
processes

Article

Dynamical Scheduling and Robust Control in
Uncertain Environments with Petri Nets for DESs

Dimitri Lefebvre ID

GREAH Research Group, UNIHAVRE, Normandie University, 76600 Le Havre, France;
dimitri.lefebvre@univ-lehavre.fr

Received: 3 September 2017; Accepted: 21 September 2017; Published: 1 October 2017

Abstract: This paper is about the incremental computation of control sequences for discrete event
systems in uncertain environments where uncontrollable events may occur. Timed Petri nets are used
for this purpose. The aim is to drive the marking of the net from an initial value to a reference one,
in minimal or near-minimal time, by avoiding forbidden markings, deadlocks, and dead branches.
The approach is similar to model predictive control with a finite set of control actions. At each step only
a small area of the reachability graph is explored: this leads to a reasonable computational complexity.
The robustness of the resulting trajectory is also evaluated according to a risk probability. A sufficient
condition is provided to compute robust trajectories. The proposed results are applicable to a large
class of discrete event systems, in particular in the domains of flexible manufacturing. However, they
are also applicable to other domains as communication, computer science, transportation, and traffic
as long as the considered systems admit Petri Nets (PNs) models. They are suitable for dynamical
deadlock-free scheduling and reconfiguration problems in uncertain environments.

Keywords: discrete event systems; timed Petri nets; stochastic Petri nets; model predictive control;
scheduling problems

1. Introduction

The design of controllers that optimize a cost function is an important objective in many
control problems, in particular in scheduling problems that aim to allocate a limited number of
resources within several users or servers according to the optimization of a given cost function.
In the domains of flexible manufacturing, communication, computer science, transportation, and
traffic, the makespan is commonly used as an effective cost function because it leads directly to
minimal cycle times. However, due to multi-layer resource sharing and routing flexibility of the
jobs, scheduling problems are often NP-hard problems. Many recent works in operations research,
automatic control, and computer science communities have studied such problems. In operations
research community, flow-shop, and job-shop problem have been investigated from a long time [1,2]
and a lot of contributions have been proposed, based either on heuristic methods (like Nawaz,
Enscore and Ham or Campbell, Dudek, and Smith heuristics) or artificial intelligence and evolutionary
theory [3–5]. In the automatic control community, automata, Petri nets (PNs), and max-plus algebra
have been used to solve scheduling problems for discrete event systems (DESs) [6,7]. In particular,
with PNs, the pioneer contributions for scheduling problems are based on the Dijkstra and A*
algorithms [8,9]. Such algorithms explore the reachability graph of the net, in order to generate
schedules. Numerous improvements have been proposed: pruning of non-promising branches [10,11],
backtracking limitation [12], determination of lower bounds for the makespan [13], best first search
with backtracking, and heuristic [14] or dynamic programming [15]. By combining scheduling and
supervisory control in the same approach, one can also avoid deadlocks. Some approaches have been
proposed: search in the partial reachability graph [16], genetic algorithms [17], and heuristic functions

Processes 2017, 5, 54; doi:10.3390/pr5040054 www.mdpi.com/journal/processes

http://www.mdpi.com/journal/processes
http://www.mdpi.com
https://orcid.org/0000-0001-7060-756X
http://dx.doi.org/10.3390/pr5040054
http://www.mdpi.com/journal/processes

Processes 2017, 5, 54 2 of 16

based on the firing vector [13,18]. The performance of operations research approaches are good, in
general, compared to the automatic control approaches as long as static scheduling problems are
considered. The advantage to solving scheduling problems with PNs or other tools issued from the
control theory is to use a common formalism to describe a large class of problems and to facilitate the
representation from one problem to another. In particular, PNs are suitable to represent many systems
in various domains as flexible manufacturing, communication, computer science, transportation, and
traffic [6,7]. This makes such approaches more suitable for dynamic and robust scheduling in uncertain
environments. However, modularity and genericity usually suffer from a large computational effort
that disqualifies the approaches for numerous large systems.

This work aims to propose a modular and generic approach of weak complexity. It details a
method for timed PNs that incrementally computes control sequences in uncertain environments.
Uncertainties are assumed to result from system failures or other unexpected events, and robustness
with respect to such uncertainties is obtained thanks to a model predictive control (MPC) approach.
The computed control sequences aim to reach a reference state from an initial one. The forbidden states,
as deadlocks and dead-branches are avoided. The trajectory duration approaches its minimal value.
Thanks to its robustness, the proposed approach generates dynamical and reconfigurable schedules.
Consequently, it can be used in a real-time context. Resource allocation and operation scheduling
for manufacturing systems are considered as the main applications. The robustness of the resulting
trajectory is evaluated as a risk belief or probability. For that purpose structural and behavioral
models of the uncertainties are considered. Finally, robust trajectories are computed. Compared to our
previous works [19–22], the main contributions are: including, explicitly, uncertainties by means of
uncontrollable stochastic transitions in the PNs model; evaluating the risk of the computed control
sequences; proposing a sufficient condition for the existence of robust trajectories.

The paper is organized as follows. In Section 2, the preliminary notions and the proposed method
are developed: timed PNs with uncontrollable transitions are presented, non-robust and robust control
sequences are introduced, and the approach to compute non-robust and robust control sequences
with minimal duration is developed. Section 3 illustrates the method on a simple example and then
presents the performance for a case study. Section 4 is a discussion about the method and the results.
Section 5 sums up the conclusions and perspectives.

2. Materials and Methods

2.1. Petri Nets

A PN structure is defined as G = <P, T, WPR, WPO>, where P = {P1, . . . , Pn} is a set of n places
and T = {T1, . . . , Tq} is a set of q transitions with indices {1, ...,q} WPO ∈ (N) n×q and WPR ∈ (N) n×q are
the post- and pre- incidence matrices (N is the set of non-negative integer numbers), and W = WPO −
WPR ∈ (Z) n×q (Z is the set of positive and negative integer numbers) is the incidence matrix. <G, MI >
is a PN system with initial marking MI and M ∈ (N) n represents the PN marking vector. The enabling
degree of transition Tj at marking M is given by nj(M):

nj(M) = min{

1

 mk/wPR
kj

1

 : Pk ∈ ◦Tj} (1)

where ◦Tj stands for the preset of Tj, mk is the marking of place Pk, wPR
kj is the entry of matrix WPR

in row k and column j. A transition Tj is enabled at marking M if and only if (iff) nj(M) > 0, this
is denoted as M [Tj >. When Tj fires once, the marking varies according to ∆M = M’ − M = W(:,
j), where W(:, j) is the column j of incidence matrix. This is denoted by M [Tj > M’ or equivalently
by M’ = M + W.Xj where Xj denotes the firing count vector of transition Tj [7]. A firing sequence σ

is defined as σ = T(j1)T(j2) . . . T(jh) where j1,... jh are the indices of the transitions. X(σ) ∈ (N) q is
the firing count vector associated to σ, |σ| = ||X(σ)||1 = h is the length of σ (|| ||1 stands for
the 1-norm), and σ = ε stands for the empty sequence. The firing sequence σ fired at M leads to the
trajectory (σ, M):

Processes 2017, 5, 54 3 of 16

(σ, M) = M(0) [T(j1) > M(1) M(h − 1) [T(jh) > M(h) (2)

where M(0) = M is the marking from which the trajectory is issued, M(1), ..., M(h − 1) are the
intermediate markings and M(h) is the final marking (in the next, we write M(k) ∈ (σ, M), k = 0, . . . h).
A marking M is said to be reachable from initial marking MI if there exists a firing sequence σ such
that MI [σ > M and σ is said to be feasible at MI. R(G, MI) is the set of all reachable markings from MI.

2.2. Forbidden, Dangerous and Robust Legal Markings

For control issues, the set of transitions T is divided into two disjoint subsets TC, and TNC such that
T = TC ∪ TNC. TC is the subset of qC controllable transitions, and TNC the subset of qNC uncontrollable
transitions. Without loss of generality TC = {T1, . . . , TqC} and TNC = {TqC+1, . . . , TqC+qNC}. The firings
of enabled controllable transitions are enforced or avoided by the controller, whereas the firings of
uncontrollable transitions are not, and uncontrollable transitions fire spontaneously according to some
unknown random processes. A set of marking specifications is also defined with the function SPEC:
for any marking M ∈ R(G, MI), SPEC(M) = 1 if M satisfies the marking specifications, otherwise
SPEC(M) = 0. When no specification is considered, SPEC(M) = 1 for all M ∈ R(G, MI). The two disjoint
sets F(G, MI, Mref) and L(G, MI, Mref) of forbidden and legal markings respectively are introduced:

L(G, MI, Mref) = {M ∈ R(G, MI) at

1

 σ ∈ (TC)* with M [σ > Mref with (SPEC(M’) = 1)
for all M’ ∈ (σ, M)}

(3)

F(G, MI, Mref) = R(G, MI)/L(G, MI, Mref) (4)

In other words, a marking M ∈ R(G, MI) is legal with respect to Mref if a trajectory exists from M to
Mref that contains only controllable transitions and intermediate markings that satisfy the specifications.
In addition, a legal marking M is robust with respect to TC if M◦ ⊆ TC, where M◦ stands for the set
of transitions enabled at M, otherwise M is dangerous (Figure 1) With this definition of robust and
dangerous markings, a marking that satisfies M◦ ⊆ TC but that has only dangerous markings as
successors in R(G, MI) is considered as robust. Note that a finer partition of the legal markings in
three classes (strong robust, weak robust, and dangerous) could be used for some problems. On
the contrary, a forbidden marking is a marking from which no controllable trajectory exists to the
reference. Examples of forbidden markings are deadlocks or markings that do not satisfy the system
specifications or markings that enable only uncontrollable transitions (Figure 1).

Processes 2017, 5, 54 3 of 15

where M(0) = M is the marking from which the trajectory is issued, M(1), ..., M(h - 1) are the
intermediate markings and M(h) is the final marking (in the next, we write M(k) ∈ (σ, M), k = 0, …h).
A marking M is said to be reachable from initial marking MI if there exists a firing sequence σ such
that MI [σ > M and σ is said to be feasible at MI. R(G, MI) is the set of all reachable markings from MI.

2.2. Forbidden, Dangerous and Robust Legal Markings

For control issues, the set of transitions T is divided into two disjoint subsets TC, and TNC such
that T = TC ∪ TNC. TC is the subset of qC controllable transitions, and TNC the subset of qNC uncontrollable
transitions. Without loss of generality TC = {T1, …, TqC} and TNC = {TqC+1, …, TqC+qNC}. The firings of
enabled controllable transitions are enforced or avoided by the controller, whereas the firings of
uncontrollable transitions are not, and uncontrollable transitions fire spontaneously according to
some unknown random processes. A set of marking specifications is also defined with the function
SPEC: for any marking M ∈ R(G, MI), SPEC(M) = 1 if M satisfies the marking specifications, otherwise
SPEC(M) = 0. When no specification is considered, SPEC(M) = 1 for all M ∈ R(G, MI). The two disjoint
sets F(G, MI, Mref) and L(G, MI, Mref) of forbidden and legal markings respectively are introduced:

L(G, MI, Mref) = {M ∈ R(G, MI) at � σ∈(TC)* with M [σ > Mref with (SPEC(M’) = 1)

for all M’ ∈ (σ, M)} (3)

F(G, MI, Mref) = R(G, MI)/L(G, MI, Mref) (4)

In other words, a marking M ∈ R(G, MI) is legal with respect to Mref if a trajectory exists from M
to Mref that contains only controllable transitions and intermediate markings that satisfy the
specifications. In addition, a legal marking M is robust with respect to TC if M° ⊆ TC, where M° stands
for the set of transitions enabled at M, otherwise M is dangerous (Figure 1) With this definition of
robust and dangerous markings, a marking that satisfies M° ⊆ TC but that has only dangerous
markings as successors in R(G, MI) is considered as robust. Note that a finer partition of the legal
markings in three classes (strong robust, weak robust, and dangerous) could be used for some
problems. On the contrary, a forbidden marking is a marking from which no controllable trajectory
exists to the reference. Examples of forbidden markings are deadlocks or markings that do not satisfy
the system specifications or markings that enable only uncontrollable transitions (Figure 1).

Figure 1. Examples of robust (R), dangerous (D) and forbidden (F) markings in R(G, MI) depending
on the controllable (TC) and uncontrollable transitions (TNC).

The previous definitions are extended to trajectories. A robust trajectory is a legal trajectory that
visits only robust markings. On the contrary a dangerous trajectory is a legal trajectory that visits at
least one dangerous marking.

2.3. Timed Petri Nets with Uncontrollable Transitions

Timed Petri nets are PNs whose behaviors are constrained by temporal specifications [7]. For
this reason, timed PNs have been intensively used to describe DESs like production systems [6]. This
paper concerns partially-controlled timed PNs under and infinite server semantic where the firing of
controllable transitions behaves according to an earliest firing preselection policy (transitions fire
earliest in the order computed by the controller) and time specifications similar to the one used for
T-timed PNs [23]: if Tj ∈ TC, the firing of Tj occurs at earliest after a minimal delay dmin j from the date
it has been enabled (dmin j = 0 if no time specification exists for Tj). On the contrary, the firings of

TC TC

T’

R

T
T’

TNC TNC

T
T’

T

F
F

TNC TC

T’

D

T

SPEC = 0

Figure 1. Examples of robust (R), dangerous (D) and forbidden (F) markings in R(G, MI) depending on
the controllable (TC) and uncontrollable transitions (TNC).

The previous definitions are extended to trajectories. A robust trajectory is a legal trajectory that
visits only robust markings. On the contrary a dangerous trajectory is a legal trajectory that visits at
least one dangerous marking.

2.3. Timed Petri Nets with Uncontrollable Transitions

Timed Petri nets are PNs whose behaviors are constrained by temporal specifications [7]. For this
reason, timed PNs have been intensively used to describe DESs like production systems [6]. This paper
concerns partially-controlled timed PNs under and infinite server semantic where the firing of

Processes 2017, 5, 54 4 of 16

controllable transitions behaves according to an earliest firing preselection policy (transitions fire
earliest in the order computed by the controller) and time specifications similar to the one used for
T-timed PNs [23]: if Tj ∈ TC, the firing of Tj occurs at earliest after a minimal delay dmin j from the
date it has been enabled (dmin j = 0 if no time specification exists for Tj). On the contrary, the firings
of uncontrollable transitions are unpredictable: if Tj ∈ TNC, the firings of Tj occur according to an
unknown arbitrarily random process at any time from the date it has been enabled. Consequently,
partially-controlled timed PNs (PCont-TPNs) are defined as <G, MI, Dmin> where Dmin = (dmin j)
∈ (R+)qC and R+ is the set of non-negative real numbers. If in addition, the stochastic dynamics
of the uncontrollable transitions are driven by exponential probability density functions (pdfs) of
parameters µ = (µj) ∈ (R+)qNC, with a race policy and a resampling memory [24], then partially
controlled stochastic timed PNs (PCont-SPNs) defined as <G, MI, Dmin, µ> will be used instead of
PCont-TPNs. The parameters dmin j are set in an arbitrary time unit (TU) and the parameters µj are set
in TU-1.

A timed firing sequence σ of length |σ| = h and of duration th is defined as σ = T(j1, t1)T(j2, t2) . . .
T(jh, th) where j1, ... jh are the indices of the transitions, and t1, ..., th represent the dates of the firings
that satisfy 0 ≤ t1 ≤ t2 ≤ . . . ≤ th. The timed firing sequence σ fired at M leads to the timed trajectory
(σ, M):

(σ, M) = M(0) [T(j1, t1) > M(1) M(h-1) [T(jh, th) > M(h) (5)

with M(0) = M. Note that, under earliest firing policy, an untimed trajectory of the form of Equation (2)
that contains only controllable transitions can be transformed in a straightforward way into a timed
trajectory of the form of Equation (5) of minimal duration [20,21] using Algorithm 1. This algorithm
also returns DURATION(σ, M) = th.

Algorithm 1. Transformation of an untimed trajectory (σ,M) into timed one (σ’,M).

(Inputs: σ, M, G, Dmin,; Output: σ’, τ)

1. initialization: τ← 0; CAL← {(Tj, dmin j) at M [Tj >}, σ’← (ε,0), h← | σ |

2. for k from 1 to h
3. find in CAL the date τk of the earliest occurrence of the kth transition T(jk) in σ

4. τ← τk, remove entry (T(jk), τk) in CAL
5. CALnew ← Ø, M’←M’ −WPR.X(T(jk))
6. for all T’ at M’ [T’ >
7. compute the enabling degree n’(T’, M’) of T’ at M’
8. for j from 1 to n(T’, M’)
9. find the jth occurrence (T’, τ’j) of T’ in CAL

10. CALnew ← CALnew ∪ (T,’ max(τ’j, τ))

11. end for
12. end for
13. M”←M’ + WPO.X(T(jk))
14. for all t” at M” [T” >
15. compute the enabling degree n”(T”, M”) of T” at M”
16. for j from 1 to n”(T”, M”) − n’(T”, M’)
17. CALnew ← CALnew ∪ (T”, τ + dmin(T”))
18. end for
19. end for
20. CAL← CALnew, σ’← σ’ (T(jk), τk)
21. end for
22. τ← τh

Processes 2017, 5, 54 5 of 16

2.4. Belief and Probability of Trajectory Deviation

The objective of this section is to evaluate the risk that uncontrollable firings may occur during
the execution of the trajectory (σ, MI) and deviate the trajectory from the reference. For PCont-TPNs,
this risk is evaluated with the belief RB(σ, MI, TC):

RB(σ, MI, TC) = hNC/h (6)

where hNC is the number of intermediate dangerous markings in (σ, MI) and h is the number of
markings visited by (σ, MI). For PCont-SPNs, the belief RB(σ, MI, TC) is replaced by the probability
RP(σ, MI, TC) that can be computed with Proposition 1:

Proposition 1. Let <G, MI, Dmin, µ> be a PCont-SPN, under the earliest firing policy, with MI a legal robust
marking. Let Mref be a reference marking and (σ, MI) be a legal trajectory to Mref. The probability RP(σ, MI,
TC) that (σ, MI) deviates from the reference is given by:

RP(σ, MI , TC) = ∑
1≤k1≤h

π(k1)− ∑
1≤k1<k2≤h

(π(k1).π(k2)) + · · ·+

(−1)h−1. ∑
1≤k1<...<kh−1≤h

(π(k1) . . . π(kh−1)) + (−1)h.π(1) . . . π(h)
(7)

with:

π(k) =
∑Tj∈TNC∪(M(k))◦ µj

∑Tj∈TNC∪(M(k))◦ µj +
(
djk
)−1

if djk 6= 0, otherwise π(k) = 0, and djk = tk+1 − tk is the remaining time to fire T(jk+1, tk+1) at date tk.

Proof. RP(σ, MI, TC) is the probability to fire uncontrollable transitions when dangerous markings
belong to (σ, MI).

Consider the trajectory of Figure 2. Under earliest firing policy, the probability that the
uncontrollable transition TNC1 or TNC2 fires before T(jk+1, tk+1) and that the trajectory deviates from
Mref at M(k) is given by:

π(k) = Prob(TNC1 or TNC2 fires before T(jk+1, tk+1)) =
µ1 + µ2

µ1 + µ2 +
(
djk
)−1

if djk 6= 0, otherwise Prob(TNC1 or TNC2 fires before T(jk+1, tk+1)) = 0. Note that if the controllable
transition T(jk+1, tk+1) fires earliest after a duration djk, then the probability π(k) is computed by
considering the approximation 1/djk of the mean firing rate of T(jk+1, tk+1). Note also that the duration
of other controllable transitions enabled at M(k) (for example, TC2 in Figure 2) are not considered
because this transition does not belong to (σ, MI). Alternatively the probability that the trajectory
continues to M(k+1) at M(k) is given by:

1− π(k) = Prob(T(jk+1, tk+1) fires before TNC1 and TNC2) =

(
djk
)−1

µ1 + µ2 +
(
djk
)−1 (8)

Thus, RP(σ,MI,TC) is finally given by:

RP(σ, MI , TC) = π(0) + (1− π(0))(π(1) + (1− π(1)) . . . π(h)))

for which an exhaustive development is easily rewritten as in Equation (7).

Processes 2017, 5, 54 6 of 16

Processes 2017, 5, 54 5 of 15

where hNC is the number of intermediate dangerous markings in (σ, MI) and h is the number of
markings visited by (σ, MI). For PCont-SPNs, the belief RB(σ, MI, TC) is replaced by the probability
RP(σ, MI, TC) that can be computed with Proposition 1:

Proposition 1. Let <G, MI, Dmin, μ> be a PCont-SPN, under the earliest firing policy, with MI a legal robust
marking. Let Mref be a reference marking and (σ, MI) be a legal trajectory to Mref. The probability RP(σ, MI, TC)
that (σ, MI) deviates from the reference is given by:

,ߪ)ܴܲ ,ூܯ (࡯ࢀ = ෍ (ଵ݇)ߨ − ෍ ൫ߨ(݇ଵ). ൯(ଶ݇)ߨ + ⋯ +ଵஸ௞భழ௞మஸ௛ଵஸ௞భஸ௛

(−1)௛ିଵ. ෍ ൫ߨ(݇ଵ) … ൯(௛ିଵ݇)ߨ +ଵஸ௞భழ…ழ௞೓షభஸ௛ (−1)௛. (1)ߨ … (ℎ)ߨ
(7)

with: ߨ(݇) = ∑ ∑°((࢑)ࡹ)∪࡯ࡺࢀ∋௝்ೕߤ °((࢑)ࡹ)∪࡯ࡺࢀ∋௝்ೕߤ + (௝݀ೖ)ିଵ

if djk ≠ 0, otherwise π(k) = 0, and djk = tk+1 − tk is the remaining time to fire T(jk+1, tk+1) at date tk.

Proof. RP(σ, MI, TC) is the probability to fire uncontrollable transitions when dangerous markings
belong to (σ, MI).

Consider the trajectory of Figure 2. Under earliest firing policy, the probability that the
uncontrollable transition TNC1 or TNC2 fires before T(jk+1, tk+1) and that the trajectory deviates from Mref

at M(k) is given by: ߨ(݇) =)ܾ݋ݎܲ ேܶ஼ଵ or ேܶ஼ଶ fires before ܶ(݆௞ାଵ, ((௞ାଵݐ = ଵߤ + ଵߤଶߤ + ଶߤ + (௝݀ೖ)ିଵ

if djk ≠ 0, otherwise Prob(TNC1 or TNC2 fires before T(jk+1, tk+1)) = 0. Note that if the controllable transition
T(jk+1, tk+1) fires earliest after a duration djk, then the probability π(k) is computed by considering the
approximation 1/djk of the mean firing rate of T(jk+1, tk+1). Note also that the duration of other
controllable transitions enabled at M(k) (for example, TC2 in Figure 2) are not considered because this
transition does not belong to (σ, MI). Alternatively the probability that the trajectory continues to
M(k+1) at M(k) is given by: 1 − (݇)ߨ = ,௞ାଵ݆)ܶ)ܾ݋ݎܲ (௞ାଵݐ fires before ேܶ஼ଵ and ேܶ஼ଶ) = (௝݀ೖ)ିଵߤଵ + ଶߤ + (௝݀ೖ)ିଵ (8)

Thus, RP(σ,MI,TC) is finally given by: ܴܲ(ߪ, ,ூܯ (࡯ࢀ = (0)ߨ + (1 − (1)ߨ)((0)ߨ + ൫1 − ൯(1)ߨ … (((ℎ)ߨ

for which an exhaustive development is easily rewritten as in Equation (7).

Figure 2. An example of dangerous trajectory: M(k) enables two controllable transitions T(k + 1) and
TC2 and two uncontrollable ones TNC1 and TNC2.

T(1)

M(0)

T(2)

M(1)

T(k+1) :
 dmin

M(k)

TNC1 : mu1
TNC2 : mu2

TC2

T(k+2)
M

(k+1)
Mref

Figure 2. An example of dangerous trajectory: M(k) enables two controllable transitions T(k + 1) and
TC2 and two uncontrollable ones TNC1 and TNC2.

2.5. Model Predictive Control for PCont-TPNs

The determination of control sequences for untimed and timed PNs that contain only controllable
transitions has been considered in our previous works [19,20] with a model predictive control
(MPC) approach adapted for DESs. In this section, this approach is extended to PCont-TPNs (and
consecutively to PCont-SPNs). At each step, the future trajectory is predicted from the current state.
A sequence of control actions is computed by minimizing and the first action of the sequence is applied.
Then prediction starts again from the new state reached by the system [25,26]. The cost function JFC(M,
Mref) = (Dmin)T. X based on the temporal specification and on the evaluation X of the firing count vector,
that leads to the reference Mref from the marking M, has been introduced in our previous work [21] to
estimate the time to the reference. In this section, this cost function is rewritten for PCont-TPNs. For
this purpose let us define GC and WC ∈ (Z) n×qC as the restrictions of G and W to the set of controllable
transitions TC. The controllable firing count vector XC that satisfies Mref −M = WC.XC and minimizes
JFC(M, Mref) = (Dmin)T.XC is obtained by solving an optimization problem with integer variables of
reduced size qC-r where r is the rank of WC. A regular matrix PL ∈ (Z) n×n and a regular permutation
matrix PR ∈ {0,1} qC×qC exists at:

WC
′ = PL.WC.PR =

(
W11 W12

W21 W22

)
(9)

with W11 ∈ (Z) r×r a regular upper triangular matrix with integer entries, and W21 = 0(n-r)×r, W22 =
0(n-r)×(qC-r) zero matrices of appropriate dimensions. For each M ∈ R(G, MI), solving Equation(10):

Min {(Dmin)T.XC : XC ∈ (N) qC at WC.XC = (Mref −M)} (10)

is equivalent to solving Equation (11) and this leads to reduce the number of variables by r:

Min {F2.XC2 : XC2∈(N)qC−r at (W11)−1.W12.XC2 ≤ (W11)−1.∆M1} (11)

with F2 = (Dmin)T.(PR2 − PR1.(W11)−1.W12), PR = (PR1 | PR2), PL = ((PL1)T | (PL2)T)T and ∆M1 =
PL1.(Mref − M). This reformulation results from the rewriting (∆M1

T ∆M2
T)T = PL.(Mref − M) and

(XC1
T XC2

T)T = (PR)−1.XC with XC1 = (W11)−1.∆M1 − (W11)−1.W12.XC2. The linear optimization
problem (Equation (11)) has a solution with integer values as long as Mref ∈ R(GC, M) and the cost
function JFC(M, Mref) based on firing count vector XC2 and on Dmin is defined by Equation (12):

JFC(M, Mref) = (Dmin)T.(PR1.(W11)−1.∆M1 + PR2.XC2 PR1.(W11)−1.W12.XC2) (12)

Processes 2017, 5, 54 7 of 16

As long as XC2 corresponds to a feasible and legal firing sequence σ to the reference (i.e., XC2

does not encode a spurious solution for Equation (11)), JFC(M, Mref) provides an upper bound of the
duration of σ as proved with Proposition 2.

Proposition 2. Let us consider a PCont-TPN (resp. PCont-SPN) of parameter Dmin (with respect to the
parameters Dmin and µ), under the earliest firing policy. Let Mref be a reference marking and (σ, MI) a legal
trajectory to Mref with σ ∈ TC* and minimal duration DURATION(σ, MI). Let XC(σ) ∈ (N) qC be the firing
count vector of σ. Then:

DURATION(σ,MI) ≤ (Dmin)T.XC(σ) (13)

Proof. (σ, MI) is written as in Equation (5). T(j1, t1) is enabled at date 0 and fires at date t1 = dmin j1
to result in marking M(1). T(j2, t2) is enabled at date 0 or t1 and fires not later than t1 + dmin j2.
Thus t2 ≤ dmin j1 + dmin j2. The same reasoning is repeated h times. T(jh, th) is enabled at latest at date
th-1 and fires not later than th-1 + dmin jh. Thus th ≤ dmin j1 + . . . + dmin jh. The minimal duration of (σ,
MI) is th, thus, Equation (13) holds.

The basic idea is to use JFC(M, Mref) to iteratively drive the search of the controllable firing
sequence of minimal duration that leads to the reference. At each step (i.e., for each intermediate
marking), a part of the controllable reachability graph is explored and a prediction of the remaining
duration to the reference is obtained with cost function JFC(M, Mref) computed for each marking M of
the explored graph. Then the first control action is applied (i.e., the next controllable transition fires).
If an uncontrollable firing occurs, the trajectory deviates from the predicted one and the system enters
in an unexpected state. However, the deviation is immediately taken into account by the controller
that updates the control sequence at the next step. For this reason the proposed strategy leads to a
dynamical and robust scheduling. Two algorithms already developed in our previous works [21,22]
are used for that purpose.

Algorithm 2 similar to the one developed in [21,22] encodes as a tree Tree(M, H) a small part of
the reachability graph rooted at M (Figure 3). The tree is limited in depth with parameter H and in
duration with parameter Hτ .

Processes 2017, 5, 54 7 of 15

the explored graph. Then the first control action is applied (i.e., the next controllable transition fires).
If an uncontrollable firing occurs, the trajectory deviates from the predicted one and the system enters
in an unexpected state. However, the deviation is immediately taken into account by the controller
that updates the control sequence at the next step. For this reason the proposed strategy leads to a
dynamical and robust scheduling. Two algorithms already developed in our previous works [21,22]
are used for that purpose.

Algorithm 2 similar to the one developed in [21,22] encodes as a tree Tree(M, H) a small part of
the reachability graph rooted at M (Figure 3). The tree is limited in depth with parameter H and in
duration with parameter Hτ.

Figure 3. Computation of the next transition to fire with Algorithm 2.

Each node S = {m(S), σ(S), s(S), l(S), e(S)} ∈ Tree(M, H) is tagged with a marking m(S), the firing
sequence σ(S) at M [σ(S) > m(S), and the sequence of nodes s(S) in the tree from M to m(S). In addition,
the flags l(S) and e(S) are introduced at l(S) = 0 if S is forbidden, otherwise l(S) = 1 and e(S) = 1 if S is
a terminal node of the tree, otherwise e(S) = 0. At each intermediate marking, Algorithm 2 returns the
next transition T* to fire.

Algorithm 2. Computation of T* for PCont-TPNs.
(Inputs: M, Mref, GC, SPEC, F, H, Hτ ; Outputs: F, converge, exhaustive, T*)
1. if M ∈ F, S0 ← {M, ε, S0, 0, 1}, converge ← −2, else S0 ← {M, ε, S0, 1, 0}, end if
2. if M = Mref, S0 ← {M, ε, S0, 1, 1}, converge ← 1, else S0 ← {M, ε, S0, 1, 0}, end if
3. Tree ← S0, ∑ ← S0, T* ← ε, exhaustive← 1
4. while Ǝ S ∈ Tree at l(S) = 1 and e(S) = 0,
5. for each T ∈ TC at m(S) [T >
6. compute the successor S’ of S by firing T, M’ at m(S) [t > M’, σ’ ← σ(S) T, s’ ← s(S) S’
7. if (SPEC(M’)=0) ∨ ((M’)° ∪ TC =Ø), F ← F∪{m(S)}, end if
8. if (M’∈F) ∨ (S’∈ s(S)),l ← 0, else l ← 1, end if
9. if (l = 0) ∨ (M’ = Mref) ∨ (|σ’| = H) ∨ (DURATION(σ’, M)> Hτ), e ← 1, else e←0, end if
10. Tree ← Tree ∪ { M’, σ’, s’, l, e}
11. end for
12.end while
13. for h from H-1 to 0

 S1 S3

Tj1

Tk0

S0

Ti1

 S5

Tj3

 S8

Ti3

 S4

T* = Ti0

 S7

 Sref

depth H

Ti2

 S6

Tj0

 S2

X(S4)

X(S5)
X(S6)

X(S7)

X(S8)

Figure 3. Computation of the next transition to fire with Algorithm 2.

Processes 2017, 5, 54 8 of 16

Each node S = {m(S), σ(S), s(S), l(S), e(S)} ∈ Tree(M, H) is tagged with a marking m(S), the firing
sequence σ(S) at M [σ(S) > m(S), and the sequence of nodes s(S) in the tree from M to m(S). In addition,
the flags l(S) and e(S) are introduced at l(S) = 0 if S is forbidden, otherwise l(S) = 1 and e(S) = 1 if S is a
terminal node of the tree, otherwise e(S) = 0. At each intermediate marking, Algorithm 2 returns the
next transition T* to fire.

Algorithm 2. Computation of T* for PCont-TPNs.

(Inputs: M, Mref, GC, SPEC, F, H, Hτ ; Outputs: F, converge, exhaustive, T*)

1. if M ∈ F, S0 ← {M, ε, S0, 0, 1}, converge←−2, else S0 ← {M, ε, S0, 1, 0}, end if
2. if M = Mref, S0 ← {M, ε, S0, 1, 1}, converge← 1, else S0 ← {M, ε, S0, 1, 0}, end if

3. Tree← S0, ∑← S0, T*← ε, exhaustive← 1
4. while

1

 S ∈ Tree at l(S) = 1 and e(S) = 0,
5. for each T ∈ TC at m(S) [T >
6. compute the successor S’ of S by firing T, M’ at m(S) [t > M’, σ’← σ(S) T, s’← s(S) S’
7. if (SPEC(M’) = 0) ∨ ((M’)◦ ∪ TC = Ø), F← F∪{m(S)}, end if
8. if (M’∈F) ∨ (S’∈ s(S)),l← 0, else l← 1, end if
9. if (l = 0) ∨ (M’ = Mref) ∨ (|σ’| = H) ∨ (DURATION(σ’, M)> Hτ), e← 1, else e←0, end if

10. Tree← Tree ∪ { M’, σ’, s’, l, e}
11. end for
12. end while
13. for h from H-1 to 0
14. for each S ∈ Tree at |σ(S)| = h
15. if (l(S’) = 0 for all direct successors S’ of S in Tree), l(S)← 0, e(S)← 1, end if
16. end for
17. end for
18. for each S ∈ Tree at (l(S) = 0) ∧ (e(S) = 0)

19. if

1

 S’∈ Tree at (S’ 6= S) ∧ (m(S’) = m(S)) ∧ (l(S’) = 1), F← F ∪ {m(S)}, end if
20. end for
21. for each S ∈ Tree st e(S) = 1, ∑← ∑ ∪ {S}, end if
22. ∑*←{S* at JFC(m(S*), Mref) = min(JFC(m(S), Mref), for all S ∈ ∑}

23. ∑**←{S* at DURATION(σ(S*),M) = min(DURATION(σ(S),M)) for all S ∈ ∑*}
24. if {S0} = ∑**, converge←−1, T*← ε, else select T* as the first transition of σ(S*) with S* ∈ ∑**,

converge← 0, end if
25. for each S ∈ ∑
26. if (l(S) = 1) ∧ (e(S) = 1) ∧ (DURATION(σ(S),M) < Hτ), exhaustive← 0, end if
27. end for

The complete control sequence σ* is obtained with Algorithm 3 similar to the one developed
in [21,22] that adapts the parameter H in range [1 : H] where H is an input parameter (Figure 4) that
limits the maximal depth of the search in steps. This algorithm starts at initial marking MI, with no
forbidden marking (i.e., F = Ø) and with minimal depth (i.e., H = 1). As long as convergence is ensured,
T* is added to σ* and the current marking M is updated. Finally Algorithm 3 also evaluates the risk RP
of the computed trajectory.

Processes 2017, 5, 54 9 of 16

Algorithm 3. Control sequence computation for PCont-TPNs.

(Inputs: MI, Mref, G, TC, TNC, SPEC, Dmin, µ, H,Hτ ; Outputs: σ*, success, RP)

1. M←MI, converge← 0, σ*← ε, H← 1, F← Ø, success← 1
2. while (converge < 1)
3. compute converge, exhaustive and T* ∈ TC and update F with Algorithm 2
4. if (converge = 0)ˆ((exhaustive = 1) ∨ ((exhaustive = 0)ˆ(H = H))),
5. compute σ*← σ* T* and M at MI [σ* > M
6. H←max(1, H-1)
7. end if
8. if ((converge = −1) ∧ (H = H)) ∨ (converge = −2),
9. if (M 6= MI),
10. remove last transition in σ* and compute M at MI[σ* > M
11. else
12. if (converge = −2), success←−2, else success←−1,end if
13. break
14. end if
15. end if
16. if ((H = H) ∧ (converge = 0) ∧ (exhaustive = 0)), success← 0, end if
17. if (H < H) ∧ ((converge = −1) ∨ ((converge = 0) ∧ (exhaustive = 0)), H← H + 1, end if
18. end while
19. compute RP with (7)

Processes 2017, 5, 54 8 of 15

14. for each S ∈ Tree at |σ(S)| = h
15. if (l(S’)=0 for all direct successors S’ of S in Tree), l(S) ← 0, e(S) ← 1, end if
16. end for
17.end for
18.for each S ∈ Tree at (l(S) = 0) ∧ (e(S) = 0)
19. if Ǝ⏊ S’∈ Tree at (S’ ≠ S) ∧ (m(S’) = m(S)) ∧ (l(S’) = 1), F ← F ∪ {m(S)}, end if
20. end for
21.for each S ∈ Tree st e(S) = 1, ∑ ← ∑ ∪ {S}, end if
22. ∑*←{S* at JFC(m(S*), Mref) = min(JFC(m(S), Mref), for all S ∈ ∑}
23. ∑**←{S* at DURATION(σ(S*),M) = min(DURATION(σ(S),M)) for all S ∈ ∑*}
24. if {S0} = ∑**, converge ← −1, T* ← ε, else select T* as the first transition of σ(S*) with S* ∈ ∑**,
 converge ← 0, end if
25. for each S ∈ ∑
26. if (l(S) = 1) ∧ (e(S) = 1) ∧ (DURATION(σ(S),M) < Hτ), exhaustive ← 0, end if
27.end for

The complete control sequence σ* is obtained with Algorithm 3 similar to the one developed in
[21,22] that adapts the parameter H in range [1 ∶ is an input parameter (Figure 4) that ܪ where [ܪ
limits the maximal depth of the search in steps. This algorithm starts at initial marking MI, with no
forbidden marking (i.e., F = Ø) and with minimal depth (i.e., H = 1). As long as convergence is
ensured, T* is added to σ* and the current marking M is updated. Finally Algorithm 3 also evaluates
the risk RP of the computed trajectory.

Figure 4. MPC global schema with Algorithm 3.

Algorithm 3. Control sequence computation for PCont-TPNs.
(Inputs: MI, Mref, G, TC, TNC, SPEC, Dmin, μ, ܪ,Hτ ; Outputs: σ*, success, RP)
1. M ← MI, converge ← 0, σ* ← ε, H ← 1, F ← Ø, success ← 1
2.while (converge < 1)
3. compute converge, exhaustive and T* ∈ TC and update F with Algorithm 2
4. if (converge = 0)^((exhaustive = 1) ∨ ((exhaustive = 0)^(H = ܪ))),
5. compute σ* ← σ* T* and M at MI [σ* > M
6. H ← max(1, H-1)
7. end if

 S1 S3

Tj1

Tk0

S0

Ti1

 S5

Tj3

 S8

Ti3

 S4

Ti0

 S7

 Sref

Ti2

 S6

Tj0

 S2

X(S9) X(S11)

Ti4

 S9

Tj5Ti5

 S11 S10

Step 1

Step 2

Step 3

X(S10)

Figure 4. MPC global schema with Algorithm 3.

Note that the complexity of Algorithm 3 is at most O(h.qH
C) where h = |σ*|.

Example 1. PCont-SPN1 is considered with TC = {T1, T2, T3, T4, T5, T6}, TNC = {T7}, Dmin = (1, 1, 1, 1, 1,
5)T and µ = µ7 = 1 (Figure 5). The control objective is to reach Mref = (5 0 0 0)T from MI = (1 0 0 0)T and no
additional marking constraint is considered. The cycles {P1, T1, P2, T2} and {P1, T3, P3, T4} are both token
producers due to the weighted arcs: the execution of {P1, T3, P3, T4} multiplies each token by 5 compared to {P1,
T1, P2, T2} that multiplies it by 2 only. Thus, sequences with cycle {P1, T3, P3, T4} will reach the reference more
rapidly. However, the uncontrollable transition T7 may fire during execution of this cycle which leads to an

Processes 2017, 5, 54 10 of 16

excessive production of tokens. The cycle {P1, T5, P4, T6} which is a token consumer, is then used to correct the
excessive number of tokens. Note that the execution of this last cycle is slow compared to the two other ones due
(a) to the firing duration of T6 that is five times larger than the duration of the other transitions; and (b) to the
presence of the selfloop {T5, P8} that limits the number of simultaneous firings of T5 to one (whereas the other
transitions may fire several times simultaneously according to the infinite server semantic).

The optimal timed sequence to reach Mref is given by σ1 = T(3, 1)(T(4, 2))5 with duration DURATION(σ1,
MI) = 2 time units (TUs). If no unexpected firing of T7 occurs, Algorithm 3 applied with TC leads to σ1.
However, if unexpected firings of T7 occur, the trajectory is disturbed and requires more time to reach the
reference. Figure 6 is an example of trajectory including one firing of T7 at date 1.6 TUs. The rest of the control
sequence is updated in order to compensate the deviation so that the marking finally reaches Mref in 48.6 TUs
instead of 2 TUs.

Figure 6 illustrates the systematic updating of the optimization process at each step (i.e., for each new
firing). Consequently the firing of an uncontrollable transition at a given step k changes the future predictions,
and the control actions computed at steps k + 1, k + 2, ... compensate the deviation as long as a controllable
trajectory exists from the current marking to Mref.

Processes 2017, 5, 54 10 of 15

Figure 5. Example PCont-SPN1.

Figure 6. Cost function JFC for a controlled sequence disturbed by an unexpected firing of T7 with
respect to time (TUs).

2.6. Robust Scheduling

In order to compute robust trajectories that cannot deviate from the reference, the controller
should avoid dangerous intermediate markings and consider only legal trajectories with robust
markings (i.e., with zero-risk belief or probability). The difficulty in this computation is that the
intermediate markings are computed step-by-step and these markings are known in advance only
within a small time window provided by the part of the reachability graph, of depth H, explored at
each step. During the prediction phase of MPC, only the remaining firing count vector to the reference
is determined and this vector does not provide the risk belief or risk probability of the future
trajectory. Proposition 3 provides a sufficient condition to ensure that the computed trajectory visits
only robust markings. For this purpose, let us define TRC = {Tj ∈ TC at (Tj°)° ⊆ TC} where (Tj°)° = ∪ {Pi°:Pi ∈ Tj°}.

Proposition 3. Let us consider a Pcont-TPN (or Pcont-SPN). Let (σ, MI) be a trajectory such that (MI)° ⊆
TC. If σ ∈ TRC* then (σ, MI) is a robust legal trajectory.

P1

P2
P3

T1 T3

T2 T4

52

P4

T6
T5

2

T7

10

P8

Figure 5. Example PCont-SPN1.

Processes 2017, 5, 54 10 of 15

Figure 5. Example PCont-SPN1.

Figure 6. Cost function JFC for a controlled sequence disturbed by an unexpected firing of T7 with
respect to time (TUs).

2.6. Robust Scheduling

In order to compute robust trajectories that cannot deviate from the reference, the controller
should avoid dangerous intermediate markings and consider only legal trajectories with robust
markings (i.e., with zero-risk belief or probability). The difficulty in this computation is that the
intermediate markings are computed step-by-step and these markings are known in advance only
within a small time window provided by the part of the reachability graph, of depth H, explored at
each step. During the prediction phase of MPC, only the remaining firing count vector to the reference
is determined and this vector does not provide the risk belief or risk probability of the future
trajectory. Proposition 3 provides a sufficient condition to ensure that the computed trajectory visits
only robust markings. For this purpose, let us define TRC = {Tj ∈ TC at (Tj°)° ⊆ TC} where (Tj°)° = ∪ {Pi°:Pi ∈ Tj°}.

Proposition 3. Let us consider a Pcont-TPN (or Pcont-SPN). Let (σ, MI) be a trajectory such that (MI)° ⊆
TC. If σ ∈ TRC* then (σ, MI) is a robust legal trajectory.

P1

P2
P3

T1 T3

T2 T4

52

P4

T6
T5

2

T7

10

P8

Figure 6. Cost function JFC for a controlled sequence disturbed by an unexpected firing of T7 with
respect to time (TUs).

Processes 2017, 5, 54 11 of 16

2.6. Robust Scheduling

In order to compute robust trajectories that cannot deviate from the reference, the controller should
avoid dangerous intermediate markings and consider only legal trajectories with robust markings
(i.e., with zero-risk belief or probability). The difficulty in this computation is that the intermediate
markings are computed step-by-step and these markings are known in advance only within a small
time window provided by the part of the reachability graph, of depth H, explored at each step. During
the prediction phase of MPC, only the remaining firing count vector to the reference is determined and
this vector does not provide the risk belief or risk probability of the future trajectory. Proposition 3
provides a sufficient condition to ensure that the computed trajectory visits only robust markings. For
this purpose, let us define TRC = {Tj ∈ TC at (Tj

◦)◦ ⊆ TC} where (Tj
◦)◦ = ∪ {Pi

◦:Pi ∈ Tj
◦}.

Proposition 3. Let us consider a Pcont-TPN (or Pcont-SPN). Let (σ, MI) be a trajectory such that (MI)◦ ⊆
TC. If σ ∈ TRC* then (σ, MI) is a robust legal trajectory.

Proof. Note at first that (MI)◦ ⊆ TC implies that the net has no uncontrollable source transition (i.e.,
◦Tj 6= Ø for all Tj ∈ TNC). Then, (σ, MI) is written as in Equation (5): σ = MI [T(j1, t1) > M(1) >
M(h). Assume that there exists Tj ∈ (M(1))◦ such that Tj ∈ TNC. Tj is necessarily enabled by the firing
of T(j1, t1) because Tj is not enabled at MI. As Tj is not a source transition, there exists a place Pi ∈ ◦Tj
whose marking increases by firing T(j1, t1) and consequently Pi ∈ (T(j1, t1))◦. As Tj ∈ Pi

◦, Tj ∈ ((T(j1,
t1))◦)◦. Thus Tj ∈ TC that is contradictory with assumption and (M(1))◦ ⊆ TC. Repeating successively
the same reasoning up to M(h), one can conclude that (M(k))◦ ⊆ TC, k = 0, . . . ,h, and that (σ, MI) is a
robust legal trajectory.

Note that robust legal trajectories are computed with Algorithms 2 and 3 by replacing WC ∈ (Z)
n×qC with WRC ∈ (Z) n×qRC (i.e., the restriction of W to the set of robust controllable transitions TRC) in
the determination of JFC(M, Mref).

Note also that the set TRC is easy to obtain by checking for each transition Tj if the condition
Xj.(WPO)T.WPR.(0 | IqNC)T = 0 is satisfied or not, with Xj the firing count vector of Tj and IqNC the
identity matrix of size qNC:

TRC = {Tj ∈ TC at Xj.(WPO)T.WPR.(0 | IqNC)T = 0 } (14)

Example 2. Let us consider again Pcont-SPN1 of Figure 5. In order to avoid any deviation, TRC = {T1,
T2, T4, T5, T6} is considered instead of TC. Algorithm 3 applied with WRC ∈ (Z) n×qRC leads to σ2 = T(1,
1)(T(2, 2))2(T(1, 3))2(T(2, 4))4T(1, 5)(T(2, 6))2 that has a duration DURATION(σ2, MI) = 6 TUs larger than
DURATION(σ1, MI).

The decision to prefer the control sequence σ2 instead of σ1 depends on the risk of both control strategies.
Table 1 reports the values of RB and RP for both sequences σ1 and σ2 with respect to several values of µ. From
Table 1, one can notice that the sequence σ2 that is non-optimal in time has the advantage to be robust compared
to σ1. It cannot be perturbed by any unexpected firing. Note also that the risk probability of σ1 depends strongly
on the dynamic of the random firing of uncontrollable transition T7. Note finally that computing RP instead of
RB provides a better evaluation of that risk.

Table 1. Deviation risk for σ1 and σ2.

RB
RP

µ7 = 0.1 µ7 = 1 µ7 = 10

σ1 5/6 = 0.83 1/3 = 0.33 5/6 = 0.83 50/51 = 0.98
σ2 0 0 0 0

Processes 2017, 5, 54 12 of 16

Table 2 reports the mean duration d of control sequences depending on µ7 for three scenarios. All sequences
are computed with MI = (1 0 0 0)T and Mref = (5 0 0 0)T and parameters H = 1, Hτ = 1. In scenario 1 all
transitions are assumed to be controllable. In scenarios 2 and 3, TC = {T1, T2, T3, T4, T5, T6}. Algorithm 3 is
applied with TC in scenario 2 whereas it is applied with TRC = {T1, T2, T4, T5, T6} in scenario 3. Simulations
with scenario 2 are repeated 10 times to obtain a significant average duration. One can notice the advantage to
compute a robust sub-optimal trajectory with scenario 3, which provides better result from µ7 = 0.5. When µ7
increases, the mean duration of T7 firings decreases and the probability to fire T7 before T4 increases; consequently,
the number of perturbations increases and the mean duration of the global trajectory also increases due to the
execution of the cycle {P1, T5, P4, T6}.

Table 2. Performance of Algorithm 3 with Pcont-SPN1: average sequence duration (TUs).

µ7 0.1 0.5 1 2 10

Scenario 1 2 2 2 2 2
Scenario 2 2.0 20.3 57.2 125.4 228.5
Scenario 3 6 6 6 6 6

3. Results

Pcont-SPN2 (Figure 7) is the timed model of a production system that processes a single type of
products according to two possible jobs [27,28]. The first job is composed of the transitions t1 to t8, and
the second one by the transitions t9 to t14. In the first job the transitions T1, T3, T4, T6, T7, T8 represent
the operations in successive machines and the places P1, P2, P4, P6, P7, T8 are intermediate buffers
where products are temporarily stored. The initial marking of place P1 represents the maximal number
of products that can be simultaneously processed by the Job 1. In the second job the transitions T9,
T10, T11, T12, T13, T14 represent the operations in successive machines and the places P8, P9, P10, P11,
P12, T13 are intermediate buffers. The initial marking of place P8 represents the maximal number of
products that can be simultaneously processed by the Job 2. Job 1 could be altered by a server failure
whereas Job 2 could not. The occurrence of this failure is represented by the firing of the subsequence
T2T5 instead of T3T4. Note that the faults under consideration are not blocking the system, but they
delay the cycle time. Consequently the nominal sequence T1 T3 T4 T6 T7 T8 may be altered when an
unexpected firing of T2 occurs that leads to the perturbed behavior T1 T2 T5 T6 T7 T8 with an excessive
global duration. The six resources p14 to p19 have limited capacities: m(p14) = m(p15) = m(p16) = m(p17)
= m(p18) = m(p19) = 1. The places p20 and p21 represent the input and output buffers, respectively, that
contain the number of products to be processed either by Job 1 or Job 2. The temporal specifications
are given by Dmin = (1 1 2 20 1 1 1 3 3 3 3 3 3)T for TC = T/{T2} and by µ2 = 1.

Control sequences are computed with MI = 3P1 + 3P8 + 1P14 + 1P15 + 1P16 + 1P17 + 1P18 + 1P19
+ kP20 and Mref = 3P1 + 3P8 + 1P14 + 1P15 + 1P16 + 1P17 + 1P18 + 1P19 + kP21 where k is a varying
parameter. The results are reported in Table 3 for H = 5 and Hτ = 20.

Table 3. Performance of Algorithm 3 with Pcont-SPN2: average sequence duration (TUs).

k Scenario 1 Scenario 2 Scenario 3

5 45 103.4 72
10 142 213.5 147
15 236 321.9 222
20 325 427.1 297

Another time, three scenarios are considered: in scenario 1 all transitions, including T2, are
assumed to be controllable with dmin 2 = 1. In scenario 2, TC = T/{T2} and Algorithm 3 is applied with
TC. In scenario 3 Algorithm 3 is applied with TRC = T/{T1, T2}. Note, at first, that due to the numerical
values of the firing parameters, the cost function prefers Job 1 that has a global duration of 7 TUs to

Processes 2017, 5, 54 13 of 16

process one product compared to Job 2, which has a global duration of 18 TUs (without considering
the constraints due to the limited resources). Thus scenario 1 corresponds to the iterated execution of
Job 1. For scenario 2, µ2 = 1 and dmin 3 = 1: consequently the probability that an unexpected firing of T2
occurs is 0.5. When such a firing occurs the long firing duration dmin 5 = 20 of T5 compared to dmin 4 = 2
alters the global duration required to process the product. This explains that scenario 2 leads to longer
sequences compared to scenario 1. Scenario 3 is also tested in a stochastic context with the same value
of parameters µ2 = 1 and dmin 3 = 1. However, the restriction of the control actions in set TRC prefers
systematically Job 2 that is robust to the perturbations. Note also that the global duration for k = 15
and k = 20 is better with scenario 3 than with scenario 2. This is due to the partial exploration of the
reachability graph and to the approximation of the remaining sequence duration with cost function JFC
that provide solutions with no warranty of optimality.

Processes 2017, 5, 54 12 of 15

Pcont-SPN2 (Figure 7) is the timed model of a production system that processes a single type of
products according to two possible jobs [27,28]. The first job is composed of the transitions t1 to t8, and
the second one by the transitions t9 to t14. In the first job the transitions T1, T3, T4, T6, T7, T8 represent
the operations in successive machines and the places P1, P2, P4, P6, P7, T8 are intermediate buffers
where products are temporarily stored. The initial marking of place P1 represents the maximal
number of products that can be simultaneously processed by the Job 1. In the second job the
transitions T9, T10, T11, T12, T13, T14 represent the operations in successive machines and the places P8,
P9, P10, P11, P12, T13 are intermediate buffers. The initial marking of place P8 represents the maximal
number of products that can be simultaneously processed by the Job 2. Job 1 could be altered by a
server failure whereas Job 2 could not. The occurrence of this failure is represented by the firing of
the subsequence T2T5 instead of T3T4. Note that the faults under consideration are not blocking the
system, but they delay the cycle time. Consequently the nominal sequence T1 T3 T4 T6 T7 T8 may be
altered when an unexpected firing of T2 occurs that leads to the perturbed behavior T1 T2 T5 T6 T7 T8
with an excessive global duration. The six resources p14 to p19 have limited capacities: m(p14) = m(p15) =
m(p16) = m(p17) = m(p18) = m(p19) = 1. The places p20 and p21 represent the input and output buffers,
respectively, that contain the number of products to be processed either by Job 1 or Job 2. The
temporal specifications are given by Dmin = (1 1 2 20 1 1 1 3 3 3 3 3 3)T for TC = T/{T2} and by μ2 = 1.

Figure 7. Pcont-SPN2 model of a manufacturing system [28].

p13
t14

p12

t13

p11

t12

p10

t11

p9

t10

p8

t9

3

1

p17

p2

t1

p4

t3

p5

t4

p6

t6

p7

t7

p1

t8

3

p3

t2

t5

1

p14

1

p16

P15

P18

P19

1

1

1

P18

p21

p20
k

Figure 7. Pcont-SPN2 model of a manufacturing system [28].

Processes 2017, 5, 54 14 of 16

4. Discussion

As mentioned in the previous section, the solutions returned by Algorithm 3 are not optimal
solutions in a systematic way. The performance of the algorithm depends on the two input parameters:
H, which limits the exploration in depth, and Hτ , which limits the search in duration. If the depth H is
too small, Algorithm 2 returns the flag converge = −1 or exhaustive = 0 and Algorithm 3 increases H
in the range [1:H]. On the contrary, if H is too large, then the iterative use of Algorithm 2 certainly
reaches Mref but the computational effort is uselessly high. In that case, Algorithm 3 decreases H in the
range [1:H]. Consequently, the aim of Algorithm 3 is to adapt at each step the depth of the search to
maintain converge = 0 and exhaustive = 1 or converge = 1. Table 4 reports the performance in function of
the parameters H and Hτ for Pcont-SPN2 with MI = 3P1 + 3P8 + 1P14 + 1P15 + 1P16 + 1P17 + 1P18 + 1P19
+ 5P20, Mref = 3P1 + 3P8 + 1P14 + 1P15 + 1P16 + 1P17 + 1P18 + 1P19 + 5P21, and TC = T. The duration of
the control sequences and the computational time required to compute the sequences with Algorithm
3 are reported for an Intel Core i7-46000 CPU at 2.1–2.7 GHz.

Table 4. Performance of Algorithm 3 with respect to parameters H and Hτ for PCont-SPN2, sequence
duration (TUs) and computational time (s).

H/Hτ 1 2 3 4 5 6

5 82 (0.9 s) 86 (0.8 s) 68 (1 s) 68 (1.2 s) 68 (1.3 s) 68 (1.3 s)
10 82 (0.9 s) 86 (0.8 s) 76 (1.5 s) 76 (2.5 s) 76 (4.7 s) 76 (7.9 s)
15 82 (1 s) 86 (0.9 s) 63 (2.1 s) 63 (3.5 s) 63 (9.4 s) 63 (16.1 s)

20 82 (1 s) 86 (0.8 s) 45 (2.6 s) 45 (4.7 s) 45 (10.7
s) 45 (20.6 s)

Note that optimal solutions can be searched in a systematic way instead of using Algorithm 3
considering the extended timed reachability graph [29–31]. Such a graph contains not only the different
markings but also the different timed sequences (a given marking can be reached by several sequences
with different durations). Table 5 illustrates the rapid increase of the complexity to build such a
graph depending on the initial marking MI = 3P1 + 3P8 + 1P14 + 1P15 + 1P16 + 1P17 + 1P18 + 1P19 +
kP20 when k increases. For each value of k, the number of nodes as the computational time required
to compute the graph, are reported for the usual reachability graph and for the timed reachability
graph. Table 5 shows that such a method is no longer suitable for large systems. This motivates the
proposed approach.

Table 5. Complexity of the exhaustive exploration of control sequences for PCont-SPN2, the number of
nodes and the computation time (s).

k Usual Reachability Graph Extended Reachability Graph

5 698 (1.4 s) 2208 (106 s)

10 1963 (11 s) 6848 (1827 s)

15 3268 (29 s) . . .

20

5. Conclusions

A method has been proposed to compute control sequences for discrete events systems in
uncertain environments. The method uses timed PNs under an earliest firing policy with controllable
and uncontrollable transitions as a modeling formalism that is easy to adapt to various problems.
The obtained solutions are minimal or near-minimal in duration. Moreover, for each returned solution,
the risk to fire uncontrollable transitions is evaluated. Another advantage of the proposed approach is
to limit the computational complexity of the algorithm by limiting the part of the reachability graph

Processes 2017, 5, 54 15 of 16

that is expanded even if the initial marking and reference marking are far from each other, and if
deadlocks and dead branches are a priori unknown for the controller. Thanks to the risk evaluation,
a robust scheduling becomes computable under some additional assumptions.

In our next works, the research effort will concern, at first, the definition of the cost function that
will be improved to provide a more accurate approximation of the remaining time to the reference.
The sensitivity of the performance with respect to H will be also studied. We will also include the risk
evaluation in the cost function to obtain trajectories of low risk level.

Acknowledgments: The Project MRT MADNESS 2016-2019 has been funded with the support from the European
Union with the European Regional Development Fund (ERDF) and from the Regional Council of Normandie.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Garey, M.R.; Johnson, D.S.; Sethi, R. The complexity of flowshop and jobshop scheduling. Math. Oper. Res.
1976, 1, 117–129. [CrossRef]

2. Johnson, S.M. Optimal two-and three-stage production schedules with setup times included. Nav. Res.
Logist. Q. 1954, 1, 61–68. [CrossRef]

3. Baker, K.R.; Trietsch, D. Principles of Sequencing and Scheduling; John Wiley & Sons: Hoboken, NJ, USA, 2009.
4. Lopez, P.; Roubellat, F. Production Scheduling; ISTE: Arlington, VA, USA, 2008.
5. Leung, J.Y. Handbook of Scheduling: Algorithms, Models, and Performance Analysis; Chapman & Hall/CRC

Computer & Information Science Series: New Delhi, India, 2004; ISBN 9781584883975.
6. Cassandras, C. Discrete Event Systems: Modeling and Performances Analysis; Aksen Ass. Inc. Pub.: Homewood,

IL, USA, 1993.
7. David, R.; Alla, H. Petri Nets and Grafcet—Tools for Modelling Discrete Events Systems; Prentice Hall: London,

UK, 1992.
8. Chretienne, P. Timed Petri nets: A solution to the minimum-time-reachability problem between two states of

a timed-event-graph. J. Syst. Softw. 1986, 6, 95–101. [CrossRef]
9. Lee, D.Y.; DiCesare, F. Scheduling flexible manufacturing systems using Petri nets and heuristic search.

IEEE Trans. Robot. Autom. 1994, 10, 123–133. [CrossRef]
10. Sun, T.H.; Cheng, C.W.; Fu, L.C. Petri net based approach to modeling and scheduling for an FMS and a case

study. IEEE Trans. Ind. Electron. 1994, 41, 593–601.
11. Reyes-Moro, A.; Kelleher, H.H.G. Hybrid Heuristic Search for the Scheduling of Flexible Manufacturing

Systems Using Petri Nets. IEEE Trans. Robot. Autom. 2002, 18, 240–245. [CrossRef]
12. Xiong, H.H.; Zhou, M.C. Scheduling of semiconductor test facility via Petri nets and hybrid heuristic search.

IEEE Trans. Semicond. Manuf. 1998, 11, 384–393. [CrossRef]
13. Jeng, M.D.; Chen, S.C. Heuristic search approach using approximate solutions to Petri net state equations for

scheduling flexible manufacturing systems. Int. J. FMS 1998, 10, 139–162.
14. Wang, Q.; Wang, Z. Hybrid Heuristic Search Based on Petri Net for FMS Scheduling. Energy Proced. 2012, 17,

506–512. [CrossRef]
15. Zhang, W.; Freiheit, T.; Yang, H. Dynamic scheduling in flexible assembly system based on timed Petri nets

model. Robot. Comput. Integr. Manuf. 2005, 21, 550–558. [CrossRef]
16. Hu, H.; Li, Z. Local and global deadlock prevention policies for resource allocation systems using partially

generated reachability graphs. Comput. Ind. Eng. 2009, 57, 1168–1181. [CrossRef]
17. Abdallah, B.; ElMaraghy, H.A.; ElMekkawy, T. Deadlock-free scheduling in flexible manufacturing systems.

Int J. Prod. Res. Vol. 2002, 40, 2733–2756. [CrossRef]
18. Lei, H.; Xing, K.; Han, L.; Xiong, F.; Ge, Z. Deadlock-free scheduling for flexible manufacturing systems

using Petri nets and heuristic search. Comput. Ind. Eng. 2014, 72, 297–305. [CrossRef]
19. Lefebvre, D.; Leclercq, E. Control design for trajectory tracking with untimed Petri nets. IEEE Trans.

Autom. Control 2015, 60, 1921–1926. [CrossRef]
20. Lefebvre, D. Approaching minimal time control sequences for timed Petri nets. IEEE Trans. Autom. Sci. Eng.

2016, 13, 1215–1221. [CrossRef]

http://dx.doi.org/10.1287/moor.1.2.117
http://dx.doi.org/10.1002/nav.3800010110
http://dx.doi.org/10.1016/0164-1212(86)90028-2
http://dx.doi.org/10.1016/j.cie.2014.04.002
http://dx.doi.org/10.1109/TRA.2002.999652
http://dx.doi.org/10.1109/66.705373
http://dx.doi.org/10.1016/j.egypro.2012.02.128
http://dx.doi.org/10.1016/j.rcim.2004.12.002
http://dx.doi.org/10.1016/j.cie.2009.05.006
http://dx.doi.org/10.1080/00207540210136496
http://dx.doi.org/10.1016/j.cie.2014.04.002
http://dx.doi.org/10.1109/TAC.2014.2363311
http://dx.doi.org/10.1109/TASE.2015.2467165

Processes 2017, 5, 54 16 of 16

21. Lefebvre, D. Deadlock-free scheduling for Timed Petri Net models combined with MPC and backtracking.
In Proceedings of the IEEE WODES 2016, Invited Session “Control, Observation, Estimation and Diagnosis
with Timed PNs”, Xi’an, China, 30 May–1 June 2016; pp. 466–471.

22. Lefebvre, D. Deadlock-free scheduling for flexible manufacturing systems using untimed Petri nets and
model predictive control. In Proceedings of the IFAC—MIM, Invited Session “DES for Manufacturing
Systems”, Troyes, France, 28–30 June 2016.

23. Ramchandani, C. Analysis of Asynchronous Concurrent Systems by Timed Petri Nets. Ph.D. Thesis, MIT,
Cambridge, MA, USA, 1973.

24. Molloy, M.K. Performance analysis using stochastic Petri nets. IEEE Trans. Comput. C 1982, 31, 913–917.
[CrossRef]

25. Richalet, J.; Rault, A.; Testud, J.; Papon, J. Model predictive heuristic control: Applications to industrial
processes. Automatica 1978, 14, 413–428. [CrossRef]

26. Camacho, E.; Bordons, A. Model Predictive Control; Springer: London, UK, 2007.
27. Uzam, M. An optimal deadlock prevention policy for flexible manufacturing systems using Petri net models

with resources and the theory of regions. Int. J. Adv. Manuf. Technol. 2002, 19, 192–208. [CrossRef]
28. Chen, Y.; Li, Z.; Khalgui, M.; Mosbahi, O. Design of a Maximally Permissive Liveness-Enforcing Petri

Net Supervisor for Flexible Manufacturing Systems. IEEE Trans. Aut. Science and Eng. 2011, 8, 374–393.
[CrossRef]

29. Berthomieu, B.; Vernadat, F. State Class Constructions for Branching Analysis of Time Petri Nets.
In Proceedings of the Ninth International Conference on Tools and Algorithms for the Construction and
Analysis of Systems TACAS 2003, Warsaw, Poland, 7–11 April 2003; Springer: New York, NY, USA, 2003;
Volume 2619, pp. 442–457.

30. Gardey, G.; Roux, O.H.; Roux, O.F. Using Zone Graph Method for Computing the State Space of a Time
Petri Net. In Proceedings of the International Conference on Formal Modeling and Analysis of Timed
Systems FORMATS 2003, Marseille, France, 6–7 September 2003; Springer: Berlin/Heidelberg, Germany,
2003; Volume 2791, pp. 246–259.

31. Klai, K.; Aber, N.; Petrucci, L. A New Approach to Abstract Reachability State Space of Time Petri Nets.
In Proceedings of the 20th International Symposium on Temporal Representation and Reasoning, Pensacola,
FL, USA, 26–28 September 2013.

© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TC.1982.1676110
http://dx.doi.org/10.1016/0005-1098(78)90001-8
http://dx.doi.org/10.1007/s001700200014
http://dx.doi.org/10.1109/TASE.2010.2060332
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Petri Nets
	Forbidden, Dangerous and Robust Legal Markings
	Timed Petri Nets with Uncontrollable Transitions
	Belief and Probability of Trajectory Deviation
	Model Predictive Control for PCont-TPNs
	Robust Scheduling

	Results
	Discussion
	Conclusions

