean daughter bubble diameter at varied total
volumetric flow rates.
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Figure 11. Influence of hydraulic diameter d0 on bubble breakup behind micronozzles. Constant
geometrical nozzle parameter for all displayed inlay elements: d−1 = 1 mm, α−1 = 8◦, l0 = 2.5 mm,
α1 = 47.5◦, d1 = 1.25 mm. Nozzle inlay A: d0 = 0.5 mm, nozzle inlay H: d0 = 0.25 mm, and nozzle inlay I:
d0 = 0.75 mm. Volumetric flow rates are

.
Vtot = 60, 80, 100, and 120 mL/min. (a) Sauter diameter plotted

over Reynolds number in smallest cross section for varied d0; (b) mean daughter bubble diameter over
mean energy dissipation rate for varied d0.

Figure 11a shows decreasing Sauter diameters at higher volumetric flow rates, which can be
derived from the results of each single nozzle. The largest Sauter bubble diameters are obtained
for nozzle H with d0 = 0.75 mm, followed by nozzle A with d0 = 0.5 mm. The smallest bubbles are
obtained by employing nozzle inlay I, which exhibited the smallest hydraulic diameter, d0 = 0.25 mm.
The strong impact of d0 on bubble disruption is evident. The acceleration and speed of liquid flow
through narrower nozzles lead to higher pressure differences in front of and within the nozzle.
Additionally, higher Re numbers are obtained and the grade of turbulence behind the micronozzle
is increased. Therefore, velocity oscillations and pressure fluctuations result in increased bubble
breakup. Figure 11b shows the mean daughter bubble diameter plotted over mean energy dissipation
rates. The dissipation rates increase by several magnitudes the narrower the nozzles are. Interestingly,
even the highest volumetric flow rate for nozzle I shows a lower energy dissipation rate than the lowest
flow rate employed for nozzle A. The same applies for the maximum flow rate of inlay element A and
the minimum flow rate of nozzle H. In general, nozzles with smaller d0 may produce finer dispersions;



Processes 2017, 5, 57 17 of 30

however, they do not exhibit the most energetically favorable solution. As an example, using nozzle I at
high flow rates results in daughter bubbles, which are slightly smaller than those generated with nozzle
A at low flow rates. Still, a smaller energy dissipation rate is obtained for nozzle I. The same results are
obtained for a comparison of nozzle A and nozzle geometry H. This displays the necessity of energetic
evaluation of the bubble breakup process to increase the nozzle’s efficacy. Standard deviations are
prominent in Figure 11b. However, it is observed that mean daughter bubble size standard deviations
decrease at smaller hydraulic diameters. Therefore, a smaller standard deviation is obtained next to
smaller daughter bubbles.

4.2.2. Influence of Length of Smallest Cross Section l0

Nozzle geometries A, F, and G (see Table 4) are employed to examine the qualitative impact of the
smallest cross section’s length for bubble refinement. These nozzles possess geometrical parameters
of the same values besides the nozzle’s length l0. Nozzle inlay A has a length of 2.5 mm, nozzle
element F features 0.5 mm length, and geometry G 4.5 mm. Figure 12 displays the results for varied
total volumetric flow rates regarding Sauter and mean bubble diameter. Figure 12a displays results
for Sauter diameter obtained at different Re0. A decrease in bubble size is observed for higher flow
rates, similar to previous experiments. The length of the nozzle’s smallest cross section also affects
the refinement of the dispersed phase. At constant Re0, shorter nozzles result in coarser daughter
bubbles. Nozzle inlay F shows the largest values for Sauter diameter, followed by the center point
inlay A and, subsequently, the longest nozzle length in geometry G with the smallest Sauter diameters.
However, the variations are comparably small.
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Figure 12. Influence of length of smallest cross section l0 on size of refined bubbles behind micronozzles.
Constant geometrical nozzle parameter for all displayed inlay elements: d−1 = 1 mm, α−1 = 8◦,
d0 = 0.5 mm, α1 = 47.5◦, d1 = 1.25 mm. Length of nozzle’s smallest cross section exhibited different
values, i.e., for nozzle F: l0 = 0.5 mm, for nozzle A: l0 = 2.5 mm, and for nozzle G: l0 = 4.5 mm.
Volumetric flow rates of

.
Vtot = 60, 80, 100, and 120 mL/min are employed for each nozzle inlay.

(a) Sauter bubble diameter plotted over Reynolds number in smallest cross section for varied l0;
(b) mean bubble diameter of refined dispersed phase plotted over mean energy dissipation rate for
varied l0; (c) pressure drop for tested nozzle inlays A, F, and G.

Figure 12b shows a declining mean bubble size as the energy dissipation rate increases.
An extension of the nozzle length shifts the energy dissipation rates to higher values. Comparing
nozzle geometry A and F, experimental points for the same volumetric flow rate are close to each other.
Further elongation of the smallest cross section leads to significant shifts of energy dissipation rates to
higher and bubble size to smaller values. Thus, finer bubble fragments are obtained. At first glance
this seems physically reasonable. However, taking a look at the respective pressure losses in Figure 12c
reveals higher pressure drops for nozzle F compared to inlay A, even though F features the smallest
cross section. Flow development within the nozzle has to be taken into account here. For extremely
short nozzles such as nozzle F, converging and diverging nozzle regions are close to each other and
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flow is immediately disturbed again as soon as it enters the smallest cross section. This results in
an unsteady flow behavior and increased pressure loss and can be explained by an orifice effect,
which causes strong turbulence in the wake of a sharp edge. Strong eddies lead to higher pressure
loss and can also have a positive effect on the bubble breakup process. Flow through nozzle inlay A
is obviously able to develop and is disturbed further on. The change from converging to diverging
flow is less abrupt and a lower pressure drop is attained. For extremely long nozzles such as nozzle G,
the orifice effect is eliminated, but the influence of wall friction increases. Hence, flow development
effects are subordinate and a higher pressure drop is attained. These effects could be interesting
regarding bubble breakup efficacy and are further investigated in the DoE.

4.2.3. Influence of Diffusor Angle α1

Nozzle geometries A, J, and K (see Table 4) are employed to examine the impact of diffusor angle
α1 on bubble disruption behind the micronozzle. Geometrical parameters are identical except for the
divergence angle. Nozzle inlay A has a diffusor angle of 47.5◦; nozzle element J possesses a nozzle
outlet angle of 5◦, and geometry K 90◦, respectively. Figure 13 displays the results for varied total
volumetric flow rates regarding Sauter and mean bubble diameter. According to Figure 13a, the diffusor
angle has an impact on the redispersion behavior; however, it is comparably low. Larger volumetric
flow rates produce finer dispersions for respective nozzle geometries reinforcing the influence of
volumetric flow rate. Larger nozzle outlet angles result in smaller daughter bubble fragments behind
the micronozzle. This tendency applies for Sauter and mean bubble diameter, confirming results from
previous studies [39].
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Figure 13. Influence of diffusor angle α1 on bubble breakup behind micronozzles. Geometrical
nozzle parameter besides α1 are held constant for investigated inlay elements: d−1 = 1 mm, α−1 = 8◦,
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.
Vtot = 60, 80,

100, and 120 mL/min are employed for each nozzle inlay. (a) Obtained Sauter diameter of broken up
bubbles plotted over Renumber in smallest cross section for different α1; (b) mean bubble diameter of
refined dispersed phase plotted over mean energy dissipation rate for various α1.

At the same time, energy dissipation rate decreases, as displayed in Figure 13b. Thus, greater
diffusor angles show more efficient bubble breakup, which can be linked to improved pressure recovery.
Furthermore, large nozzle outlet angles lead to the formation of recirculation zones at large nozzle
outlet angles, favoring finer dispersions. Shear forces and velocity gradients between core jet flow and
adjacent recirculation zones act strongly on the phase boundaries. Consequently, bubble disruption is
obtained. The downward ramp in the nozzle outlet, as a consequence from squared channels, results in
remarkable recirculation zones even at small diffusor angles.
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4.2.4. Influence of Downstream Channel Hydraulic Diameter d1

Nozzle geometries A, J, and K (see Table 4) are employed to examine the impact of diffusor angle
α1 on bubble disruption behind the micronozzle. Geometrical parameters are identical besides the
divergence angle. Nozzle inlay A features a diffusor angle of 47.5◦; nozzle element J possesses a nozzle
outlet angle of 5◦, and geometry K 90◦, respectively. Figure 14 displays the results for varied total
volumetric flow rates regarding Sauter and mean bubble diameter.Processes 2017, 5, 57  19 of 30 
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The size of bubble fragments increases with larger hydraulic channel diameters behind the
nozzle (see Figure 14a). Smaller dimensions of the outlet channel keep Re numbers at higher
levels downstream of the smallest cross section and, thus, the degree of turbulence stays elevated.
Simultaneously, the energy dissipation rate is shifted to higher values due to greater pressure losses
for smaller hydraulic diameters. Velocity fluctuations contribute to increased energy dissipation rates
at the same time. The results are pronounced velocity and pressure gradients in the channel that
promote the generation of finer dispersions. The impact of larger dissipation volumes in the case of
larger channels and pressure recovery seems to possess a subordinate role, as can be concluded from
Figure 14b. Also, higher collision probability and, hence, coalescence of daughter bubbles seem to
be less important. Therefore, parameter d1 could be an interesting parameter regarding the energy
optimization of bubble breakup.

Despite the smaller mean bubble diameters, relatively large bubble fragments are observed
for smaller hydraulic diameters of the outlet channel. When the bubble exits the nozzle’s smallest
cross section, the disperse phase displaces the continuous phase and pushes it forward. In this way,
the bubble is quickly stabilized by the channel wall, so that large bubble fragments remain next to
many small daughter bubbles.

4.2.5. Influence of Volumetric Flow Rate
.

Vtot

Most of the above results show a strong influence of volumetric flow rate on bubble breakup.
In this section a closer look is taken at this process parameter and its impact on bubble breakup.
Figure 15 shows the experimentally determined pressure drop ∆p and the derived mean energy
dissipation rate ε as a function of the volumetric flow

.
Vtot for nozzle geometries A, G, and I.

Furthermore, the obtained Sauter diameter and bubble density distribution are shown for various
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flow rates in Figure 15c,d. In Figure 15a pressure drop can be seen, which occurs in nozzles A, G,
and I for various flow rates. An increase in pressure loss for elevated flow rates is evident for all
tested geometries. With higher flow rates wall friction increases and more energy is dissipated into the
system, thus, energy for bubble breakup is provided. Nozzle inlay G shows highest pressure drops.
Compared to nozzle inlay A (l0 = 2.5 mm), geometry G features an increased nozzle length of 4.5 mm,
which explains this result. Nozzle geometry I exhibits a larger hydraulic diameter within the smallest
cross section (d0 = 0.75 mm) in contrast to A and G (d0 = 0.5 mm). Therefore, pressure drop induced by
nozzle I is the smallest for all volumetric flow rates.Processes 2017, 5, 57  20 of 30 
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Figure 15. Impact of total volumetric flow rate on bubble breakup for varied nozzle geometries,
see Table 4. Volumetric flow rates of

.
Vtot = 60, 80, 100, and 120 mL/min are used at void fraction of 0.1

for each nozzle inlay. (a) Obtained pressure drop plotted over total volumetric flow rate for nozzle
inlays A, G, and I; (b) mean energy dissipation rates plotted over total volumetric flow rate for nozzle
inlays A, G, and I; (c) obtained Sauter diameter of dispersed bubbles plotted over total volumetric flow
rate for nozzle inlays A, G, and I; (d) bubble density distribution for nozzle inlay A at various total
volumetric flow rates.

The increased pressure drop is accompanied by higher energy dissipation rates, which is displayed
in Figure 15b. For a single nozzle, energy dissipation rates are enhanced by increasing volumetric flow
rate and, thus, the observed trends are similar to those for pressure drops. Nozzle G displays the largest
energy dissipation rates, while geometry A and geometry I have the lowest values. Thus, the breakup
of mother bubbles is intensified for nozzle G, as shown in Figure 15c. For a single nozzle, smaller
daughter bubbles are obtained for increased volumetric flow rates. In particular, the first experimental
point of nozzle I (

.
Vtot = 60 mL/min) displays large daughter bubbles. Here, laminar breakup is

observed. The other nozzles show a steady decrease in daughter bubble size. Due to high energy
dissipation rates, small daughter bubbles are obtained and result in higher interfacial area.

Figure 15d shows the bubble density distribution for nozzle A. The impact of volumetric flow rate
on bubble disruption is evident. Small volumetric flow rates lead to broad distributions at comparably
large bubble diameters. The distribution is narrowed and shifted towards smaller bubble diameters
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for increased flow rates. However, all distributions show a unimodal shape, hence turbulent breakup
is attained.

4.2.6. Evaluation of Energy Efficacy of Redispersion

The ratio of Sauter diameters is plotted over the pressure loss ratio for energy evaluation of
the parameter impact on bubble breakup in Figure 16. Low diameter ratios indicate increased
bubble refinement. Pressure loss ratio displays, at what expense the refinement is obtained. The best
configuration would be a pressure loss ratio near 1, indicating no change in pressure loss, and small
ratios of d32 at the same time. The ratio of Sauter diameters is determined by the minimum Sauter
diameter of an experimental point divided by the maximum attained Sauter diameter at the same
volumetric flow rate. To further clarify this, an example is given for the impact of d0. The Sauter
diameter ratio is determined by d32,d0 = 0.25 mm/d32,d0 = 0.75 mm for a similar flow rate, since the
daughter bubble diameter is smaller for d0 = 0.25 mm than for d0 = 0.75 mm. The corresponding
pressure loss ratio is determined by ∆pd0=0.25 mm/∆pd0=0.75 mm. Four different flow rates are employed,
resulting in four points for each parameter in Figure 16. Here, bubble diameter ratios for different
pressure drop ratios are shown and the energy efficacy of bubble breakup is derived.
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Obviously, nozzle length extension does not significantly affect the refinement of bubbly flow.
The size of obtained bubbles varies marginally, as indicated by a relatively large ratio near 1.
Enlargement of the diffusor angle proves to be slightly more effective, since resulting ratios are
lower and, at the same time, the resulting pressure loss ratio is smaller. An increase in the volumetric
flow rate leads to even finer bubbles, while the pressure loss ratio increases again. The energetically
more efficient solution appears to be the reduction of the hydraulic diameter in the channel behind
the nozzle. Here, bubble size decreases significantly; however, the pressure loss ratio increases only
slightly. The reduction of the smallest cross section’s hydraulic diameter is particularly influential.
The ratio of Sauter diameters and the pressure drops ratio differ strongly from the other parameters.
The reduction in the nozzle gap results in the ratio of d32, d0 = 0.25/d32,d0 = 0.75 = 0.25−0.35 and pressure
loss ratio of ∆pd0 = 0.25/∆pd0 = 0.75 = 180−900. Small nozzle cross sections lead to considerably smaller
bubbles, but also push the pressure loss to significantly higher values. Therefore, they do not form the
most energy-efficient bubble breakup parameter.

4.3. Energy Optimization of Turbulent Bubble Breakup Assisted by Design of Experiment

In the following section, insights gained concerning the effect of the respective parameters are
further analyzed with regard to quantitative influence. For this purpose, two separate models for
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the obtained bubble size db,1 and the resulting pressure loss ∆p are successively generated from
the experimental DoE results. A factor setting optimization is carried out in order to identify
an energy-efficient bubble breakup.

The results of all experiments executed within the DoE are displayed in Figure 17, which shows
obtained bubble diameters in dependence on corresponding pressure losses. Regression models are
derived from this data.
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At first, a steep decline is evident for mean daughter bubble diameters at increasing pressure drops.
Here, bubbles rapidly break up in turbulent flow behind the micronozzle. However, the curve indicates
asymptotic behavior, starting at around 600 mbar. Despite pressure drops of 4 bar, the refinement
of dispersion is not significantly enhanced and a minimum bubble diameter seems to be existent
around 0.1 mm. Laplace pressure and surface tension is assumed to be predominant at this scale.
According to the Kolmogorov–Hinze theory, the Laplace pressure increases with decreasing bubble size
and stabilizes the bubble against external stress forces so that no further breakup of the bubbles occurs.
Therefore, it can be assumed that efficient breakup is obtained at comparably low pressure drop.

4.3.1. Regression Models for Daughter Bubble Size and Pressure Drop Derived from DoE

Regression calculations are performed using the Minitab® 17 analyzer tool. In the first step,
all parameters along with their quadratic terms and interactions are included. Pareto charts of effects
are generated for mean daughter bubble diameter and pressure drop. Here, the most important
parameters are evaluated regarding their significance for the respective output variable. In order to
assess a high-quality model, non-significant parameters have to be excluded. They are identified
with the assistance of Pareto charts of effects and then successively removed from the regression
models. Factors are non-significant when their t-value is below 2.13 in the Pareto chart of effects [63],
as the t-value characterizes the difference between a single sample statistic and the mean of the total
population [64]. The representation in the Pareto chart is carried out with absolute t-values. Statistically
significant parameters are identified by the fact that they exceed the reference line, which indicates
the critical t-value as shown in Figure 18 for mean daughter bubble size. The elimination leads to
an adapted regression model regarding the daughter bubble size and pressure drop. Main effects
(single parameter) are included in the models despite non-significance in case related interactions
or quadratic terms are significant. The corresponding Pareto chart for mean daughter bubble size
and the associated main effect diagram are shown in Figure 18. The Pareto chart of effects for bubble
size in Figure 18a shows that parameters l0, d0,

.
Vtot, and d1 have a particularly significant influence

on the resulting bubble size. This result corresponds well with the qualitative observations made in
Section 3.2. Smaller hydraulic diameters of the nozzle’s smallest cross section lead to higher velocities
in the nozzle. Thus, stronger pressure and velocity gradients within the liquid flow are present in the
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diverging nozzle part. This also accounts for the increase in volumetric flow rate. Smaller dimensions
of the channel behind the nozzle also lead to a decrease in bubble size. Higher degrees of turbulence
due to higher speed in the confined channel result in enhanced bubble breakup. The quadratic terms
of d0 and l0 have a significant effect. As the nozzle length is increased, the orifice effect is dampened
and the mean bubble diameter increases. Above a nozzle length of 2.0 mm, the mean daughter bubble
size decreases again.
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theory of diaphragm effect for short nozzle lengths. Nonetheless, the hydraulic diameter of the 
nozzle has the strongest effect on pressure drop. The enormous increase in flow velocity results in a 
rapid increase in pressure loss, which can also be noticed in the main effects diagram. The influence 
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downstream of the nozzle results in a more significant pressure drop. However, the impact is 

Figure 18. Final Pareto chart of effects (a) for mean daughter bubble size after exclusion of
non-significant parameters and corresponding main effect diagram (b).

The main effect diagram in Figure 18b shows the regression models for each main parameter.
The ordinate displays obtained daughter bubble mean diameters. The abscissa is divided into various
sections for each main parameter. The quadratic correlation of the nozzle length and daughter bubble
size can be seen clearly. A steep increase in bubble diameter is found at larger values for the hydraulic
diameter of the smallest cross section. The rather low influence of the nozzle’s outlet angle is evident
as the slope of the graph within the main effect diagram is small.

Finally, the quality of the regression model is evaluated. The lack of adaptation of the model
is non-significant, with a t-value of 0.071. Thus, large residuals between the experimental data and
regression for response variables do not exist. The degree of determination is obtained at R2 = 96.3%
and standard deviation of bubble size is as low as 0.015 mm for bubble diameter. Therefore, the model
indicates high quality. Figure 19 displays the Pareto chart of effects (a) and the main effect diagram (b)
for the pressure drop.
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The parameters d0 and l0 exhibit a reasonable impact on the pressure drop. Both linear and
quadratic terms feature the largest t-values and, thus, have the strongest effect on pressure loss.
The high significance of the squared l0-term along with the calculated main effect diagram confirm the
theory of diaphragm effect for short nozzle lengths. Nonetheless, the hydraulic diameter of the nozzle
has the strongest effect on pressure drop. The enormous increase in flow velocity results in a rapid
increase in pressure loss, which can also be noticed in the main effects diagram. The influence of

.
Vtot

and d1 on the pressure loss is also significant. A higher volumetric flow rate leads to enhanced velocities
and higher pressure losses. A smaller hydraulic diameter of the duct downstream of the nozzle results
in a more significant pressure drop. However, the impact is comparably small, which can also be
linked to rather small slopes in the main effects diagram regarding the downstream channel diameter.
The effect of the diffusor angle on the pressure loss shows no significance. Standard deviation of the
residuals is obtained at 26.21 mbar and the degree of determination of the regression is R2 = 95.83%.
These values indicate that the model is well adapted to the experimental data.

4.3.2. Geometry for Energy-Optimized Bubble Breakup

In order to determine the optimal geometry with regard to an efficient bubble breakup, a response
optimization is carried out with the generated models in the factor optimization tool in Minitab® 17.
The aim is to minimize the bubble size at reasonable pressure drops. Since these two output variables
are contrary, a compromise has to be found. Both response variables are evenly weighted during
optimization and the model is shown in Figure 20.
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Figure 20. Factor optimization tool in Minitab® 17 for daughter bubble size and pressure drop.

The model shows the predicted values (y-values) for the mean bubble diameter and the pressure
loss for the respective factor settings. In addition, the degree of desirability is indicated for the
individual response variables (d-values) and the composite overall desirability (D-value). In general,
the desirability values can take a value between zero and one. Here, a value of 1 indicates that the
level of desirability has completely met the needs. For the individual response variables, the degree
of desirability indicates the extent to which the selected parameter settings are compatible with the
respective selected target. In the optimization of the target variables the focus is on the composite
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desirability that characterizes the conformity of both objectives. In order to determine the optimal
settings of the parameters, the maximum must be found in the curves of the composite desirability.

Maximum composite desirability can be located easily if the portrayed function features a global
maximum. The graph for nozzle length l0 has such an optimum at 1.5 mm. Hence, this length is chosen
for the optimal bubble dispersing nozzle. The optimum for the nozzle’s hydraulic diameter regarding
efficient bubble breakup is 0.5 mm. At smaller diameters, considerably finer bubble fragments are
produced; however, the pressure loss also increases immensely. Larger diameters than 0.5 mm are
accompanied by lower pressure losses; however, the resulting bubble size increases significantly at the
same time. In case a linear composite desirability graph is present, the highest values can be chosen,
bearing in mind the distance to the model’s boundaries, as this is where the highest inaccuracies
are found. A linear curve is found for the diffusor angle α1. Large diffusor angles have a slightly
positive effect on the bubble diameter and the resulting pressure drop. Consequently, the combined
desirability increases at larger diffusor angle and 80◦ is selected for the optimum setting. For larger
d1, the composite desirability shows decreasing behavior. On the one hand, there is a decrease in
the pressure loss at larger d1. On the other hand, the mean bubble diameter increases at larger d1.
Finally, a hydraulic diameter of the downstream channel of d1 = 1 mm is preferred. High volumetric
flow rates lead to increased pressure loss. Nonetheless, the decrease in daughter bubble size seems to be
dominant and leads to higher values of composite desirability. A volumetric flow rate of 115 mL/min
is selected. For these parameters the model predicts a bubble diameter of db,1 = 0.106 mm at a pressure
drop of ∆p = 442 mbar. The geometrical measures for the micronozzle are summed up in Table 5.
The nozzle with the optimal parameter settings is manufactured and tested for the validation of the
parameter optimization and the regression models. The micronozzle is displayed in Figure 21.

Table 5. Optimum factor setting for efficient turbulent bubble breakup.

Parameter Value

l0 2.5 mm
d0 0.9 mm
α1 80◦

d1 1.0 mm
.

Vtot 115 mL/min
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4.3.3. Model Validation Experiment Using Optimal Parameter Settings

Predicted values for the chosen parameter settings regarding bubble size and pressure drop are
db,1 = 0.106 mm and ∆p = 442 mbar. Conformity is verified in an additional experiment, which is
carried out according to Section 2 using the optimal nozzle inlay, a volumetric flow rate of 115 mL/min,
and a void fraction of 0.1%.

The results of the validation experiment show good agreement with the predicted values using
the regression model. The obtained mean daughter bubble diameter in the validation experiment is
determined to be 0.104 mm. When compared to the predicted diameter, a deviation of 2% is evident.
Thus, it is within the range of the model’s standard deviation of 0.01 mm for daughter bubble diameter.
The pressure drop induced by the micronozzle in the validation experiment is determined to be
358 mbar. This presents a deviation from the predicted value of 443 mbar. However, it is within
three times the standard deviation. Consequently, the experimental point obtained with optimal
parameter settings is close to the potential trend line from DoE results, which is shown in Figure 22a.
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As expected, it is located at the steep decrease of the trend line. The obtained bubble density distribution
(Figure 22b) is narrow. This feature is characteristic of all experiments, indicating turbulent bubble
breakup. However, the distribution for optimal parameter settings is even narrower compared to
other distributions in the turbulent breakup regime (compare to Figure 15d) and monodispersity is
approached. Standard deviations are observed to be more prominent at larger daughter bubbles and
smaller pressure drop. As the pressure drop increases, standard deviations decrease.
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5. Conclusions

This study aims at energy-efficient bubble breakup in the turbulent regime for gas–liquid
applications in a microstructured reactor. A combination of a millichannel and a micronozzle is
employed to realize turbulent breakup regime and, therefore, the controlled generation of increased
interfacial area at rather low pressure drops.

First, a suitable process window is derived for a subsequent DoE, including bubbly flow upstream
of the nozzle and turbulent breakup downstream of the nozzle. Primary bubble generation and
regimes in a T-mixer and various bubble breakup regimes behind the micronozzle are identified and
characterized, which comprised laminar, turbulent, and coalescing regimes. Bubble generation regime
maps and bubble breakup regime maps indicated suitable parameter ranges for a DoE. Volumetric
flow rate, nozzle diameter, and nozzle length are identified as most influential, which is supported
by the DoE results. Regression models are obtained using the DoE and Minitab® 17 statistical
software, which allow for the prediction of daughter bubble diameters and pressure drops. Parameter
optimization led to optimal settings for geometrical nozzle parameters and volumetric flow rate for
energy-efficient bubble breakup. The models are validated using the micronozzle featuring the optimal
geometrical parameters.

With the obtained models it is possible to manufacture micronozzles according to process demands
for gas–liquid dispersions, and resulting bubble diameters and nozzle-induced pressure drops can
be predicted prior to experiments. However, this is limited to the observed parameter ranges for
now. The accuracy for extrapolation still has to be tested and will be a subject for future studies.
The optimal parameter setting for efficient turbulent bubble breakup allows for the generation of small
bubbles with high interfacial area at a reasonable pressure drop. Future studies will be dedicated to a
universal physical model using dimensionless numbers. Since this study presents phenomenological
investigations, future studies will also contain a visualization of interfacial mass transport by using
color changing redox systems.
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Nomenclature

Latin Symbols
a aspect ratio, -
b channel width, m
d32 Sauter diameter, m
db bubble diameter, m
dh hydraulic diameter, m
h channel height, m
k number of parameters, -
l length, m
ls Kolmogorov length scale, m
n extent of DoE, -
N number of experiments, -
∆p pressure difference, bar
q0 relative frequency of size distribution, m−1

Q0 cumulative size distribution, -
S area, m2

u mean velocity, m·s−1

u velocity, m·s−1

U perimeter, m
T temperature
.

V volumetric flow rate, m3 s−1

V volume, m3

z number of repetitions of one experimental point, -
Greek Symbols
α angle, ◦

ε mean energy dissipation rate, m2 s−3

ε local energy dissipation rate, m2 s−3

η dynamic viscosity, kg·m−1·s−1

ν kinematic viscosity, m2·s−1

ρ density, kg·m−3

σ surface tension, kg·s−2

ϕ void fraction, %
Subscripts
−1 parameter regarding upstream channel of the nozzle, -
0 parameter regarding nozzle’s smallest cross section, -
1 parameter regarding downstream channel of the nozzle, -
b bubble
crit, lam critical number for laminar breakup
crit, tur critical number for turbulent breakup
Diss dissipation
g gaseous phase
i component i = 1, . . .
j component j = 1, . . .
l liquid phase
loss pressure loss
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rel relative
tot total
Abbreviations
DoE Design of Experiment
LED light-emitting diode
Dimensionless Numbers
Ca =

ηl ·u
σ Capillary number, -

Re = u·dh
νl

Reynolds number, -

aWe = ρl ·u2
rel ·db
σ

Weber number, -
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