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Abstract: Polymer processes often contain state variables whose distributions are multimodal; in
addition, the models for these processes are often complex and nonlinear with uncertain parameters.
This presents a challenge for Kalman-based state estimators such as the ensemble Kalman filter.
We develop an estimator based on a Gaussian mixture model (GMM) coupled with the ensemble
Kalman filter (EnKF) specifically for estimation with multimodal state distributions. The expectation
maximization algorithm is used for clustering in the Gaussian mixture model. The performance of the
GMM-based EnKF is compared to that of the EnKF and the particle filter (PF) through simulations of
a polymethyl methacrylate process, and it is seen that it clearly outperforms the other estimators both
in state and parameter estimation. While the PF is also able to handle nonlinearity and multimodality,
its lack of robustness to model-plant mismatch affects its performance significantly.

Keywords: Gaussian mixture model; ensemble Kalman filter; particle filter; expectation maximization;
polymethyl methacrylate; state and parameter estimation

1. Introduction

Polymerization reactors offer unique challenges for process modeling, monitoring, and control.
The production of polymers of different grades means that the process conditions are changed
relatively often. Product quality specifications (usually expressed in terms of constraints on the
properties of the molecular weight distribution) and dynamic operation lead to the need for on-line
monitoring and control, which further require accurate process models and real-time estimation of
states and parameters of the system. Over the years, the most popular estimator used in nonlinear
chemical processes—both in general and specifically for polymerization reactors, too—is the extended
Kalman filter (EKF) (e.g., [1–8]). However, this estimator involves linearization of the original model
at each step, and can be inaccurate for highly nonlinear systems. Our focus in this work is on
particle-based estimators, which are derivative free estimators using different sampling methods to
generate an ensemble of particles to represent the distributions of the dynamic states of the system.

The most commonly used estimators based on the use of an ensemble of particles are the ensemble
Kalman filter (EnKF) [9], the unscented Kalman filter (UKF) [10,11] and the particle filter (PF) [12].
While the EnKF and the UKF provide only the mean and variance of the posterior distribution of the
states (since they use a Gaussian assumption for the distributions), the PF, which works on Bayesian
principles, can provide estimates for the full distribution of the states even in situations where the
distribution is not Gaussian (which occurs in nonlinear systems) by using a set of particles associated
with different weights. In practice, the application of the PF to chemical processes is very recent.
Chen et al. [13] compared the performance of the auxiliary particle filter with an EKF for a batch
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polymethyl methacrylate process to show that it outperformed the EKF in terms of the root mean
squared error for state and parameter estimation. Shenoy et al. [14] compared the UKF, EKF, and
PF in a case study on a polyethylene reactor simulation to demonstrate that the PF provided more
accurate estimation results, but was less robust to plant-model mismatch. Shao et al. [15] compared the
performance of the PF, EKF, UKF, and moving horizon estimation for constrained state estimation and
showed that the constrained PF provides more accurate estimation results compared to other methods.

An important issue with the PF relates to its performance for high dimensional systems.
The ensemble Kalman filter (EnKF), on the other hand, has the advantage of being scalable to
high-dimensional systems without a prohibitive increase in the size of the ensemble required; however,
as stated earlier, the algorithm is based on the assumption that both the prior and posterior distribution
of the states can be approximated by the Gaussian distribution, and it may be unreliable when this
assumption is not valid.

Polymerization processes can be of high dimension when they are described using population
balance models [16,17] and a multimodal distribution of properties such as the particle size and
molecular weight, may be desirable [18–20]. This, especially in the presence of model-plant mismatch,
creates challenges for both the EnKF and the PF. Also, the nonlinearity of the systems may lead to
multimodality in the state distributions.

Recently, the Gaussian mixture model (GMM) has been combined with the ensemble Kalman
filter to create a new category of estimators: Gaussian mixture filters. Bengtsson et al. [21] proposed the
GMM to approximate the prior distribution of the states, but the means and variances of the GMM were
approximated directly from the ensemble. In [22], Smith proposed the expectation maximization (EM)
algorithm to learn the parameters of the prior distribution modeled by the GMM. In the update step,
the idea of Kalman-based filtering was extended to the multimodal scenario; however, the posterior
distribution is constrained to be a Gaussian distribution. Dovera and Della Rossa [23] used a different
update technique and retained the posterior distribution as a GMM.

In this work, we propose an estimator that belongs to the category of Gaussian mixture filters and
provides a full state distribution at each time step that is approximated by the GMM. We extend the
idea of the EnKF to priors with multimodal features that are described by the GMM. We present results
on the application of this estimator to a polymethyl methacrylate (PMMA) process and compare its
performance to that of the EnKF and the PF.

2. State Estimation Techniques for Nonlinear Systems

Consider a dynamic nonlinear system represented by:

t
xn “ f pxn´1, un´1, θq ` vn

yn “ Hxn ` en
(1)

where xn are the hidden states. un and yn are the inputs and outputs of the system. θ represents the
parameters in the model. vn and en are process noise and measurement noise respectively.

In this section, we will introduce the particle filter and the ensemble Kalman filter for these
systems, and then describe the GMM-based ensemble Kalman filter that we propose to employ.
The performance of the three estimators will be compared for the PMMA system in later sections.

2.1. Particle Filter (PF)

The PF employs a sequential Monte Carlo method that uses a set of sampling techniques to
generate samples from a sequence of probability distribution functions.

The particle filter approximates the posterior probability p pxn|ynq with a set of Ns particles {xpiqn }.
Each particle is assigned a weight wpiqn and the sum of all weights is unity. Since the probability
distribution of the states conditioned on the measurements of the outputs, p pxn|y1:nq, is usually



Processes 2016, 4, 9 3 of 18

unknown, these particles are drawn from the importance distribution q(xn|y1:n). The posterior
distribution is given by:

p pxn|y1:nq “

Ns
ÿ

i“1

wpiqn δpxn ´ xpiqn q (2)

where the recursive update of the weights wpiqn is given by:

wpiqn “ wpiqn´1

p
´

xpiqn

ˇ

ˇ

ˇ
xpiqn´1

¯

q
´

xpiqn

ˇ

ˇ

ˇ
xpiqn´1, yn

¯ ppyn|x
piq
n q (3)

In the sequential importance resampling (SIR) version of the PF, we choose
qpxpiqn |x

piq
n´1q “ ppxpiqn |x

piq
n´1q, so that wpiqn “ wpiqn´1 ppyn|x

piq
n q, i.e., we draw particles directly from

the prior distribution at time instant n.
The Ns particles at time step (n-1) are forwarded through the state transition equation

xpiqn|n´1 “ f pxpiqn´1|n´1, un´1, vpiqn´1q to get a new series of particles txpiqn|n´1u
Ns

i“1
to approximate the prior

density p pxn|y1:n´1q at time instant n. The weight wpiqn associated with each particle is calculated using

Equation (3). Then, a resampling step is performed on the prior particles txpiqn|n´1u
Ns

i“1
based on their

weights wpiqn to generate the posterior particles txpiqn|nu
Ns

i“1
such that the weights of all the posterior

particles are set to be equal. The full state distribution and its properties can be calculated from the
posterior particles.

2.2. Ensemble Kalman Filter (EnKF)

The EnKF was first proposed as a data assimilation technique for highly nonlinear ocean models
by Evensen [9] and is a Monte Carlo sampling based variant of the Kalman filter. Like the PF, it also
uses an ensemble of particles from which the statistical information of the distribution of the states can
be calculated, but it uses the Kalman update. In order to have an explicit analytical expression for the
Kalman gain, both the prior and posterior distributions are approximated by the Gaussian distribution.
The framework of this algorithm is as follows:

At time step k, Ne particles are drawn from the prior distribution to form the prior ensemble
txi

n´1|n´1ui“1,...,Ne
. In the prediction step, each member of the ensemble xi

n´1|n´1 is forwarded through

the state transition equation xi
n|n´1 “ f pxi

n´1|n´1, un´1, vi
n´1q to get its predicted value, thus forming

a predicted ensemble txi
n|n´1ui“1,...,Ne

. Corresponding to each member of the ensemble, a predicted

observation value is obtained; this can be achieved by perturbing the measurement of the output with
random measurement error. Let tŷi

n|n´1ui“1,...,Ne
denote the predicted observation data.

In the update step, two error matrices are calculated. The error matrix of the predicted state
ensemble is defined as:

ei
n|n´1 “ xi

n|n´1 ´ µ
x
n|n´1 (4)

where µx
n|n´1 “

1
Ne

Ne
ř

i“1
xi

n|n´1.

The error matrix of the predicted measurement ensemble is defined as:

εi
n|n´1 “ ŷi

n|n´1 ´ µ
y
n|n´1 (5)

where µy
n|n´1 “

1
Ne

Ne
ř

i“1
ŷi

n|n´1.

The cross-covariance between the state prediction ensemble and measurement ensemble is given
in Equation (6), and the covariance matrix of the measurement ensemble is given in Equation (7).
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Pe,ε
n|n´1 “

1
Ne ´ 1

Ne
ř

i“1
pei

n|n´1qpε
i
n|n´1q

T (6)

Pε,ε
n|n´1 “

1
Ne ´ 1

Ne
ř

i“1
pεi

n|n´1qpε
i
n|n´1q

T (7)

with the two covariance matrices, the Kalman gain is calculated as:

K “ Pe,ε
n|n´1pP

ε,ε
n|n´1 ` Rq´1 (8)

where R is the covariance of the measurement noise.
Each member of the ensemble is updated as:

xi
n|n “ xi

n|n´1 ` Kpyobs
n ´ ŷi

n|n´1q (9)

where yobs
n is the true measurement value at time step n.

2.3. Gaussian Mixture Model Based Ensemble Kalman Filter (EnKF-GMM)

2.3.1. Expectation Maximization (EM) for Clustering of the Gaussian Mixture Model

The probability distribution function of a random vector x following a finite Gaussian mixture
distribution is given by:

pX pxq “
M
ÿ

j“1

πj ˆ N
´

x;µj, Pj

¯

(10)

subject to constraints that πj ě 0 and
řM

j“1 πj “ 1, where πj,µj, Pj are the prior probability, mean and

covariance of mode j and N
´

x;µj, Pj

¯

“
1

p2πqn{2
ˇ

ˇPj
ˇ

ˇ

1{2
e
´

1
2
px´µjq

T P´1px´µjq
.

Given a set of data txiui“1,..,N randomly generated by a GMM, the expectation maximization (EM)
algorithm is used to estimate the parameters of the GMM, θ “ tπ1, . . . ,πM,µ1, ..,µM,P1, . . . , PMu [24].
EM is a variant of maximum likelihood estimation when there exist hidden variables or missing data.
In this case, the mode identity of each data point is considered as the missing or hidden variable.
Let tpciqju be a binary indicator vector representing the identity of the component that generates xi.
Its value is given by:

pciqj “

#

1, i f data point is generated by component j
0, otherwise

(11)

In the EM algorithm, an E-step is performed first to compute the Q function, the expectation of
the log likelihood of the complete data set, by computing the probability of each data xi belonging to
each component j given the current parameters θk estimated from the previous iteration. Specifically,
Qpθ|θ k

q “ ErL pp pz| θqq |txu, θks, where txu is the observed data set; tzu is the complete data set
consisting of both observed and missing data, tzu “ tc1, x1, . . . , cN , xNu, ci is the membership of each
data point, and θk is the estimate of the last iteration. This becomes

Q
´

θ|θk
¯

“
N
ř

i“1

M
ř

j“1
prpciqj|txu, θ

ks
´

logπjN
´

xi;µj, Pj

¯¯

(12)

wij “ prpciqj|txu, θ
ks “

πk
j N

´

xi;µk
j , Pk

j

¯

řM
m“1 π

k
mN

`

xi;µk
m, Pk

m
˘

(13)



Processes 2016, 4, 9 5 of 18

Next, the M-step is performed to maximize the Q function and calculate the corresponding θk` 1.

πk`1
j “

Nk

N
(14)

µk`1
j “

1
Nk

N
ř

i“1
wijxi (15)

Pk`1
j “

1
Nk

N
ř

i“1
wijpxi ´ µ

k`1
j qpxi ´ µ

k`1
j q

T
(16)

where Nk “
řN

i“1 wij.
The E-step and the M-step are performed iteratively until the estimates converge. During this

process, the problem of singularity may arise when one of the components collapses onto one data
point. This usually happens due to over-fitting in the maximum likelihood estimation (MLE). To avoid
this problem, one approach is to adopt a Bayesian regularization method [25] to replace the MLE
with the maximum a posteriori (MAP) estimate. Based on this method, the update of the covariance is
modified to become

Pk`1
j “

řN
i“1 wijpxi ´ µ

k`1
j qpxi ´ µ

k`1
j q

T
` λId

Nk ` 1
(17)

where Id is an n-dimensional unit matrix and λ is a regularization constant determined by some
validation data [26]. An alternate (ad hoc) method to deal with the problem of singularity is to detect
when the singularity occurs and reset the means of all components randomly and the covariance to
some larger value.

The pseudo-code for the EM algorithm is provided below.

Algorithm 1: Expectation Maximization algorithm. Inputs are data set txiui“1,..,N , component
number M and initial values tθ0u of tπjuj“1,...,M, tµjuj“1,...M

, tPjuj“1,... M, θk “ θ0.

EM[{x}, M, tθku]
// E step
while ε ď 1e´ 6
for i = 1: N

for j = 1:M
prpciqj|xi, θks “ ppxi|pciqj, θ

kqpppciqj|θ
kq{p pxiq

end for
end for
// M step
for j = 1:M

πk`1
j “

N
ř

i“1
prpciqj|xi, θk



{N

µk`1
j “

N
ř

i“1
prpciqj|xi, θksxi{

N
ř

i“1
prpciqj|xi, θks

Pk`1
j “

řN
i“1 prpciqj|xi, θk

ı ´

xi ´ µ
k`1
j

¯´

xi ´ µ
k`1
j

¯T
` λId

řN
i“1 prpciqj|xi, θk

ı

` 1

end for
ε “ µk`1 ´ µk

end while
return θk`1

2.3.2. EnKF-GMM Algorithm

In this section, a GMM-based EnKF (EnKF-GMM) filter is proposed to obtain estimates of the full
state distribution. As with the particle filter, it also uses a set of particles to represent the posterior
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probability distribution function (PDF) of the states. The difference is that the PDF is constrained to be
a GMM at every time step.

At each time step, the EnKF-GMM has two steps—forecast and update. The forecast step is
identical to the EnKF. An ensemble of size N, txiui“1,...,N , is drawn from the prior distribution of the
states and forwarded through the model to obtain a predicted ensemble for the next time step. Then,
the EM algorithm is performed on the predicted ensemble to obtain the estimates of the GMM with
M components. Next, the Kalman update is performed based on each component in the GMM to get
an ensemble of size N ˆ M. Finally, these ensemble members are combined based on their weights
and reduced to a size of N. The details of the algorithmic sequence are as follows:

Forecast:

1. The first portion of the forecast step is to determine the number of components M in the
multimodal distribution. M can be determined using the Bayesian or other information
criteria [27,28], or using prior knowledge. For example, in reservoir models, petrophysical
properties (such as porosity or permeability) are typically related to geological units (facies), and
variables inside the facies are characterized by underlying multimodal distributions which are
known beforehand [9]. In our work, this information can be considered as prior knowledge if we
know the distribution of the process noise.

2. With the knowledge of the process model and the number of components M, the prior ensemble
txiui“1,...,N is propagated through the model to get the predicted values of the ensemble

tx f
i ui“1,...,N . These are the realizations of the predicted state space x f .

Assuming the predicted state x f at the forecast step is a GMM,

p
´

x f
¯

“
M
ř

j“1
τ

f
j pj

´

x f
¯

“
M
ř

j“1
τjNpx f ; µ

f
j , P f

j q (18)

The EM algorithm is applied on tx f
i ui“1,...,N to give us the parameters of the prior distribution (τ f

j ,

µ
f
j and P f

j ) of each component j.

Update:

3. For each component j of the distribution, the Kalman gain matrix for each Gaussian component
is computed by utilizing the membership probability matrix W.

P rjs f HT “
N
ř

i“1
wi,jpx

f
i ´ µjqpHx f

i ´ Hµjq
T
{nj (19)

HP rjs f HT “
N
ř

i“1
wi,jpHx f

i ´ HµjqpHx f
i ´ Hµjq

T
{nj (20)

K rjs “ P rjs f HTpHP rjs f HT ` Rq
´1

(21)

where wi,j “
πjN

`

xi; µj, Pj
˘

řM
m“1 πmN pxi; µm, Pmq

, nj “
řN

i“1 wi,j, and H is the linearized

measurement function.
4. In the update step, assuming one Gaussian component j claims the ownership of all the ensemble

members, the Kalman update can be performed for each component member under component j.
This gives us an ensemble size of N ˆ M.

xa,j
i “ x f

i ` K rks pd´ Hx f
i ´ eiq (22)
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5. The N ˆ M ensemble members can be combined to form N members by using the probability
matrix. This gives us the final posterior ensemble txa

i ui“1,...,N .

xa
i “

M
ř

j“1
wi,jx

a,j
i (23)

The mean and covariance of the posterior can be computed as:

µa
j “

N
ř

i“1
wi,jx

a,j
i {nj (24)

P rjsa “
N
ř

i“1
wi,jpx

a,j
i ´ µa

j qpx
a,j
i ´ µa

j q
T
{nj (25)

6. The posterior weight of each component of the distribution can be computed based on the
observed data d, which contains the measurements y.

τa
j “ p

´

µj,
ř

j, R|d
¯

“
ppd|µj,

ř

j, Rqnj
řM

j“1 ppd|µj,
ř

j, Rqnj
(26)

ppd|µj,
ř

j, Rq “
expr´

1
2

´

d´ Hµj

¯T ´

H
ř

j H
T ` Rq´1

´

d´ Hµj

¯ı

b

p2πqm|H
ř

j HT ` R|
(27)

7. The point estimate is given by:

xa “

M
ÿ

j“1

τa
jµ

a
j (28)

The pseudo-code for the EnKF-GMM algorithm is provided below.

Algorithm 2: EnKF-GMM algorithm. Inputs include the initial distribution of x, the total number of
the particles N, the components M, and the time steps T. Inputs and observations at each time step
are un and dn.

[txa
i u

N
i“1, tµa

j , Pa
j .τa

j u
M
j“1

] = EnKF-GMM[txiu
N
i“1, dt]

for n = 1:T
for I = 1 : N

Draw x f
i „ f

`

I, un´1, vi
n´1

˘

Calculate yi “ Hxf
i ` vi

n
end for

Apply the EM algorithm on tx f
i ui“1,...,N using algorithm 1:

tτ
f
j , µ f

j , P f
j u

M
j“1 “ EMrtxf

iui“1,...,N, M, tθkus

for j = 1 : M
Calculate the Kalman gain of each component K rjs using Equation (21)
foI i = 1 : N

Calculate the updated particles for each component txa,j
i u

N

i“1 using Equation (22)
end for

Combine txa,j
i u

N

i“1 to obtain the posterior particles txa
i u

N
i“1 using Equation (23)

Calculate the parameters of the posterior distribution µa
j , Pa

j .τa
j using

Equations (24)–(26).
end for
Calculate the point estimate xa using Equation (28)
end for
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While the PF and the EnKF-GMM both can, in principle, account for multimodality, the use of the
Gaussian mixture model provides the EnKF-GMM with greater flexibility in capturing a wide variety
of distributions under varying levels of model-plant mismatch, as will be shown in the results.

3. Results and Discussion

3.1. Mathematical Model of the Methyl Methacrylate ( MMA) Polymerization Process

Simulations of a free-radical methyl methacrylate (MMA) polymerization process are used to
demonstrate the performance of the estimation method proposed in this paper. The process is assumed
to take place in a continuous stirred tank reactor (CSTR), and uses AIBN as the initiator and toluene
as the solvent. The mathematical model of this process is described below in Equations (29)–(35),
and further details can be found in [29,30]. Parameter values are provided in Table 1. The six states
to be estimated include the monomer concentration CM, the initiator concentration CI , the reactor
temperature T, the moments of the polymer distribution, D0 and D1, and the jacket temperature Tj.
Only the temperatures are measured. The number average molecular weight (NAMW), which is the
primary quality variable for the process, is defined as the ratio D1{D0.

dCm

dt
“ ´

´

kp ` k f m

¯

CmP0 `
F pCmin ´ Cmq

V
(29)

dCI
dt

“ ´kICI `
pFICIin ´ FCIq

V
(30)

dT
dt
“
p´∆Hq kpCmP0

ρCρ
´

UA
ρCρV

`

T´ Tj
˘

`
F pTin ´ Tq

V
(31)

dD0

dt
“ p0.5ktc ` ktdq P2

0 ` k f mCmP0 ´
FD0

V
(32)

dD1

dt
“ Mm

´

kp ` k f m

¯

CmP0 ´
FD f

V
(33)

dTj

dt
“

Fcw
`

Tw0 ´ Tj
˘

V0
`

UA
ρwCpwV0

`

T´ Tj
˘

(34)

P0 “

d

2 f ˚ ` CIkI
ktd ` ktc

(35)

Table 1. Operational parameters for the methyl methacrylate (MMA) polymerization reactor.

F “ 1.0 m3{h Mm “ 100.12 kg{kgmol

FI “ 0.0032 m3{h f ˚ “ 0.58
Fcw “ 0.1588 m3{h R “ 8.314 kJ{kgmol¨K

Cmin “ 6.4678 kgmol{m3 ´∆H “ 57800 kJ{kgmol
CIin “ 8.0 kgmol{m3 Ep “ 1.8283ˆ 104 kJ{kgmol

Tin “ 350 K EI “ 1.2877ˆ 105 kJ{kgmol
Tw0 “ 293.2 K E f m “ 7.4478ˆ 104 kJ{kgmol

U “ 720 kJ{h¨K¨m2 Etc “ 2.9442ˆ 103 kJ{kgmol
A “ 2.0 m2 Etd “ 2.9442ˆ 103 kJ{kgmol
V “ 0.1 m3 Ap “ 1.77ˆ 109m3{kgmol¨ h

V0 “ 0.02 m3 AI “ 3.792ˆ 1018 1{h
ρ “ 866 kg{m3 A f m “ 1.0067ˆ 1015 m3{kgmol¨ h
ρw “ 1000 kg{m3 Atc “ 3.8223ˆ 1010 m3{kgmol¨ h

Cp “ 2.0 kJ{ pkg¨Kq Atd “ 3.1457ˆ 1011 m3{kgmol¨ h
Cpw “ 4.2 kJ{ pkg¨Kq
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In all the simulations whose results are described in the following sections, the number of particles
used for each estimator, N, is 100. The number of components, M, is set to 2. The parameters of the
bimodal noise in all simulations are µ=[0.1,0.8], P=diag(0.1,0.1) for states C_m, C_I and D_0; µ=[8,64],
P=diag(8,8) for state D_1; and µ=[0.6,4.8], P=diag(0.6,0.6) for states T and Tj.

The simulations we perform are introduced here: Case Study 1 provides a comparison of the
EnKF-GMM, the PF, and the EnKF for a case with bimodal distributions and insignificant model-plant
mismatch. Case Study 2 provides a comparison of the three estimators where the model-plant mismatch
is significant. Case Study 3 compares the estimators for state estimation with uncertain parameters,
but with the uncertain parameter not being estimated. Case Study 4 considers the same case as Case
Study 3, but with combined state and parameter estimation. In Case Study 5, we consider an alternate
version of the PF and use the simulation conditions of Case Study 2.

3.2. Comparison of State Estimation with the EnKF-GMM, EnKF, and PF (Case Study 1)

In this section, we present the results of applying the EnKF-GMM, EnKF, and PF algorithms on
the PMMA process. To illustrate the performance of the estimators in cases where the states have
multimodal distributions, bimodal process noise is applied to all the six states. The measurement
noise is assumed to be Gaussian. The prior distribution of the state is also assumed to follow a GM
distribution which contains two modes.

For Case Study 1, the true initial values of the states are:

x0 “ r5
kgmol

m3 , 3
kgmol

m3 , 320K, 0.5
kgmol

m3 , 0.5
kg
m3 , 300 Ks

The dynamics of the simulation describe how the system relaxes to a steady state from this initial
condition. For the estimators, the initial particles are drawn from the prior distribution. The tuning
parameters for the prior distribution are its mean and covariance. In the first case, a prior distribution
with a small amount of bimodal process noise is tested for the three algorithms. The means of the
two Gaussian modes of the prior distribution are:

µ1 “

„

4
kgmol

m3 , 2
kgmol

m3 , 310 K, 0.49
kgmol

m3 , 0.49
kg
m3 , 295 K



;

µ2 “

„

6
kgmol

m3 , 4
kgmol

m3 , 330 K, 0.51
kgmol

m3 , 0.51
kg
m3 , 305 K



The covariances of the modes of the prior distribution are:

P1 “ diag p4, 4, 28, 8e´ 1, 8e´ 4, 6q ;

P2 “ diag p4, 4, 28, 8e´ 1, 8e´ 4, 6q

The tuning parameters of the initial distribution indicate a state distribution with insignificant
bimodality. The purpose of this simulation is to demonstrate the estimation performance of the three
algorithms in the scenario where the state distribution shows insignificant multimodality.

The comparison of estimation results using the EnKF-GMM, EnKF, and PF is shown in Figure 1,
with time steps on the x-axis (each time step is 0.3 h = 18 min). Table 2 shows the root mean squared
error (RMSE) over the 25 time steps of the simulation for the six states and the NAMW for the three
algorithms. In this case, the estimation results from Figure 1 and Table 2 show that the three algorithms
have similar performance in estimation of the six states. However, the EnKF-GMM has the best
performance in the estimation of the NAMW. In addition, the converged variance of the estimates
of the states, obtained from the estimated covariance matrix with the EnKF-GMM, are [10´4, 10´4,
1.2 ˆ 10´4, 10´5, 2 ˆ 10´4, 4 ˆ 10´4], respectively, confirming the significance of the estimates. The PF
performs better than the EnKF only for some states. Increasing the number of particles for each of
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the algorithms to 200 (results not shown) improves the performance of the PF slightly, but the same
conclusions hold.
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Figure 1. Comparison of the estimation performance of the ensemble Kalman filter (EnKF)-Gaussian
mixture model (GMM), EnKF, and particle filter (PF) for the polymethyl methacrylate (PMMA) process
with multimodal process noise (Case Study 1).

Table 2. RMSE of the Gaussian mixture model based ensemble Kalman filter (EnKF-GMM), ensemble
Kalman filter (EnKF), and particle filter (PF) for the polymethyl methacrylate (PMMA) process with
multimodal process noise (Case Study 1).

Variable EnKF-GMM EnKF PF

CM, kg¨mol{m3 0.20 0.20 0.33
CI , kg¨mol{m3 0.24 0.20 0.33

T, K 4.3 4.4 3.1
D0, kg¨mol{m3 0.019 0.014 0.032

D1, kg{m3 11.85 11.53 10.44
Tj, K 2.3 2.2 1.4

NAMW 209 338 357

In Case Study 2, the multimodal features of the prior distribution are made more significant
compared with the first case. The parameters of the prior distribution given below indicate that both
modes lie far away from the true value, which also means that the initial condition mismatch is much
larger. The true initial values of the states remain the same as the first case, and the process noise and
measurement noise applied to the plant remain unchanged as well. The modified prior distribution is
specified by:
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µ1 “

„

1
kgmol

m3 , 1
kgmol

m3 , 290 K, 0.49
kgmol

m3 , 0.49
kg
m3 , 270 K



;

µ2 “

„

10
kgmol

m3 , 8
kgmol

m3 , 350 K, 0.51
kgmol

m3 , 0.51
kg
m3 , 330 K



;

P1 “ diag p0.8, 0.8, 5.6, 8e´ 2, 8e´ 3, 5.6q ;

P2 “ diag p0.8, 0.8, 5.6, 8e´ 2, 8e´ 3, 5.6q

In this case, the parameters of the prior distribution indicate that both of the modes lie near the tail
of the likelihood function. The initial particles not only show significant multimodality, but also some
degree of model-plant mismatch. The comparison of estimation using the EnKF-GMM, EnKF, and PF
is shown in Figure 2 and the RMSE is shown in Table 3, and it is clear that the EnKF-GMM outperforms
the other two estimators. As expected, the performance of the EnKF has worsened in this case because
its Gaussian assumption on the prior and posterior distributions is violated in a significant manner.
The PF does not show good performance either, and it is outperformed by the EnKF in the estimation
of the NAMW. This is because the PF lacks robustness to plant-model mismatch [14], which is present
in this case. Increasing the number of particles for all the estimators does not change these conclusions.
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Figure 2. Comparison of the estimation performance of the EnKF-GMM, EnKF, and PF for the PMMA
process with more significant multimodal process noise (Case Study 2).

Figure 3 shows the evolution of the multimodal posterior distribution of the one of the states
(the monomer concentration) at time steps 1, 3, 4, and 9. Table 4 lists the corresponding estimation
errors of the three algorithms at those time steps with respect to the true value of CM. Figure 4
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shows the evolution of the posterior distribution of another state (the jacket temperature) at time
steps 2, 6, 9, and 10, and Table 5 shows the corresponding estimation errors of the three algorithms.
These distributions are bimodal, and this clearly shows that the EnKF-GMM outperforms the other
estimators in the presence of multimodal distributions.
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Figure 3. Evolution of the multimodal posterior distributions of CM at time steps 1, 2, 4, and 9
(Case Study 2).
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Figure 4. Evolution of the multimodal posterior distributions of Tj at time steps 2, 6, 9, and 10
(Case Study 2).

Table 3. RMSE of the EnKF-GMM, EnKF, and PF for the PMMA process with more significant
multimodal process noise (Case Study 2).

Variable EnKF-GMM EnKF PF

CM, kg¨mol{m3 0.44 0.68 0.69
CI , kg¨mol{m3 0.37 0.14 0.17

T, K 5.8 11.8 14.4
D0, kg¨mol{m3 0.042 0.062 0.078

D1, kg{m3 9.73 36.13 51.38
Tj, K 5.1 8.2 9.2

NAMW 559 1400 831

Table 4. Comparison of the estimation errors of the EnKF-GMM, EnKF, and PF for CM at time steps 1,
3, 4, and 9 (in kg¨mol{m3) (Case Study 2).

Estimator Time Step 1 Time Step 3 Time Step 4 Time Step 9

EnKF-GMM 0.23 0.14 0.40 0.04
EnKF 2.06 1.06 0.80 0.10

PF 3.60 2.20 1.65 0.22
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Table 5. Comparison of the estimation errors of the EnKF-GMM, EnKF, and PF for Tj at time steps 2, 6,
9, and 10 (in K) (Case Study 2).

Estimator Time Step 1 Time Step 3 Time Step 4 Time Step 9

EnKF-GMM 6.4 2.8 1.5 1.3
EnKF 6.6 3.0 1.9 1.7

PF 13.5 4.5 2.9 2.9

3.3. Comparison of State and Parameter Estimation with the EnKF-GMM, EnKF and PF (Case Studies 3 and 4)

We consider the effects of parametric uncertainty in this section. The uncertain parameter chosen
for these studies is Ep, which is the activation energy associated with the reaction rate parameter kp.
We choose Ep as the uncertain parameter because (based on dimensionless sensitivity analysis) the
NAMW is highly sensitive to the values of this parameter. We consider state estimation and joint state
and parameter estimation in this section.

3.3.1. State Estimation with Uncertain Parameter (Case Study 3)

In this sub-section, while Ep is an uncertain parameter and noise is added to its value at each
time step in the simulation, the parameter is not estimated. The nominal value of Ep is set to be

Ep “ 1.8283ˆ
104kJ

kgmol
, and bimodal Gaussian noise with means of the modes µ1 “ ´ 100, µ2 “ 100 and

covariances P1 “ 50, P2 “ 50 is added to it. In addition, process and measurement noise with the same
distributions as in the second case in Section 3.2 are included. Figure 5 shows the comparison of the
estimation results using the three algorithms over 40 time steps, and Table 6 shows the corresponding
RMSE. In this case, the EnKF-GMM shows a small improvement in state estimation performance over
the other estimators, especially in the estimation of the NAMW.
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Figure 5. Comparison of state estimation with the EnKF-GMM, EnKF, and PF for the PMMA process
with uncertain parameter Ep (Case Study 3).
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Table 6. RMSE of the EnKF-GMM, EnKF, and PF for state estimation in the case with uncertain
parameter Ep (Case Study 3).

Variable EnKF-GMM EnKF PF

CM, kg¨mol{m3 0.29 0.26 0.32
CI , kg¨mol{m3 0.12 0.10 0.27

T, K 7.2 8.9 10.3
D0, kg¨mol{m3 0.111 0.092 0.144

D1, kg{m3 32.27 35.11 45.34
Tj, K 5.5 5.7 7.5

NAMW 487 869 653

3.3.2. State and Parameter Estimation with Uncertain Parameter (Case Study 4)

Next, we compare the performance of the estimators for joint state and parameter estimation.
Once again, Ep is the uncertain parameter and its nominal value is kept the same as in Case Study 3.
The parameter Ep is treated as an augmented state for estimation. The prior distribution for Ep has the
following characteristics: means of µ1 “ 1.9ˆ 104, µ2 “ 2.5ˆ 104 for its two modes, and covariances of
P1 “ 500, P2 “ 500. Bimodal noise is added to each particle of the parameter, with means µ1 “ ´100,
µ2 “ 100 and covariances P1 “ 50, P2 “ 50. Except for the exclusion of process noise, the properties of
the simulation are kept the same as in Case Study 3. Figure 6 shows the performance of the estimators
in state estimation, and Figure 7 shows their performance in estimating the parameter Ep. While the
performance of the EnKF in state estimation is comparable to that of the EnKF-GMM, the EnKF-GMM
is clearly superior in parameter estimation. The PF has the worst performance among the estimators.
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3.3.2. State and Parameter Estimation with Uncertain Parameter (Case Study 4) 

Next, we compare the performance of the estimators for joint state and parameter estimation. 
Once again, 𝐸𝐸𝑝𝑝 is the uncertain parameter and its nominal value is kept the same as in Case  
Study 3. The parameter 𝐸𝐸𝑝𝑝 is treated as an augmented state for estimation. The prior distribution for 
𝐸𝐸𝑝𝑝 has the following characteristics: means of  µ1 = 1.9 × 104, µ2 = 2.5 × 104 for its two modes, and 
covariances of 𝑃𝑃1 = 500, 𝑃𝑃2 = 500. Bimodal noise is added to each particle of the parameter, with 
means µ1 = −100, µ2 = 100 and covariances 𝑃𝑃1 = 50, 𝑃𝑃2 = 50. Except for the exclusion of process 
noise, the properties of the simulation are kept the same as in Case Study 3. Figure 6 shows the 
performance of the estimators in state estimation, and Figure 7 shows their performance in estimating 
the parameter 𝐸𝐸𝑝𝑝. While the performance of the EnKF in state estimation is comparable to that of the 
EnKF-GMM, the EnKF-GMM is clearly superior in parameter estimation. The PF has the worst 
performance among the estimators. 
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Figure 6. Comparison of state estimation with the EnKF-GMM, EnKF, and PF for the PMMA process
with uncertain parameters (Case Study 4).



Processes 2016, 4, 9 15 of 18Processes 2016, 4, x 15 of 18 

 

Figure 7. Parameter estimation using the EnKF-GMM, EnKF, and PF (Case Study 4). 

3.4. Alternate Point Estimates for the PF (Case Study 5) 

In the PF, even though the full distribution is obtained, a point estimate for the states is usually 
obtained by choosing the expectation (mean) of the posterior particles. This is the method we have 
employed for the PF in the simulations described in the previous sections. However, if the 
distribution is multimodal, the mean may not necessarily represent the best point estimate, and the 
mode of the distribution (which is equivalent to the maximum a posteriori estimate) can provide a 
better estimate [14,31]. We investigate whether this approach can improve the performance of the PF, 
since we are considering cases where the distributions are multimodal. We apply k-means clustering 
on the posterior distribution of the particles to identify the modes and the maximum a posteriori 
estimate with the particle filter, and compare the estimation performance of this PF, called the  
PF-mode, with the other estimators. The parameters of the simulations are similar to the second case 
study. Figure 8 shows the performance of the estimators, and the RMSE is described in Table 7.  
The PF-mode clearly outperforms the PF and the EnKF; however, the EnKF-GMM has  
superior performance. 

 

0 10 20 30 40 50 60 70 80
1.4

1.6

1.8

2

2.2

2.4

2.6
x 10

4

Time Instant

E
st

im
at

ed
 p

ar
am

et
er

 E
p

 

 
GMM-EnKF
EnKF
PF

0 5 10 15 20 25 30
0

2

4

6

8

Time Instant

C
M

 [k
gm

ol
/m

3]

 

 

0 5 10 15 20 25 30
-1

0

1

2

3

Time Instant

C
I [

kg
m

ol
/m

3]

 

 

0 5 10 15 20 25 30
300

350

400

450

500

Time Instant

T 
[K

]

 

 

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Time Instant

D
0 

[k
gm

ol
/m

3]

 

 

0 5 10 15 20 25 30
-200

0

200

400

600

Time Instant

D
1 

[k
gm

ol
/m

3]

 

 

0 5 10 15 20 25 30
250

300

350

400

450

Time Instant

Tj
 [K

]

 

 

True value
GMM-EnKF
EnKF
PF
PF mode

 

Figure 7. Parameter estimation using the EnKF-GMM, EnKF, and PF (Case Study 4).

3.4. Alternate Point Estimates for the PF (Case Study 5)

In the PF, even though the full distribution is obtained, a point estimate for the states is usually
obtained by choosing the expectation (mean) of the posterior particles. This is the method we have
employed for the PF in the simulations described in the previous sections. However, if the distribution
is multimodal, the mean may not necessarily represent the best point estimate, and the mode of
the distribution (which is equivalent to the maximum a posteriori estimate) can provide a better
estimate [14,31]. We investigate whether this approach can improve the performance of the PF, since
we are considering cases where the distributions are multimodal. We apply k-means clustering on
the posterior distribution of the particles to identify the modes and the maximum a posteriori estimate
with the particle filter, and compare the estimation performance of this PF, called the PF-mode, with
the other estimators. The parameters of the simulations are similar to the second case study. Figure 8
shows the performance of the estimators, and the RMSE is described in Table 7. The PF-mode clearly
outperforms the PF and the EnKF; however, the EnKF-GMM has superior performance.
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Table 7. RMSE of the EnKF-GMM, EnKF, PF, and PF-mode for state estimation (Case Study 5). 

Variable EnKF-GMM EnKF PF PF-mode 
𝐶𝐶𝑀𝑀, kg · mol m3⁄  0.44 0.68 0.68 0.85 
𝐶𝐶𝐼𝐼, kg · mol m3⁄  0.37 0.14 0.17 0.55 

𝑇𝑇,𝐾𝐾 5.8 11.8 14.4 8.31 
𝐷𝐷0 ,kg · mol m3⁄  0.042 0.062 0.078 0.047 
𝐷𝐷1 ,kg m3⁄  9.73 36.13 51.38 13.05 
𝑇𝑇𝑗𝑗 ,𝐾𝐾 5.1 8.2 9.2 7.9 
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The idea of the PF-mode is very similar to that of the EnKF-GMM. Both of them use clustering 
to extract modes from the posterior distribution and generate a point estimate based on the 
information in the modes. However, the EnKF-GMM outperforms the PF-mode because it is more 
robust to poor initial estimates and model-plant mismatch. Also, if the number of modes in the state 
distributions varies with time, perhaps even becoming unimodal at some times, using the mode as a 
point estimate is not necessarily superior to the mean. The EnKF-GMM combines the modes of the 
distribution in proportion based on the calculated weights to get a point estimate, and can adjust its 
estimation results in these cases by adjusting the weights of the modes. 

4. Conclusions 

We have proposed an estimator based on a Gaussian mixture model coupled with an ensemble 
Kalman filter (EnKF-GMM) that is capable of handling multimodal state distributions, and 
demonstrated its performance in simulations on a polymethyl methacrylate process. The EnKF-GMM 
clearly outperforms the particle filter (PF) and the EnKF in both state and parameter estimation with 
multimodal distributions. The EnKF is limited by the assumption of Gaussian distributions, and the 
particle filter’s performance is affected by its lack of robustness with respect to model-plant mismatch. 
A different choice for obtaining a point estimate with the particle filter, leading to a maximum a 
posteriori estimate, improves the performance of the PF, but the EnKF-GMM is still superior, 
indicating that it is the estimator of choice for systems with multimodal state distributions such as 
polymer processes. 
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Figure 8. Comparison of state estimation with the EnKF-GMM, EnKF, PF, and PF-mode (Case Study 5).

Table 7. RMSE of the EnKF-GMM, EnKF, PF, and PF-mode for state estimation (Case Study 5).

Variable EnKF-GMM EnKF PF PF-mode

CM, kg¨mol{m3 0.44 0.68 0.68 0.85
CI , kg¨mol{m3 0.37 0.14 0.17 0.55

T, K 5.8 11.8 14.4 8.31
D0, kg¨mol{m3 0.042 0.062 0.078 0.047

D1, kg{m3 9.73 36.13 51.38 13.05
Tj, K 5.1 8.2 9.2 7.9

NAMW 559 1400 831 706

The idea of the PF-mode is very similar to that of the EnKF-GMM. Both of them use clustering to
extract modes from the posterior distribution and generate a point estimate based on the information
in the modes. However, the EnKF-GMM outperforms the PF-mode because it is more robust to poor
initial estimates and model-plant mismatch. Also, if the number of modes in the state distributions
varies with time, perhaps even becoming unimodal at some times, using the mode as a point estimate
is not necessarily superior to the mean. The EnKF-GMM combines the modes of the distribution in
proportion based on the calculated weights to get a point estimate, and can adjust its estimation results
in these cases by adjusting the weights of the modes.

4. Conclusions

We have proposed an estimator based on a Gaussian mixture model coupled with an‘ensemble
Kalman filter (EnKF-GMM) that is capable of handling multimodal state distributions, and
demonstrated its performance in simulations on a polymethyl methacrylate process. The EnKF-GMM
clearly outperforms the particle filter (PF) and the EnKF in both state and parameter estimation with
multimodal distributions. The EnKF is limited by the assumption of Gaussian distributions, and the
particle filter’s performance is affected by its lack of robustness with respect to model-plant mismatch.
A different choice for obtaining a point estimate with the particle filter, leading to a maximum a posteriori
estimate, improves the performance of the PF, but the EnKF-GMM is still superior, indicating that it is
the estimator of choice for systems with multimodal state distributions such as polymer processes.
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