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Abstract: Data reconciliation is a model-based technique that reduces measurement errors by
making use of redundancies in process data. It is largely applied in modern process industries,
being commercially available in software tools. Based on industrial applications reported in the
literature, we have identified and tested different configuration settings providing a numerical
assessment on the performance of several important aspects involved in the solution of nonlinear
steady-state data reconciliation that are generally overlooked. The discussed items are comprised
of problem formulation, regarding the presence of estimated parameters in the objective function;
solution approach when applying nonlinear programming solvers; methods for estimating objective
function gradients; initial guess; and optimization algorithm. The study is based on simulations of
a rigorous and validated model of a real offshore oil production system. The assessment includes
evaluations of solution robustness, constraint violation at convergence, and computational cost. In
addition, we propose the use of a global test to detect inconsistencies in the formulation and in the
solution of the problem. Results show that different settings have a great impact on the performance
of reconciliation procedures, often leading to local solutions. The question of how to satisfactorily
solve the data reconciliation problem is discussed so as to obtain improved estimates.

Keywords: industrial data reconciliation; process monitoring; offshore oil production;
nonlinear programming

1. Introduction

Reliable data is essential to any industrial process. From process operating to planning and
scheduling, it is used to support decisions that affect product quality, plant profitability, and plant
safety. It has implications in environmental and legal issues, such as pollution monitoring by state
agencies. In production accounting, it is involved in the quantification of significant issues, such as
trade and custody transfer and process inventories. However, especially in industrial environments,
obtaining reliable information during daily operation is not a trivial task.

Measurements of process variables, both on- and off-line, are subject to random errors (noise),
such as natural disturbances, sampling errors, unreliable instrument readouts and laboratory
analyses inaccuracies, and nonrandom errors, such as sensor bias or sensor failure (gross errors) [1].
Random noise may also be the outcome of other effects, such as high-frequency pick-up, low resolution,
and errors in transmission and conversion (including A/D and D/A conversion) [2], usually attributed
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to the irreproducibility of the measurement devices [3]. Consequently, the collected data generally do
not even satisfy basic process constraints, such as the mass and energy balances. Inaccurate process
data could result in misleading or inaccurate conclusions, thus leading to poor decisions that can
adversely affect many plant functions. Thus, to reduce the impacts of measurement errors in plant
measurements and to increase the value of data accessible through implemented data management
systems, data rectification should be employed [4].

Data rectification is a collection of techniques for correcting data and is comprised of different
steps, such as variable classification, gross error detection, parameter estimation, and data reconciliation
[5]. At its core, data reconciliation (DR) is a model-based technique that reduces measurement errors by
making use of redundancies in process data. It aims at estimating the true state of the plant based on
the adjustment of process measurements in order to satisfy a set of constraints, which is accomplished
by minimizing some sort of deviation between corrected and observed plant values. Unlike other
filtering techniques, DR makes explicit use of the process model so that reconciled estimates are
consistent with the known relationships between process variables as defined by the constraints, as
well as being expected to be more accurate than the measurements [6,7].

Data reconciliation may also be used as an effective monitoring tool, producing estimates for
non-measured variables and process parameters. In many systems and applications, parameter estimation
is the step after data reconciliation, where reconciled values of the measured variables are used to
estimate/update model parameters [8–10]. Nonetheless, procedures for data reconciliation with
simultaneous parameter estimation (DRPE) are equally valid and efficient [11–15]. It is worth noting
that measurements of independent variables are typically assumed to be free of error. In this context,
DR may also be applied when both dependent and independent variables contain errors, which
some authors label as an error-in-variables method (EVM) [16,17]. EVM provides both parameter
estimates and reconciled data estimates that are consistent with respect to the model. Besides,
techniques for joint data reconciliation and parameter estimation with simultaneous gross error
detection have emerged based on robust statistics, which are especially important for on-line industrial
applications [18]. Many robust estimators have been proposed to reduce the effect of gross errors and
yield less biased estimates [19–23]. Alternative approaches to gross error detection involve the use of
principal component analysis [24,25], cluster analysis [26], artificial neural networks [27], and robust
[28] and correntropy [29] estimators. More recently, a practical DRPE methodology for process systems
with multi-operating conditions along with a correntropy estimator [30] and a unified framework for
applying principal component analysis (PCA) and DR [25] have been presented.

The literature regarding data reconciliation is comprised of a vast number of works and good
compilations of the techniques available and can be found in the open literature [28,31,32] as well
as the comprehensive books [5,33–36]. Beginning with steady-state problems with linear constraints
for the case when all variables are measured [37], advances in optimization techniques have allowed
more complex formulations addressing steady-state nonlinear [19,38–41], dynamic linear [42–44]
and dynamic nonlinear [15,26,45–47] data reconciliation problems. In each of these formulations,
the process model, represented by the (differential) algebraic equation system, is a constraint of the
mathematical programming model representing the estimation problem, where the solution of the
system’s equations is required to solve the optimization problem.

Largely applied in most modern process industries, DR is commercially available in software
tools such as Aspen Advisor (Aspen Technology, Inc., Bedford, MA, USA), VALI (Belsim, Awans,
Belgium), VisualMesa (Soteica, Houston, TX, USA), SimSci DATACON (Schneider Electric Software,
Lake Forest, CA, USA, LLC), and Sigmafine (OSIsoft, San Leandro, CA, USA), among others [48].
In addition to in-house systems [49–51], these tools can be used to reconcile flow, temperature and
composition measurements to satisfy material and energy balances around each unit in a process plant,
as well as to estimate parameters [52–54]. Furthermore, the increasing availability and decreasing
cost of high performance computers have allowed the implementation of more robust and complex
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applications, where reconciled measurements are used in on-line applications such as performance
monitoring, process control, and real-time optimization [55–57].

Given the importance of DR techniques, its expressive body of knowledge and its availability
in commercial tools, detailed descriptions of data reconciliation procedures and its use in actual
industrial applications are relatively scarce in the open literature. This apparent discrepancy may be
partially attributed to proprietary reasons and confidential constraints. Works related to industrial
DR implementations are mainly concerned with the challenges in obtaining a precise mathematical
representation of the process given the information available. They typically concentrate on developing
procedures and computation strategies to new systems, which most often involve formulating the
DR problem based on a rigorous process model and solving it using a typical optimization algorithm
suitable for high-dimensional mathematical programming problems, as well as more robust gross
error detection schemes. Although they are of undeniable technical value, the implementation and
advance of on-line DR applications require the choice of the most suitable implementation setting.

Indeed, the availability of a precise process model and a suitable set of measured variables are
not enough for adequately solving the DR problem. Few studies present more detailed analyses for
settings regarding distinct areas, such as problem formulation [4,28], solution method [12,58,59] and
approach [60,61], optimization algorithm [54,62–64], and solving strategies [23]. Distinct settings,
even those represented by minor differences, may present different performances but commonly are
not discussed. Nevertheless, they should be analyzed during the design of a DR application trying to
answer whether the optimization problem is being satisfactory solved. Although DR generates benefits,
it can have strong negative effects when some hypothesis is violated or the procedure does not find a
feasible solution, and using reconciled data could yield worse results than using the measurements
directly [65–67].

In this work, we aim at providing a numerical assessment on the performance of different
settings for solving nonlinear steady-state data reconciliation. We show that different settings have
a great impact on the performance of DR procedures and that an adequate setting must be found.
Problem formulation, regarding the presence of estimated parameters in the objective function, and
thereby solution approach, either sequential or simultaneous, are considered when applying nonlinear
programming (NLP) solvers as the solution method. We devote attention to investigate the impact of
methods for estimating objective function gradients required by deterministic optimization algorithms,
which is generally overlooked in DR studies and applications. In this work, the interior-point (IP)
algorithm is applied. The performance of a hybrid algorithm combining the metaheuristic algorithm
particle swarm optimization (PSO) and IP is also evaluated and compared. As a known variable
affecting the performance of optimization algorithms, we analyze the influence of the initial guess
in the solution of the DR problem. The assessment includes evaluations of solution robustness,
constraint violation at convergence, and computational speed. In order to better control the results,
only simulation data is used in the study and gross error detection is not considered in the scope of
this work. The study is based on simulations of a rigorous and validated model of a real offshore oil
production system. The process model is available from a reliable proprietary simulator largely used
at Petrobras. It is important to emphasize that very few works focus on the use of data reconciliation
procedures on oil production systems [2].

The remainder of this article is organized as follows. Section 2 presents a brief overview of data
reconciliation in industrial applications. Section 3 describes the offshore oil and water production
systems for which the study is based on, and also details the simulation experiments conducted for
assessing different settings for solving nonlinear DR. The results are presented and discussed in Section
4, and finally this work is concluded in Section 5.
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2. Overview of Data Reconciliation in Industrial Applications

2.1. Problem Formulation

The essence of data reconciliation is that, given the measurements zms from the plant, we want
to estimate the process state, which satisfies the known relationships between process variables z
as defined by the (first principles) process model. The actual estimated condition ẑ of the process is
obtained as the solution of

ẑ := arg min
z

JDR [zms, zm]

subject to process model
g (z, θ) ≤ 0

, (1)

where JDR(·) is the objective function and g(·) is the function vector representing the known inequality
process constraints, where knowledge of the parameters θ ∈ Rnθ is assumed . The vector of measured
process variables zm ∈ Rnzm consists of output process variables (y ∈ Rny ), but may also include
process inputs (u ∈ Rnu ), and is defined by the measurement mapping matrix Am, where Am(j, i) = 1
if variable j is measured and the measured value is located in zms(i), such that zm = Amz = Am [y, u]T.

Depending on the nature of the process model equations, the DR problem may be either linear
or nonlinear, and either static or dynamic. As shown in Table 1, most of the applications found are
related to steady-state nonlinear data reconciliation. In this context, considering nonlinear steady-state
DR problems, process model equations are conveniently represented by

f (z, θ) = 0 .

An important part of DR problem formulation is the definition of the objective function
JDR. It might be based on a deterministic approach following classical regression techniques [28],
being defined, for example, as a weighted least-squares estimator (WLS) [110]:

JDR = (zms − zm)
T Q−1 (zms − zm) , (2)

where Q is the weighting matrix.
Another approach to formulate the problem and define the objective function is based on a

probabilistic framework utilizing the maximum likelihood method, for which the measurements of zm

are assumed to contain random errors so that

zms = zm + ε , (3)

where ε is the vector of measurement errors. The advantage of applying the maximum likelihood
method is that it gives efficient (or minimum variance bound) and unbiased estimates, which means
that estimates have the lowest theoretically attainable variance, and an expected value equal to the true
value of the variable, respectively [111]. In this method, the likelihood function (JL) corresponds to the
joint probability distribution of measured variables as a function of the estimated variables/parameters.
Thus, assuming measured variables are statistically independent, the objective function is the product
of the individual probability density functions p of the measured variables, i.e.,

JL := p(zms; zm, Vz) =
nzm

∏
i=1

pi(zms,i; zm,i, σ2
i ) , (4)
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Table 1. Real industrial applications of data reconciliation techniques or data reconciliation studies involving real plant data.

Reference Math. Nature Estimator Solution Method Algorithm-Package/Simulator Industrial Process

Hodouin and Everell [1] static nonlinear GL Lagrange
multipliers

Conjugate
gradient
method

Sections of mineral
processing plant

Serth et al. [68] static nonlinear GL
Lagrange
multipliers,
Suc. Lin.

BSOLVE Metallurgical grinding
circuit

Holly et al. [69] static linear GL Lagrange
multipliers analytical Chemical extraction plant

Sanchez et al. [55] static nonlinear WLS NLP solver SQP/PLADAT Ethylene plant

Meyer et al. [70] static nonlinear GL Lagrange
multipliers Newton-Raphson Beverage alcohol

distillation plant

Islam et al. [58] static nonlinear GL
Linear solution,
Suc. Lin.,
NLP solver

SQP Industrial pyrolisis
reactor

Krist et al. [60] on-line static
nonlinear LS Lagrange

multipliers Speedup/Aspenplus Benzene plant

Bussani et al. [71] on-line static
nonlinear

WLS of relative
errors NLP solver SQP/ORO Hydrogen plant

Zhang et al. [10] on-line static
nonlinear

DR: contaminated
gaussian,
PE: LS

NLP solver MINOS-GAMS/Aspen
Plus

Monsanto sulfuric
acid plant

Zhang et al. [72] on-line static
nonlinear

Contaminated
gaussian NLP solver MINOS-GAMS/Aspen Monsanto sulfuric acid

plant
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Table 1. Cont.

Reference Math. Nature Estimator Solution Method Algorithm-Package/Simulator Industrial Process

Weiss et al. [12] static nonlinear GL
Linear solution,
Suc. Lin.,
NLP solver

Gauss-Marquardt,
SQP

Industrial pyrolisis
reactor

Sánchez et al. [73] static nonlinear GL
Linear solution,
Suc. Lin.,
NLP solver

SQP Industrial pyrolisis
reactor

Sánchez and
Romagnoli [74] static (bi)linear GL Lagrange

multipliers

Matrix
Projection
Method,
QR
decomposition

Industrial ethylene plant
and simplified
ammonia plant

Pierucci et al. [61] on-line static
nonlinear WLS NLP solver

SQP,
Levenberg
Marquardt,
LNSI/ORO

Industrial furnace

Piccolo et al. [13] static nonlinear WLS NLP solver
SQP/Apen
Plus,
MINOS5-GAMS

Refinery, gas separation
system located
downstream from a
fluidized catalytic
cracking unit

Heyen et al. [75] static nonlinear GL Lagrange
multipliers NA power plant

Kyriakopoulou and
Kalitventzeff [53] static nonlinear GL NLP solver

SQPIP,
SOLDOG-BELSIM,
SQPHP/VALI-BELSIM

Steam production
network

Chiari et al. [50] on-line static
nonlinear

WLS of relative
errors NLP solver SQP/ORO Industrial hydrogen and

sulfur plants

Christiansen et al. [76] static nonlinear GL Suc. Lin.,
NLP solver SQP

Industrial synthesis gas
for production
of ammonia



Processes 2017, 5, 56 7 of 38

Table 1. Cont.

Reference Math. Nature Estimator Solution Method Algorithm-Package/Simulator Industrial Process

Heyen and
Kalitventzeff [77] static nonlinear GL NLP, MINLP SQPIP,

MINLP
Energy supply and utility
distribution networks

McBrayer et al. [15] dynamic nonlinear WLS NLP solver SQP Exxon chemical process

Dempf and List [78] on-line static
nonlinear GL NA NA/VALI Vinyl acetate and

ketene plants

Plácido and
Loureiro [79] static nonlinear GL Lagrange

multipliers

Matrix
Projection
Method

Ammonia plant

Bourouis et al. [80] static nonlinear Contaminated
gaussian NLP solver NA Multistage flash

desalination plant

Chen et al. [51] on-line static
nonlinear

Contaminated
gaussian,
Lorentzian
(GED-DR),
WLS (DRPE)

NLP solver CONOPT-GAMS Sulfuric acid plant

Lee et al. [81] on-line static
(non)linear GL NLP solver SQP Industrial utility plant

Bazin et al. [82] static nonlinear GL NLP solver
Conjugate
gradient
method

Rotary drier

Soderstrom et al. [83] dynamic nonlinear WLS NLP solver SQP-NOVA Exxon chemical process

Li et al. [84] on-line static
nonlinear WLS Suc. Lin. NA Industrial crude oil

distillation unit

Zhang et al. [85] static linear GL Lagrange
multipliers NA Refinery

Eksteen et al. [86] static bilinear 1. GL,
2. Closure residual

1. NLP solver,
2. Lagrange
multipliers

1. GRG,
2. NA

Furnace from a
pyrometallurgical
industry
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Table 1. Cont.

Reference Math. Nature Estimator Solution Method Algorithm-Package/Simulator Industrial Process

Sunde and Öivind
Berg [87]

static nonlinear GL NA NA/TEMPO
system

Turbine cycle of a boiling
water reactor (3300 MW)

Bagajewicz and
Cabrera [88] static nonlinear GL NLP solver GAMS/SIMSCI Gas pipeline systems

Vieira et al. [89] dynamic nonlinear GL Lagrange
multipliers Gauss-Newton Industrial polymerization

reactor

Bhat and Saraf [56] static linear GL Lagrange
multipliers analytical Crude distillation unit

Chatterjee and Saraf [90] static nonlinear LS NLP solver SQP-NPSOL Crude distillation
unit refineries

Özyurt and Pike [28] static nonlinear

Contaminated
normal, Cauchy,
Fair, Hampel,
Logistic,
and Lorentzian

NLP solver Conopt2,
Minos5 Sulfuric acid plant

Yi and Han [91] static MILP GL MILP MILP Gases network in an iron
and steel making plant

Chen and Andersen [92] static nonlinear GL on closure
residual

Lagrange
multipliers NA Gas turbine

de Andrade Lima [93] static nonlinear GL NLP solver SQP-NPSOL
Industrial
hydrometallurgical plants
for gold extraction

AI-Arfaj [94] static linear GL Lagrange
multipliers

QR
approach

Methyl-terc-butyl-ether
plant

Faber et al. [95] on-line static linear
and nonlinear

Robust estimator
of [96],
Fair function

NLP solver SQP - IMSL Coke-oven-gas
purification pilot plant
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Table 1. Cont.

Reference Math. Nature Estimator Solution Method Algorithm-Package/Simulator Industrial Process

Hu and Shao [59] static nonlinear GL
Lagrange
multipliers,
Suc. Lin.

NA Industrial coking plant

Prata et al. [47] dynamic nonlinear GL NLP solver Gauss-Newton Industrial polymerization
reactor

Faber et al. [23] on-line static linear
and nonlinear

Robust estimator
of [96],
Fair function

NLP solver SQP - IMSL Coke-oven-gas
purification pilot plant

Schladt and Hu [97] static nonlinear Contaminated
normal NLP solver SQP-SNOPT Industrial distillation

column

Bellec et al. [98] online static
bilinear WLS Kalman filter Sigmafine

(OSIsoft)

Paper machine stock
approach system at an
integrated newsprint
paper mill

Lid and Skogestad [99] static nonlinear Contaminated
normal NLP solver Fmincon-MATLAB Refinery naphtha

reformer

Reimers et al. [52] static linear GL Lagrange
multipliers Gauss-Jordan/SolidSim Dressing of brown coal

Embiruçu et al. [100] dynamic nonlinear GL Lagrange
multipliers Gauss-Newton Ethylene polymerization

Prata et al. [101] dynamic nonlinear GL Lagrange
multipliers Gauss-Newton Industrial polymerization

reactor

Puig et al. [102] static linear GL NA Macrobal Wastewater treatment
plants (WWTPs)

Prata et al. [64] dynamic nonlinear GL
1. Lagrange
multipliers,
2. NLP solver

1. Gauss-Newton,
2. PSO

Industrial polymerization
reactor
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Table 1. Cont.

Reference Math. Nature Estimator Solution Method Algorithm-Package/Simulator Industrial Process

Prata et al. [18] dynamic nonlinear GL, Welsch
estimator NLP solver PSO Industrial polypropylene

reactor

Sarabia et al. [54] on-line static
nonlinear GL NLP solver SQP-NAG/EcosimPro,

IPOPT-GAMS
Hydrogen networks in oil
refinery Petronor

Quelhas et al. [66] on-line static
nonlinear GL NLP solver Gauss-Newton Ethylene production

Zhang et al. [30] static nonlinear
GL,
Correntropy
estimator

NA NA Air separation process

Cicciotti et al. [103] static nonlinear GL NLP solver NA Multi-stage centrifugal
compressor

Jiang et al. [104] on-line static
nonlinear GL Suc. Lin. NA Coal-fired steam turbine

power plant (1000 MW)

Eghbal Ahmadi [105] static nonlinear GL NLP solver SQP/Aspen
HySys

Part of a sulfur
recovery unit

Guo et al. [106] static nonlinear GL NLP solver NA-MATLAB Coal-fired steam turbine
power plant (1000 MW)

Guo et al. [107] static nonlinear GL NLP solver SQP-fmincon/MATLAB Coal-fired steam turbine
power plant (1000 MW)

Behnami et al. [108] static linear WLS Lagrange
multipliers MATLAB

Full-scale petrochemical
wastewater treatment
plant (WWTP)

Rafiee and
Behrouzshad [109] static nonlinear GL NLP solver Fmincon-MATLAB Natural gas

processing plant

Câmara et al. [67] on-line static
nonlinear WLS NLP solver SQP Crude oil distillation

WLS–Weighted least squares; GL–Gaussian likelihood (WLS); SQP–Successive quadratic programming; NLP–Nonlinear programming; NA–Not available.
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where σ2
i is the variance of variable i. The maximum likelihood estimate is the value for

which the likelihood function attains its maximum while satisfying equality and inequality
constraints. Nonetheless, both regression and maximum likelihood approaches are closely related
when the measurement error is uncorrelated among different measurements and is normally
distributed with zero mean and positive definite covariance matrix Vz, ε ∼ N(0, Vz). For such
a case, the likelihood function in Equation (4) may be simplified to a quadratic function, so
that the maximization of this simplified function is equivalent to minimizing Equation (2) with
Q = Vz [112,113]. Formulations of the DR problem typically follow Equation (1) with a WLS estimator
supported by the (implicit) assumption of independent and normally distributed measurement errors,
resulting in the following constrained nonlinear program

ẑ := arg min
z

(zms − zm)
T V−1

z (zms − zm)

subject to f (z, θ) = 0
g (z, θ) ≤ 0

. (5)

Equation (5) is easily extended to a DRPE problem by the inclusion of process parameters θ (or a subset
of it) in the set of decision variables.

To deal with deviations from this conventional normal assumption, as is the case when data sets
contain gross errors and outliers, gross error detection (GED) schemes have been proposed, such as
the simultaneous approach for data reconciliation and gross error detection. This technique is based
on robust statistics and consists on finding estimators (i.e., an objective function) whose mathematical
nature, especially its influence function, is insensitive to deviations from the ideal assumptions
on errors, giving less weight to the contribution of large errors in the estimation problem [4,21].
The expected result is a reduced effect of the eventual gross errors present, yielding less biased
estimates. However, the use of robust estimators do not guarantee efficient and unbiased estimates
since they will still be dependent on the distribution structure of the measurement errors according to
maximum likelihood principles. In this context, a generalized robust data reconciliation approach has
been proposed [114].

Even with advanced alternatives, the predominant estimator among industrial applications for
plant-wise use is the WLS, where weights either follow the maximum likelihood method or are
user defined according to some (heuristic) rule following the regression approach. In the former,
the statistical framework for DR still requires the knowledge of the error covariance matrix
Vz, which depends on several aspects including sensor characteristics, amplifier, cable links,
and digitizing circuits. Usually the variances σ2

i are unknown but can be estimated by historical
data, assuming Vz = diag

[
σ2

1 , σ2
2 , . . . , σ2

nzm

]
.

Few cases do not follow the maximum likelihood method when defining the estimator. In the
reconciliation phase of the On-line Reconciliation and Optimization (ORO) package described
by Bussani et al. [71], DR is achieved by minimizing the weighted sum of squared residuals between
the measured and calculated variable values normalized by measured values. In addition, some
applications formulate the DRPE problem considering process parameters along with measured
variables in the objective function. In an application for the gas separation system of a petroleum
refinery, Piccolo et al. [13] included in the objective function estimated efficiencies of both de-ethanizer
and debutanizer columns and debutanizer reboiler duty, which were determined in the same DRPE
problem as estimated parameters. Similarly, Câmara et al. [67] reported the presence of a load
characterization parameter in the objective function for the DRPE of a crude oil distillation unit.

2.2. Solution Methods

Different solution methods have been employed in industrial DR applications. The methods
are problem-dependent and often exploit some features of the problem in order to achieve fast and
efficient calculations.
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When the resulting mathematical programming problem is a constrained least squares estimation
with either linear or bilinear model constraints, analytical solutions and specific iterative procedures
have been used [56,69,74,85]. Nonetheless, as more relations apart from overall material balance
equations are required for rigorous process models, as well as variable bounds and feasibility
constraints, the use of such methodologies is limited. In addition, the development of analytical
solutions for linear and bilinear problems in the context of real applications could also be motivated
by computational and programming limitations, which has changed remarkably with the increased
availability and reduced cost of high performance computers.

In the absence of inequality constraints g(·), the solution of nonlinear DR problems have been
achieved by the use of the Lagrange multipliers method [59,70,86], where the partial derivatives for the
Lagrangian of the DR problem are set to zero and the resulting system of equations is solved by any
simultaneous equation solver, or by the method of successive linearization [12,58,59,76]. In the later,
linear approximations to the nonlinear constraints are obtained by a Taylor series expansion about the
previous iterate and a series of linear data reconciliation problems is solved until a solution satisfying
the nonlinear constraints is obtained. Each intermediate solution is the optimal point for the linear
constraints. Successive linearization provides relative simplicity and fast calculation, although it
cannot handle variable bounds and it may fail to converge [36,58].

The most widely used method for solving nonlinear DR problems, such as that of Equation
(5), consists of the application of well established, general purpose NLP algorithms. Indeed, several
works have demonstrated that using NLP instead of successive linearization remarkably improved
reconciliation results [115,116], so that nonlinear programming techniques have emerged as the most
efficient. This method allows a general nonlinear objective function, such as robust estimators, and can
explicitly handle inequality constraints. Inequality constraints, such as variable bounds, are generally
required in the DR model to guarantee feasible estimates, e.g., nonnegative estimates for flows or
compositions. Furthermore, in addition to steady-state DR, methods that apply NLP solvers are also
used in the solution of dynamic optimization problems, as those resulted from nonlinear dynamic DR
[15,83]. Thus, the NLP method is able to tackle a complete formulation of the data reconciliation.

Islam et al. [58] tested the three methods in a data reconciliation package for an industrial pyrolysis
reactor. However, the discussion is limited to the influence of the initial guess in each one. It was
observed that initial starting values far from the steady state values caused the successive linearization
method to fail, converging to incorrect steady-state values. The NLP method employing successive
quadratic programming (SQP), in turn, required a large computational time to get a comparable result
but worked well in all cases with upper and lower bounds for all the reconciled variables. The use
of SQP in the absence of variable bounds was not reported. Weiss et al. [12] have also evaluated
these three methods of solving data reconciliation on an industrial pyrolysis reactor. The authors
have observed similar results among the methods, which provided encouragement to the use of
successive linearization since the large computational time required by the nonlinear method could
not be justified. However, similar results among these methods is not observed in other works. In the
report of Christiansen et al. [76] in applying DR to industrial synthesis gas preparation, successive
linearization was applied only when the basic material balances were considered. For the use of a
more rigorous model including the energy balance, as well as if it is desired to investigate the plant
over a period of time, the NLP method was used employing a SQP algorithm with bounds on the
independent variables.

Both the Lagrange multiplier and NLP methods were evaluated by Eksteen et al. [86] in the DR
for an open arc smelting furnace. Systematic biases have been observed in the results, being larger
when the Lagrange multiplier method was used. However, this comparison is not fair enough since
the methods were not evaluated for the same DR formulation, where the Lagrange multiplier method
solved the minimization of the variance weighted closure residuals of the mass balance equations,
and the NLP method solved the minimization of the weighted sum of squared errors. In other work,
the Lagrange multipliers and the successive linearization methods were employed for solving nonlinear



Processes 2017, 5, 56 13 of 38

DR on a coking plant based on a components balance and total flow rates balance [59]. It is argued
that successive linearization has the advantage of relative simplicity and fast calculation and that,
in general, the Lagrange multipliers method tends more frequently to shift the reconciled values in a
biased direction.

Even with the increased availability of high performance computers, dealing with the large
number of decision variables remains a challenge when using NLP in industrial applications, as well
as the nonlinear and non-convex nature of the objective function, process model and other constraints.
It has been observed that some NLP algorithms become inefficient when the number of degrees of
freedom are large [117,118], and the dimension of the DR problem for large-scale process models
can preclude regular optimization techniques from correctly solving the problem [23]. As a result,
many authors have proposed either decomposition approaches as a solution strategy to overcome
this difficulty when employing standard NLP solvers or optimization algorithms tailored for process
applications with many degrees of freedom.

2.3. Solution Strategies

The most straightforward strategy for solving the nonlinear DR problem is to use nonlinear
programming to estimate parameters and reconciled variables simultaneously. However, when the
dimension of the problem significantly impairs the use of standard NLP algorithms, decomposition
approaches may be used, which divide the original problem in multiple estimation problems of
reduced dimensions.

Rod and Hančil [119] proposed an iterative algorithm that separately evaluates parameters and
independent variables. Reilly and Patino-Leal [120] used a method in which the data reconciliation
is nested within the parameter estimation step. Doví and Paladino [121] presented a constrained
variation algorithm in which the dependent variables are eliminated by solving the model equations
and thus eliminating the necessity of simultaneously iterating both parameters and true values of
the measured variables but requires the second derivatives of the model. Kim et al. [16] compared
three strategies for the nonlinear EVM problem, namely, simultaneous parameter estimation and
data reconciliation, two-stage EVM, and nested EVM, in terms of computer time and converged
parameters and reconciled variable values for test problems from the literature. When evaluating these
strategies, a generalized reduced gradient (GRG) and a SQP algorithm were used. As observed in their
results, the two-stage nonlinear EVM outperformed the other alternatives and was reported as the
only recommended solution strategy.

Regarding industrial DR applications, the predominant strategy is the direct solution of only one
nonlinear DR problem, where parameters are estimated along with reconciled variables (DRPE/EVM)
when present. Quelhas et al. [66], however, brought attention to the fact that the estimation problem
must be carefully designed. Dealing with a two-step RTO applied to an industrial ethylene production
plant, it is shown that the typical trajectories of the estimated heat transfer coefficients indicate
that some of the model parameters are not estimable when the parameter estimation is performed
independently and simultaneously with the data reconciliation procedure, which might be due to
correlation with other parameters and process data or because they do not affect the objection function
significantly. Other strategies are briefly discussed below.

By establishing that the complexity of large dimension optimization problems can be reduced by
performing a partition of the criterion to be optimized, Hodouin and Everell [1] developed a strategy in
which the original problem is partitioned into subsystems that are not functions of the same variables.
The decoupling is performed such that the subsystems are easy to solve.

In the on-line optimization tool described by Zhang et al. [10], combined gross error detection
and data reconciliation, and parameter estimation were achieved separately in a dedicated NLP for
each function, however, no reasoning was provided to support this choice. The tool was built using a
flowsheeting design program (Aspen Plus), with optimization and user-defined FORTRAN subroutine
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capabilities for process optimization and parameter estimation. Data reconciliation and gross error
detection followed the contaminated-Gaussian estimator [19] implemented in GAMS/MINOS.

Weiss et al. [12] applied a two-stage non-linear EVM, separating the parameter estimation
in an outer loop and data reconciliation in an inner loop using the method described by [122].
Besides, successive linearization was used to solve the inner loop for data reconciliation.

Lee et al. [81] proposed an on-line data reconciliation and optimization for an industrial
utility plant based on a hierarchical decomposition approach, similar to the strategy applied by [1].
The strategy decomposes a large and complex system into several subsystems, where it is argued that
handling small size subsystems instead of an original large one provides a reduction of computation
time, a more robust solution, simplicity of problem formulation and easy maintenance. At an upper
level, variables related to nonlinear constraints or shared between two or more subsystems are
determined by NLP algorithms. When the values of these variables are determined at the upper level,
they become pre-specified parameters for the subsystems at the lower level. Among other results,
Lee et al. show that the decomposition strategy achieved an objective function value 37% lower
than SQP spending only 5.5% of SQP’s computation time when considering averaged results of data
reconciliation for 20 datasets of the steam distribution subsystem.

Faber et al. [123] proposed a nested three-stage computation framework, where the upper stage
is a NLP for parameter estimation, the middle stage consists of multiple sub-NLPs in which the
independent variables of each individual data set are estimated, and in the lower stage the dependent
variables are evaluated through a simulation step. It is argued that only the gradients of the dependent
variables to the parameters are required. By using the optimality condition in the middle stage, it is
argued that second order derivatives are not required in the upper stage, thus significantly reducing
the computational cost. This framework was later validated with data from a pilot plant established
for both absorption and desorption studies on the industrial coke–oven–gas purification process
[23,95,124].

2.4. Optimization Algorithms for Nonlinear Programming

Various NLP algorithms have been used to solve the optimization problem defined by
Equation (5) either in real industrial applications or in DR studies involving real plant data.
These include deterministic, gradient-based methods such as Gauss-Newton or Gauss-Marquardt
(e.g., [61,89,100,101]), reduced-gradient methods [10,13,28,51,72,86], and successive quadratic
programming, which is the most used among industrial DR works, as well as derivative-free,
metaheuristic random search algorithms, such as particle swarm optimization (PSO) [18,64].
Applicable deterministic solvers for large-scale nonlinear optimization problems are available as
commercial and noncommercial software [48,125–127], and generally incorporate second-derivative
information from the optimization model, exploit the sparsity of the KKT matrix and problem structure,
deal efficiently with large sets of active constraints, and handle dependent constraints and negative
curvature.

Augmented Lagrangian methods have been adapted to large-scale problems including,
for instance, the use of second-order information and a bound-constrained trust region method to
deal with negative curvature, as is the case of LANCELOT [128]. Reduced-gradient methods, such as
MINOS [129] and CONOPT [130], approximate second-order information using dense quasi-Newton
updates in the reduced space. However, the computational effort grows polynomially with problem
size and active set selection is a combinatorial process that may be expensive, especially on degenerate
problems [63]. The technique of successively solving a series of quadratic programming subproblems
(i.e., SQP) has proven itself to be suitable for solving large-scale optimization problems. It involves
defining a quadratic program (QP) at each iteration based on a quadratic approximation of the Lagrange
function and a linear approximation of the constraints of the original nonlinear program. This leads to
a search direction and a line-search step size, which determines the next iterate [131]. SQP has been
widely used in the process industry [132], but the identification of the active set of inequality constraints



Processes 2017, 5, 56 15 of 38

may impose serious difficulties during the solution of the QPs in the presence of many inequality
constraints, since it can increase exponentially with increasing problem size. Besides, the large number
of degrees of freedom in the DR problem can make the SQP decomposition strategy less suited.

Extensions of this technique to deal with many degrees of freedom have been
developed [117,118,133–135], exploiting the natural problem structure and the decomposition
of the full-space to dense reduced-space quadratic programming problems. Examples of full space
barrier (or interior point) techniques are SQPIP [53] and IPOPT [63]. SQPIP is a sparse full-space
interior point SQP that involves three major tasks: the QP subproblem, a line search procedure, and
an approximation method of the Hessian of the Lagrangian, where an important advantage is the
guarantee concerning the feasibility of inequality constraints. IPOPT, in turn, is a primal–dual interior
point algorithm that incorporates second-order information and a filter line-search strategy that
ensures the convergence of the barrier problem. Complete descriptions and a comprehensive analysis
of interior point methods can be found in the literature, e.g., [136].

While these methods have been used in industrial applications and commercial optimization
softwares do exist, highly nonlinear systems are not easy to solve and often lead to convergence
problems. In addition, these are all local methods that offer no assurance that the global minimum
in the optimization problem has been found, since the nonlinear optimization problem is generally
non-convex. Deterministic global optimization algorithms, which can provide a guarantee that the
global optimum within some specified search domain is found, have also been proposed to deal with
the possible existence of multiple local minima [137,138]. Nonetheless, its use in industrial applications
has not been reported to the best of our knowledge.

Optimization algorithms must be efficient and robust, being able to avoid local minima and
to handle poor starting points, badly scaled problems and (some) inaccuracies in the gradients,
while maintaining a viable computation time [81,139]. Indeed, real applications of DR show that factors
such as scaling, starting points, sparsity patterns, and thermodynamic approximations are important
when solving NLP problems [99,140]. As pointed out by Kelly [62], since the ways to determine the
next iteration’s adjustments to the decision variables are different among NLP algorithms, there is
significant value in including several independent solvers when solving industrial problems, so that if
one method fails to converge or finds an unreasonable solution then another method can be used in
the hopes of finding a better solution. Considering that each algorithm has its own set of advantages
and disadvantages, and that there is no optimization algorithm able to perform better than any other
for any class of problems [141,142], very few works report comparisons among NLP algorithms in
industrial applications. Actually, few works address in detail the numerical issues that arise when
designing and applying data reconciliation in real systems.

An exception is the work of Pierucci et al. [61], which presents a test between a SQP, a modification
of Levenberg-Marquardt (LM), and a Newton based algorithm (NB). The authors report that SQP and
LM had very similar behavior, whereas NB was both slower and less efficient. Another exception is
due to Kyriakopoulou and Kalitventzeff [53] based on the frame of the VALI (Belsim) general purpose
data validation software. The algorithms tested were the SQPIP, a Lagrangian formulation solved
by a dogleg method (SOLDOG), and a dense matrix SQP (SQPHP). Fewer Jacobian and residuals
evaluations are demanded by the SQPIP and SQPHP with respect to SOLDOG, whereas SOLDOG
is faster than both of them since it requires less total factorizations than in SQPIP and the system of
the optimality conditions is more sparse than in SQPHP. Sarabia et al. [54], in turn, applied a SQP
(NAG library) and an interior point method (IPOPT-GAMS) but aimed at comparing the sequential
and simultaneous solution approaches. The authors only reported that the CPU time to solve the
reconciliation problem was up to 10 min in the sequential approach with SQP and 1 min in the
simultaneous approach with IPOPT.

For many real applications, the process model is provided by a black-box simulation package, thus
not allowing the application of techniques aimed at numerical improvements, such as the one proposed
by [143] and applied by Lid and Skogestad [99]. Industrial DR applications are typically based on
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simulation platforms to which optimization solvers have been interfaced and where the models
themselves are constructed and calculated through numerical procedures instead of through an open
declarative language. In this context, most of these platforms do not provide exact derivatives to the
optimization solver, and gradients are often approximated through finite difference [144]. Calculation
results will thus consequently depend on the technique used for gradient estimation, where the ideal
size of the finite-difference step may depend on the application. Nevertheless, such an effect is rarely
mentioned so that it is not possible to state unequivocally that data reconciliation procedures are being
used successfully in actual industrial environments to improve the operation of large plants [89,100].

When applying the finite-difference derivative approximation is not appropriate or costly or
when automatic differentiation techniques cannot be applied, conventional NLP algorithms may not
be suitable. In such cases, derivative-free methods that do not rely on the derivative information
of the objective function or constraints should be considered [145]. In this context, metaheuristic
optimization methods, such as the simulated annealing and the genetic algorithm, can be used to
overcome the difficulties for obtaining the derivatives. These methods also present some additional
advantages, including the ability to avoid local minima, thus featuring a global search character, and
simplicity of implementation. Even though these stochastic methods still provide no guarantee that
the global optimum has been found, they are a step towards its discovery [138]. Besides, the computed
values of the objective function can be used for rigorous statistical analyses of the confidence regions
of the estimates, which can also constitute an important benefit of these algorithms [146]. The PSO
algorithm, specifically, can be used effectively for optimization of complex optimization problems due
to its capability to handle multimodal, nonlinear and discontinuous objective functions along with
large-scale systems, as well as its much smaller computational effort and simpler implementation,
when compared to other metaheuristic procedures such as simulated annealing and the genetic
algorithm.

Prata et al. [64] presented a procedure for nonlinear dynamic DRPE and its application to an
industrial polypropylene reactor, where the technique was developed and validated in real time.
The performance of the derivative-free, metaheuristic PSO algorithm and a standard Gauss-Newton
(GN) were compared when solving the nonlinear dynamic DRPE on-line. Although the results show
that the PSO method is slower than GN, which did not preclude the use of PSO on-line, it was observed
that GN leads to worse final objective function values for the cases when large differences are obtained
between the algorithms. This was attributed to the convergence to local minima. Besides, it was shown
that non-deterministic optimization algorithms might be used successfully in real time applications,
as they can provide reliable information without any significant rate of failure. Based on the previous
work, Prata et al. [18] presented a robust procedure to perform the joint nonlinear dynamic DRPE
problem on-line with simultaneous detection of gross errors. Using robust estimators, the work is the
first to apply the PSO technique for the simultaneous solution of the DRPE problem and detection of
gross errors in a real industrial system.

Solution Approach

Methods that apply NLP solvers can be separated into two groups: sequential and simultaneous
strategies. The difference between them mainly depends on the way the process model constraints are
considered. The sequential approach is comprised of an iterative two-stage approach, which solves the
system of equations as an inner loop to evaluate the objective function, while an optimization algorithm
is the outer loop. As the model convergence problem is solved at each optimization step, it belongs to
the class of “feasible path” methods. The simultaneous approach includes the convergence problem
inside the optimization problem, belonging to the “infeasible path” approaches.

These classes are a major concern when it comes to solving dynamic optimization problems.
For example, the approach for solving dynamic optimization problems applying collocation on
the finite elements method, which convert the system of equations into algebraic ones and solve
them simultaneously with the optimization problem, follows the simultaneous approach [147].
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Liebman et al. [45] also used the successive quadratic programming method with collocation on finite
elements and a moving horizon approach to solve the resulting optimization problem. Even though
applying this NLP approach in real applications is somewhat limited due to the modeling of the
system with explicit differential and/or algebraic equations, it has been applied to industrial systems
[15,83]. Safdarnejad et al. [148] shows a comparison between various initialization strategies for
optimization of dynamic systems using collocation on finite elements. These strategies include a warm
start from a prior solution achieved by structural decomposition, a simultaneous, and a sequential
approach, which were demonstrated for an industrial CO2 removing system integrated with grid-scale
power generation units including coal, gas, and wind power units, resulting in large system with
768 decision variables. A comparison of the computational time between IPOPT, active-set APOPT
[149], and SNOPT [131] algorithms were also made. The APOPT algorithm was also used in the study
of Safdarnejad et al. [150], solving dynamic data reconciliation and optimization of laboratory-scale
batch distillation columns in which collocation on finite elements was used to convert the system of
equations into algebraic ones. More details on solution approaches for dynamic systems can be found
elsewhere [151–153].

The choice between the two classes of approaches may depend both on the size of the problem
and on the difficulty to solve the convergence problem. An approximated rule suggested by
Pierucci et al. [61] indicates when a feasible path is preferable, which is associated with the number
of iterations required to solve the static process model, including the iterations required to solve the
model during the perturbation phase for gradients evaluations. Bussani et al. [71] argue that the
choice between feasible and infeasible path methods depends upon both the ratio between the decision
variable number and the iteration variable number, and the overall convergence speed.

In the work of Eksteen et al. [86], both the simultaneous (using the Lagrange multiplier
method) and sequential (using the generalized reduced gradient - GRG) approaches were evaluated.
Systematic biases were identified through traditional statistical methods and, in general, appeared to
be larger when the simultaneous approach was used. Faber et al. [123] suggested solving the
estimation of parameters and the data reconciliation problem for large-scale nonlinear models with a
sequential approach, which has been applied to the DR of a pilot-scale coke–oven–gas purification
process [23,95,124]. Martínez-Maradiaga et al. [154] applied a similar method, although considering
only the data reconciliation problem for a test bench single-effect ammonia–water absorption chiller.

In a work involving hydrogen networks in an oil refinery, Sarabia et al. [54] implemented both
simultaneous and sequential approaches. The former was based on the interior point algorithm
IPOPT-GAMS, where some enhancements were made in order to avoid feasibility problems, while the
latter consisted of a model simulated in the EcosimPro environment linked to an SQP algorithm from
the NAG library. As formerly discussed, it was reported that the CPU time necessary to solve the
reconciliation problem was 1 min in the simultaneous approach in GAMS and up to 10 min in the
sequential approach with the NAG libraries. Unfortunately, no additional comments were provided.

As can be seen from previous studies, there is neither a detailed assessment of solution approaches
nor a consensus regarding which is better under what conditions.

3. Numerical Assessment of Different Settings for Solving Nonlinear Steady-State
Data Reconciliation

3.1. Process Description

The underlying system of this study represents an oil production facility, which extracts oil and
gas from the reservoir to the refinery. It is based on an oil process unit from Petrobras. The primary
treatment is comprised of two production trains and one test train, as depicted in Figure 1. Each train
is equipped with a manifold, a heat exchanger and a three-phase gravitational separator. The output
streams of oil leaving each three-phase separator are joined together and feed an atmospheric separator.
During actual operating, manifolds A and B receive the mixture arising from the production wells,
while the test manifold, which is responsible for acquiring a set of process measurements, runs with a
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single well at a time. In the three-phase separator, most of the gas is separated from the oil and water,
whereas in the atmospheric separator the residual gas, oil and water are all separated to the greatest
extent possible.

The process plant was modeled using a process simulator software developed by Petrobras and
validated along years of production operation. In addition, the model incorporates the heat exchanger
model from the HTRI Xchanger software (Heat Transfer Research, Inc., Navasota, TX, USA). The
system’s model has a total of 24 process variables, all of them measured, along with five parameters, as
shown in Table 2, where types 1 and 2 represent reconciled input variables and parameters, respectively,
and type 3 indicates measured output variables.

A simulated steady-state point representing the daily average of typical process operation in the
real system have provided the set of true values (z∗) and was used for generating the set of measured
values (zms). Simulation was performed on a daily basis so as to better resemble the implementation in a
real system, in which it is desirable to eliminate the effect of variations in operating wells and minimize
the effect of residual inventories. In this context, data reconciliation is carried out for a complete day of
operation regardless of how frequently measured data is available. The measurement samples were
obtained with a normal Gaussian distribution random number generator assuming a variable specific
standard deviation and a mean equal to the true value. The coefficient of variation (CV, also known
as relative standard deviation) of the variables is selected to simulate the estimated accuracy of the
instrument taking the reading of each variable and are presented in Table 2. Five measurement sets for
each variable were created, representing different samples of the same steady-state. The cumulative
distribution function of the variability around the true values for each sample set is presented in
Figure 2.
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Figure 1. Simplified diagram of the oil processing plant analyzed.

3.2. Case Studies

Based on the works reporting industrial application of DR, we have set up a series of simulation
experiments on steady-state data reconciliation adopting different configurations. Each configuration
setting is comprised of a solution approach of the DR problem, objective function (estimator),
optimization algorithm, technique for gradient approximation, and initial guess, as indicated in
Table 3. Configuration test procedures consisted of solving the data reconciliation problem for each of
the five sample sets and analyzing the performance metrics. The data reconciliation procedure has
been implemented in MATLAB [155], where the script manages the function calls to the optimization
algorithm and the process model. The model is available as a dynamic-link library (dll) and, as a result,
it is not possible to access the model source-code, inspect the equations implemented, edit and/or
implement any sort of strategy to improve its numerical properties, such as scaling variables and
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equations. Calculations were performed on a 64 bit Windows 7 system with Intel Core i7 CPU 2.0 GHz
and 6 GB RAM.

Table 2. Information regarding process model variables and parameters.

Variable Type Unit CV (%)

Inlet oil stream of HEA 1 m3/day 8
Inlet gas stream of HEA 1 m3/day 8
Inlet water stream of HEA 1 m3/day 8
Inlet oil stream of HEB 1 m3/day 8
Inlet gas stream of HEB 1 m3/day 8
Inlet water stream of HEB 1 m3/day 8
Inlet oil stream of HET 1 m3/day 8
Inlet gas stream of HET 1 m3/day 8
Inlet water stream of HET 1 m3/day 8
Water feed stream of HEA 1 m3/day 8
Water feed stream of HEB 1 m3/day 8
Water feed stream of HET 1 m3/day 8
Overall heat transfer coefficient of HEA 2 kcal m−2 h−1 ◦C−1 8
Overall heat transfer coefficient of HEB 2 kcal m−2 h−1 ◦C−1 8
Overall heat transfer coefficient of HET 2 kcal m−2 h−1 ◦C−1 8
Split coefficient of SGA 2 % 8
Split coefficient of SGB 2 % 8
Outlet gas stream of SGA 3 m3/day 0.2
Outlet gas stream of SGB 3 m3/day 0.2
Outlet gas stream of SGT 3 m3/day 0.2
Outlet gas stream of AS 3 m3/day 8
Discharged water stream 3 m3/day 2
Exported oil stream 3 m3/day 0.2
Temperature of outlet water stream of HEA 3 ◦C 8
Temperature of outlet water stream of HEB 3 ◦C 8
Temperature of outlet water stream of HET 3 ◦C 8
Temperature of outlet oil stream of HEA 3 ◦C 0.4
Temperature of outlet oil stream of HEB 3 ◦C 0.4
Temperature of outlet oil stream of HET 3 ◦C 0.4
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Figure 2. Cumulative distribution function of the variability around the true values for each sample set.
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Table 3. Configuration settings of simulation experiments.

Setting Solution
Approach

Finite
Difference Initial guess θ ∈ JDRPE

Degrees
of Freedom

Optimization
Algorithm

1 simultaneous central measurement yes 12 IP
2a sequential central measurement yes 12 IP
2b sequential central true value yes 12 IP
2c sequential central true value + 10% yes 12 IP
2d sequential central true value − 10% yes 12 IP
2e sequential forward measurement yes 12 IP
2f sequential forward true value yes 12 IP
2g sequential forward true value + 10% yes 12 IP
2h sequential forward true value − 10% yes 12 IP
3 sequential central measurement no 7 IP
4 sequential central measurement ± 3σ no 7 PSO/IP

At first, the data reconciliation was solved with the MATLAB fmincon routine using the IP
algorithm. The fmincon routine is intended for solving constrained nonlinear multivariable functions
and is available in the MATLAB Optimization Toolbox. Regarding solution approach, the mathematical
programming problem was solved by both sequential and simultaneous approaches. In the former,
process simulation and minimization of the objective function follows a two stage approach, in
which the first and decoupled simulation stage calculates the state variables ensuring that model
constraints are always satisfied. By doing this, only the objective function and the inequality constraints
are handled by the optimization algorithm. In the latter, the optimization algorithm handles the
objective function and the constraints, including the process model equality constraints. In practice,
the simultaneous approach was achieved by passing the process model equality constraints as the
argument defined by the nonlcon parameter of the fmincon routine.

In general, measurement values are used as initial estimations for the measured process
variables [36]. In spite of this, given the influence of the initial guess in the performance of optimization
techniques, four different initial guesses were used to test the performance of the overall DR procedure.

In addition, fmincon admits an option to set the type of finite difference used to approximate
gradients, which are either forward (the default), or centered. Both types were tested when running
DR experiments.

It must be noted that for all simulation experiments the exit condition of fmincon was the state
where changes in decision variables and maximum constraint violation were less than the defined
tolerances, unless otherwise stated. DR simulations used the default values for optimization options
from fmincon except for those listed in Table 4. Previous simulations using default values for all
options presented significant differences regarding convergence and motivated these changes.

A hybrid optimization algorithm was then used in the refined settings, combining the
deterministic IP technique with the metaheuristic PSO algorithm. They were combined such that
the procedure started with the PSO for a few iterations is finished with the IP technique, where the
solution given by the PSO is transmitted as the initial guess of the IP. By doing this, we intend
to improve solution robustness based on the global search character of the PSO, and subsequently
improve convergence speed with the IP. Parameters for the PSO algorithm are listed in Table 5.
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Table 4. Non-default values of optimization options used in fmincon routine in DR runs.

Parameter Description Value

TolFun Termination tolerance on the
function value 1 × 10−4

TolX Termination tolerance on
decision variables 1 × 10−9

MaxIter Maximum number of iterations
allowed 5000

MaxFunEvals Maximum number of function
evaluations allowed 10,000

Table 5. Parameter values of PSO algorithm.

Description Value

Number of generations 60
Number of particles 5
Local search parameter 1
Global search parameter 1

The problem of data rectification is posed as a maximum likelihood problem, where the probability
of the estimated plant state is maximized given the measurement set. In this context, the appropriate
estimator considering the zero mean, independent and normally distributed measurement errors is
the WLS. The problem of data reconciliation with simultaneous parameter estimation (DRPE) is then
stated following Equation (5):

{ẑ, θ̂} := arg min
zm ,θ

JDRPE = (zms − zm)
T V−1

z (zms − zm)

subject to f (z, θ) = 0
g (z, θ) ≤ 0
zL

m ≤ zm ≤ zU
m

θL ≤ θ ≤ θU

, (6)

where (zL
m, zU

m) and (θL, θU) are the lower and upper bounds of the reconciled and estimated variables,
and the parameters, respectively. Notwithstanding this formulation, we have modified the WLS
estimator from Equation (6) by the introduction of parameters θ (i.e., non-measured variables) in the
objective function, thus resulting in a modified WLS, non-maximum-likelihood estimator as follows:

JDRPE = (zms − zm)
T V−1

z (zms − zm) + (θms − θ)T V−1
θ (θms − θ) , (7)

where Vθ is the weighting matrix for parameters and θms are reference values for estimated parameters.
Therefore, both WLS and modified WLS estimators were analyzed.

The quality of the results obtained by the DRPE procedure using different configuration
settings was quantified by analyzing the solution robustness, constraint violation at convergence,
and computational speed. The main performance metric regarding solution robustness is based on the
statistical theory of the maximum likelihood method. Since the measurements are normally distributed
about their true values and no gross errors are present, it is imperative that the objective function
follows a Chi-square distribution χ2 at the minimum. Based on this, we propose the use of the global
(or collective) test [120] not to detect gross errors, but rather to indicate the satisfactory solution
of the minimization problem. In this test, the magnitude of the objective function is compared to
the probability limit of the Chi-square distribution for the degrees of freedom (DF) corresponding
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to each configuration and for a given confidence level (1− α). Thus, the hypothesis H1 is true if
JDRPE > χ2

1−α,DF, meaning the objective function has not statistically achieved the minimum value
(which is equivalent to the occurrence of a global gross error). Otherwise, hypothesis H0 holds,
meaning the optimization problem has been solved satisfactory (which is equivalent to the absence of
global gross error). The number of degrees of freedom was calculated according to

DF = nzm − (nu + nθ),

where χ2
99%,12 = 26.22 and χ2

99%,7 = 18.48.
Based once more on normally distributed measurement errors, it is expected that the reconciled

values lie within the range comprised of z∗m ± 3σ with a 99.7% confidence level. Therefore, we have
also used the absolute difference between reconciled and true values normalized by the standard
deviation as a performance metric.

4. Results

4.1. Solution Approach

We begin by analyzing the influence of solution approach for solving the simultaneous data
reconciliation and parameter estimation of the oil production system.

According to the settings 1 and 2a listed in Table 3, the DRPE problem was solved for each one
of the five measurement sets. The results are presented in Table 6 and show an absolute advantage
of the sequential approach over the simultaneous approach for the present condition in terms of
both final objective function value and computational cost. In addition, the simultaneous approach
even presented a violation of constraints, which means that some model equations were not satisfied.
Although constraints violation are actually considered in softwares and literature studies, none of
the reviewed industrial DR/DRPE application studies discussed constraints violation, especially in
the case of the process model equality constraints. Such a constraints violation represents an obvious
conflict with data reconciliation purposes and should not be acceptable.

Given the obtained results, only the sequential approach was used in the remaining
configuration settings.

Table 6. Objective function values and computational cost as a function of solution approach.

Sample

JDRPE Time (min)

Simultaneous
(Setting 1)

Sequential
(Setting 2a)

Relative
Difference (%)

Simultaneous
(Setting 1)

Sequential
(Setting 2a)

Relative
Difference (%)

1 347 266 −23 54 9 −83
2 * 633 482 −24 14 9 −34
3 * 62 4 −93 63 29 −54
4 * 3352 192 −94 77 8 −89
5 990 448 −55 50 9 −81

* No feasible point was found, as indicated by the value −2 of output variable exitflag of fmincon routine.

4.2. Initial Guess and Gradient Estimation

Following the solution approach, we analyze the influence of initial guess and algorithm
parameterization, specifically the gradient estimation. Even if there are known factors influencing
the solution of mathematical programming problems, very little is discussed when it comes to data
reconciliation. Figure 3 shows the objective function values (JDRPE) obtained for each of the five
measurement samples (replicates) according to settings 2a through 2h (as described in Table 3).
The axes of the figure were adjusted to facilitate its visual interpretation. As an initial guess, we have
tested the set of measured values (zms), true values (z∗m), and true values ±10%.
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Figure 3. Final objective function values after solving the DR problem as a function of the initial guess.
(A) Forward finite difference; (B) Central finite difference.

Looking at both charts of Figure 3 (especially chart A), the objective function is always greater than
the Chi-square value, which suggests the existence of a gross error in the data according to the global
test. This is not the case when the problem is initialized with true values, however. In this context, we
propose the use of the global test to detect inconsistencies in the formulation and in the solution of
the problem. Since the data do not contain gross errors, the fact that three of the initialization cases
present higher final objective function values than the Chi-square value is related to a local solution
of the optimization problem, which depends on the optimization algorithm. Besides, two additional
factors arise, which are the initial guess and finite difference technique applied for gradient estimation.

As expected, Figure 3A shows that for forward finite differences different initial guesses resulted
in different numerical performances of the optimization algorithm, where using true values as the
initial guess provided the best results. Besides, the use of true values + 10% has given the worst results,
reflected by the high values of JDRPE.
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As pointed out by Schladt and Hu [97], the initial values of the measurable and unmeasurable
variables are significant for the performance of the optimization problem, where the nearer
the variables are to their optimal values, the faster and more reliable the optimization run.
Nonetheless, depending on the optimization algorithm, the authors also state that a very close starting
point of the optimization to the optimum might not converge to the optimum, due to the small
gradients. Such cases might be treated by superimposing the initial values by random noise. An
alternative method is proposed in [62], where the measurement values are used as initial values for the
measurable variables, whereas the starting values for the unmeasurable variables are approximated
iteratively. Although the use of measured values yielded reasonable results relative to the alternatives
tested, which is the most common practice among real applications, they still reflect a local solution of
the optimization problem.

It is interesting to note in Figure 3B, however, that simply changing the type of finite difference
from forward to central dramatically improved the results for most of the cases. Detailed results on
final objective function values are presented in Table 7. This is surprising, as it is generally assumed
that the availability of good initial guesses is sufficient to guarantee good performance of optimization
techniques [81], although results show that this is not always true. Indeed, it seems that the work of
Prata et al. [101] is the only one to mention something about the type of finite difference, in which the
central finite difference is used.

Dave et al. [156] reported that the SQP-NPSOL was very sensitive to the value of the perturbation
given to the variables for gradient calculation, where accurate gradient determination required the use
of a small perturbation. It was reported that the existence of a trade-off, in which too small values led to
the simulator becoming insensitive to the changes and for large values of the perturbation, on the other
hand, the gradients become inaccurate. The value of 5.00 × 10−3 times the value of the variables was
found to give reasonably accurate and stable gradients. However, no additional comments regarding
the type of finite differences were provided.

One could expect that such an improvement would not be possible without an increase in the
computational cost. As it can be seen in Table 8, it was not the case for half of the initial guesses tested.
Similarly, Table 9 also shows improvement in the computational cost when considering the averages
of different samples. Even for those cases that presented higher solving times, the computational cost
is far from being prohibitive.

Recalling that results are due to the same stationary operating point, it is clear that the numerical
precision of gradient estimation may not allow an adequate performance of the IP algorithm in
solving the DRPE problem (in addition to initial guess, presence of gross errors and model mismatch),
which will provide results out of acceptable statistical limits. In these cases, results might be
surprisingly dependent on the discretization scheme used for gradient estimation, especially when
the derivatives are computed numerically, which constitutes a real and common problem when the
process model is not accessible by the user, as in the present case. This is evident from the results for
both objective function values and decision variables of the optimization problem (data not shown).
Regarding the later, acceptable results for all decision variables were only obtained for settings 2b, 2c
and 2f.

Efficient and robust optimization algorithms must be able to handle not only poor starting points,
but also badly scaled problems and some inaccuracies in the gradients [139]. Using Aspenplus with
an SQP, Piccolo et al. [13] reported that the Aspenplus default values were found to be adequate
for simple problems, but in complex cases where the system is very sensitive or highly nonlinear,
certain problem specific adjustments may have to be made. Unfortunately, no additional comments
on such adjustments were provided. From this perspective, the numerical precision of gradient
estimation could be a potential factor to be investigated. In the case of an unsatisfactory DRPE solution
(or a detected global gross error), the result of the optimization problem must be at least marked as
not trustworthy. In the study of Schladt and Hu [97], for example, the approach applied is to discard
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the result in case a global gross error is detected. Another less severe approach would be repeating the
DR(PE) until it reaches an error free condition.

Table 7. Final objective function values after solving the DR problem as a function of the initial guess
and type of finite difference.

Setting 2e 2a 2f 2b 2g 2c 2h 2d

Initial Guess Measurement True Value (True Value) × 1.1 (True Value) × 0.9

Sample\Finite Difference Forward Central Forward Central Forward Central Forward Central

1 121 266 33 20 997 20 148 1241
2 528 482 21 5 4047 5 1673 5
3 217 4 12 4 189 4 570 4
4 1138 192 31 19 2221 26 1979 1094
5 167 448 24 11 1243 11 675 11

Average 434 279 24 12 1739 13 1009 471

Relative difference (%) −36 −50 −99 −53

Table 8. Elapsed time (min) for solving the DR problem as a function of the initial guess and type of
finite difference.

Setting 2e 2a 2f 2b 2g 2c 2h 2d

Initial Guess Measurement True Value (True Value) × 1.1 (True Value) × 0.9

Sample\Finite Difference Forward Central Forward Central Forward Central Forward Central

1 33 9 6 22 13 24 29 8
2 70 9 18 21 3 29 5 24
3 25 29 31 20 26 31 5 23
4 6 8 3 14 27 24 22 14
5 60 9 2 25 12 27 33 26

Average 39 13 12 21 16 27 19 19

Relative difference (%) −67 72 65 0

Table 9. Averaged results of objective function values and computational cost for different samples
according to the type of finite difference.

Sample
JDRPE Time (min)

Forward Central Relative Difference (%) Forward Central Relative Difference (%)

1 325 387 19 20 16 −22
2 1567 125 −92 24 21 −15
3 247 4 −98 22 26 19
4 1342 333 −75 14 15 6
5 527 120 −77 27 22 −18

4.3. Problem Formulation and Optimization Algorithm

Given the more realistic use of measured values as an initial guess, we continue on testing settings
in order to improve the solution of the DRPE problem for this case. In this section the tests regarding
two different estimators are presented, since the problem formulation is one of the possible sources of
biased results.

Results shown in Table 10 were obtained for settings 2a and 3, as described in Table 3.
Regarding the final objective function value, results for problem formulation indicate a greater
difficulty of the optimization algorithm to find an adequate solution. In spite of having smaller
computational cost, samples 1, 2, and 5 presented higher objective function values. Interestingly,
however, the performance of DRPE for sample 3 has been further improved. Figure 2 shows that
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sample 3 has the smaller variability among all samples, which could be helping the achievement of
good results.

When the values of the final objective function are analyzed in conjunction with the metric
regarding the confidence region of reconciled values, results get even more interesting. While there
has been an increase in the final objective function value for sample 1, Table 11 shows that fewer
variables were out of the confidence region of 99.7%. A similar result is observed for sample 2, where
an increase of 116% in the final objective function value did not affected the quality of reconciled
values. In this context, samples 3, 4, and 5 showed regular behavior, except for the decrease of 11% in
the objective function value of sample 4, being responsible for such a great improvement in the quality
of reconciled values.

Based on the above discussion, it is evident the effect of estimators on DRPE results. The inclusion
of non-measured variables among objective function variables has induced the occurrence of bias in
the estimated variables/parameters. What is not clear from the presented results is why the maximum
likelihood estimator is still presenting variables outside their confidence limits. To answer this question,
we devote attention to the optimization algorithm.

Table 10. Objective function values and computational cost as a function of problem formulation.

Sample
JDRPE Time (min)

θ ∈ JDRPE
(Setting 2a)

θ /∈ JDRPE
(Setting 3)

Relative
Difference (%)

θ ∈ JDRPE
(Setting 2a)

θ /∈ JDRPE
(Setting 3)

Relative
Difference (%)

1 266 485 82 9 6 −32
2 482 1042 116 9 4 −52
3 4 3 −38 29 24 −17
4 192 171 −11 8 9 8
5 448 528 18 9 5 −41

Table 11. Number of variables whose reconciled value is out of the confidence region of 99.7%.

Sample (Setting 2a) (Setting 3)

1 6 5
2 5 5
3 0 0
4 6 3
5 6 8

Table 12 presents a comparison of settings 3 and 4, which only differ on the optimization algorithm
employed. In setting 4, the minimization procedure started with the PSO algorithm in order to explore
the search space, taking advantage of its global search character. After a few iterations, the solution
given by the PSO is transmitted as the initial guess of the IP, which is expected to further refine the
solution and improve convergence speed. It can be seen that the use of the hybrid algorithm presented
improved results, where final objective function values are within the confidence region for all samples.
As also indicated by the metric regarding the confidence region of reconciled values, all variables are
within the confidence region of 99.7%, showing the DRPE solution is efficient and robust. Figure 4
provide detailed results concerning the cumulative distribution function of the variability around the
true values for each sample set, where it can be seen that setting 4 significantly improved the accuracy
of the reconciled variables. Even though these results are achieved at a higher total computational
cost, the PSO contribution is constant and predictable, which helps controlling this variable. The IP
contribution to computational cost, in turn, is very similar to other DRPE experiments shown before.
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Figure 4. Cumulative distribution function of the variability around the true values for each sample set for the DRPE results of settings 3 and 4.
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Based on previously discussed results, it may be argued that local minima are avoided when
the PSO method is used, leading to more reliable reconciled values. When the optimization problem
is not solved adequately, DRPE results would lead to incorrect estimations and severely deflect the
reconciliation of the other measurements and the estimation of parameters. For this reason, and as
the evolution of deterministic algorithms depends on the particular data set sampled, the use of the
hybrid algorithm should be preferred.

Table 12. Objective function values and computational cost as a function of problem formulation.

Sample
JDRPE Time (min)

IP
(Setting 3)

PSO + IP
(Setting 4)

Relative
Difference (%)

IP
(Setting 3)

PSO + IP
(Setting 4)

Relative
Difference (%)

1 485 748/14 −97 6 7 + 21 = 28 354
2 1042 89/4 −99.7 4 6 + 11 = 17 309
3 3 578/3 0 24 6 + 22 = 28 16
4 171 291/17 −90 9 6 + 11 = 17 91
5 528 686/11 −98 5 6 + 13 = 19 242

4.4. A Short Note on the Performance Metric

The relative error between the measured and reconciled data is generally used as a quantitative
metric for evaluating how the data reconciliation has decreased the variability of measurement values.
However, this metric may induce a misinterpretation of DR results. If it is assumed that relative
errors between the measured and reconciled data below 1% indicate a well solved DR problem, results
obtained for setting 4 could not be recognized as consistent according to Figure 5A. If one considers
results from Figure 5B, in turn, they will conclude that results for all variables are consistent, lying
within the confidence region of 99.7%. Therefore, the normalized residue, as a random variable, is
expected to vary in the range of 3σ with 99.7%.

The data reconciliation technique is highly dependent on an adequate and valid assumption
regarding the (co)variance of measurement errors. When it comes to regulatory and legal issues,
such information is even mandatory. In many situations, however, little effort is made to adequately
characterize measurement errors, where the assumption of normal and independent random errors
is the most common. In the absence of sufficient information regarding this issue, approximate
characterization and weak hypotheses on measurement errors might lead to ambiguous or incorrect
conclusions. This requires the uncertainties of measurements to be evaluated somehow, which is
not always easy. Regarding on-line operational measured data, which may contain gross errors,
the standard deviation of measurement data may not be suitable for uncertainty evaluation and
some techniques have been proposed for on-line characterization of process data for real-time
applications [157,158]. An alternative to evaluate the standard deviations of measurement errors
based on measuring instrument nominal accuracy is [159]:

σ(x̄i) =
ξi

1.96
√

Ns

where ξi represents the permissible error of an instrument determined by its accuracy class with a
confidence interval of 95% and Ns represents the number of sensors measuring the same parameter.
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Figure 5. Comparison of metrics for assessing reconciled results: (A) Relative difference between
measured and reconciled data; (B) Normalized residue. DR results of setting 4.

5. Conclusions

Data reconciliation is already an essential tool for many industries and many industrial
applications are described in the literature, where the majority of works are related to steady-state
nonlinear data reconciliation. In spite of this, very few of them evaluate important numerical aspects
of this problem. Distinct settings, even those represented by minor differences, may present different
performances and should be analyzed during the design of a DR application trying to answer
whether the optimization problem is being satisfactory solved. Although the parameter estimation is
intended mainly for off-line applications, as generally performed during empirical process modeling,
data reconciliation and model updating is an important step in real-time optimization.
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In this work, we aimed at providing a numerical assessment of the performance of different
settings for solving nonlinear steady-state data reconciliation. The proposed assessment is based
on the operation of a real offshore oil production process, which presents a highly complex and
nonlinear behavior. We have discussed some components that take part in an industrial application of
data reconciliation and showed how they may interfere in the appropriate solution of the resulting
mathematical programming problem.

It was shown that the numerical precision on gradient estimation involved in derivative-based
optimization algorithms affects the DRPE solution, which does not satisfy the statistical assumptions.
It was also shown that the solution approach may greatly affect the quality of the DRPE solution as
evidenced by infeasible solutions. The solution of the DRPE problem using an interior point algorithm
by means of the simultaneous approach (i.e., Lagrangian relaxation method) provided results that
violate the problem’s constraints, which is due to the activation of some process constraints and the
finite precision of numerical methods. Greater quality and more reliable results have been obtained
when stochastic implementations were combined with a deterministic algorithm in hybrid procedures.
The hybrid algorithm applied in this work consisted of initiating the minimization with the random
search algorithm PSO, taking advantage of its global search character so as to explore the search space,
and subsequently apply the deterministic algorithm IP, which is expected to further refine the solution
and improve convergence speed. Even though such a combination of algorithms have been already
proposed [160–162], the quantitative assessment in data reconciliation applications is almost absent.
The hybrid procedure combined with the sequential approach was able to provide robust and feasible
solutions for all samples analyzed, where both final objective function values and reconciled values
were within the confidence region. In other words, it is shown that the optimization problem was
satisfactorily solved.

Further extensions of this current application include using the reconciliation procedure with real
industrial data in conjunction with a fault/gross error detection strategy and the possible reformulation
of the objective function.
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Abbreviations

The following abbreviations are used in this manuscript:

CV Coefficient of variation
DF Degrees of freedom
DR Data reconciliation
DRPE Data reconciliation with simultaneous parameter estimation
EVM Error-in-variables method
GL Gaussian likelihood
GN Gauss-Newton algorithm
GRG Generalized reduced gradient
IP Interior-point algorithm
LM Levenberg-Marquardt algorithm
NB Newton based algorithm
NLP Nonlinear programming
PCA Principal component analysis
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PSO Particle swarm optimization
QP Quadratic programming
SQP Successive quadratic programming
WLS Weighted least squares
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