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Abstract: The advent of high throughput -omics has made the accumulation of 
comprehensive data sets possible, consisting of changes in genes, transcripts, proteins and 
metabolites. Systems biology-inspired computational methods for translating metabolomics 
data into fluxomics provide a direct functional, dynamic readout of metabolic networks. 
When combined with appropriate experimental design, these methods deliver insightful 
knowledge about cellular function under diverse conditions. The use of computational 
models accounting for detailed kinetics and regulatory mechanisms allow us to unravel the 
control and regulatory properties of the fluxome under steady and time-dependent behaviors. 
This approach extends the analysis of complex systems from description to prediction, 
including control of complex dynamic behavior ranging from biological rhythms to 
catastrophic lethal arrhythmias. The powerful quantitative metabolomics-fluxomics 
approach will help our ability to engineer unicellular and multicellular organisms evolve 
from trial-and-error to a more predictable process, and from cells to organ and organisms. 
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1. Introduction 

Systems Biology entails a systemic analysis of complex, whole-system inter-connections and their 
functional interrelationships rather than component parts [1–3]. Cells, organisms, social, economic, and  
eco-systems are complex because they consist of a large number of usually non-linearly interacting parts; 
they also operate in multiple spatial and temporal scales [4–6]. 

Systems biology started to emerge as a distinct field with the advent of high throughput-omics 
technologies, i.e., gen-, transcript-, prote- and metabol-omics, that seek a comprehensive description of 
changes in genes, transcripts, proteins and metabolites occurring under the influence of perturbations 
driven by, e.g., disease or pharmacological intervention. Massive data gathering, together with the growing 
capability of generating computational models of complicated systems, have made possible a 
comprehensive integration and interpretation of information constituting the core of systems biology. 
Top–down and bottom–up approaches can be utilized. The top–down approach involves the integrated 
study of different sort of networks, and their simulation with computational models [7,8]. Bottom–up 
approaches include the study of selected processes in cells, organs, or organisms, at high spatio-temporal 
resolution, which can also be simulated through computational modeling [9–16]. From improving the 
production of a high-value metabolite or polymer in unicellular eukaryotes or prokaryotes, to the 
understanding of the pathophysiology of a disease, the focus can be placed on single mechanistic 
pathways such as amino acids or sympathetic signaling in cardiovascular disease, or a global study of a 
large number of molecules and then dissecting the individual pathways involved [3]. 

Emergent organization in complex systems is the single most distinguishing feature of organized 
complexity, and cannot be anticipated in any way from the behavior of the isolated components.  
The Complex Systems Approach [3,4] integrates systems biology to nonlinear dynamic systems analysis, 
involving a combination of experimental with mathematical techniques. One of the foundational  
concepts of the Complex Systems Approach is self-organization which is based on non-equilibrium 
thermodynamics of nonlinear open systems, i.e., those that exchange energy and matter like cells, 
organisms, and ecosystems [17–22]. 

High throughput-omics enabled the accumulation of large data sets that with the help of systems 
biology, are transforming medical, production and engineering practice [23]. However, as James Gleick 
pointed out: “A barrage of data so often fails to tell us what we need to know (…) particularly in a world 
where all bits are created equal and information is divorced from meaning” [24]. Consequently, this 
review addresses our next step to effectively improve, e.g., bioengineering of industrial strains, crops or 
combat chronic diseases such as diabetes and cancer, with the aim of gaining knowledge from these 
inventories by assessing their functional significance. 

2. Limitations of the “Big Data” Approach and the Ubiquitous Cyclic Topologies of the Living 

Humans (Homo sapiens), plants (Arabidopsis thaliana), worms (Caenorhabditis elegans) and mice 
(Mus musculus) possess about 22,000 protein-encoding genes and 10,000 proteins. The numbers for 
protein-encoding genes and the proteomes are less staggering in yeast (Saccharomyces cerevisiae) and 
fly (Drosophila melanogaster) with 6000/4000 and 13,000/8000 each, respectively [3]. Thus, articulating 
the functional nexus (beyond correlations) between genotype and phenotype is not a trivial task. 
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Quantitatively speaking, there is not a direct relationship between gene, mRNA, and protein levels 
and activity. A direct correlation between the expression of a gene, the abundance of the protein product 
and its activity is also non evident, the latter due to posttranslational modifications, e.g., phosphorylation, 
redox, that change structural conformation or the maximal velocity of an enzyme. Additionally, the 
autopoietic (from the Greek “auto” [self] and “poiesis” [to make]) [25] nature of living systems 
introduces another layer of complexity, accounting for the fundamental biological fact that cells and 
organisms make themselves, a distinguishing trait from man-made machines so far [26]. 

 

Figure 1. The fluxome integrates the outcomes of mass-energy/information and signaling 
networks. Signaling networks connect and modulate the mass-energy-information networks. 
The fluxome represents the complete ensemble of fluxes in a cell, and as such it provides a true 
dynamic picture of the phenotype because it captures, in response to the environment, the 
metabolome (mass-energy) in its functional interactions with the information (genome, 
transcriptome, proteome and post-translational modifications, PTMs) and signaling 
networks. As a result of this integration between several cellular processes, the fluxome 
represents a unique phenotypic signature of cells. The double sense of the arrows denote 
reciprocal interactions and an overall cyclic topology and connectivity that results in circular 
causality. Thus an output from a network (metabolome, e.g., ROS or AMP:ATP ratio) is the 
input of the next network (signaling, e.g., AMPK network), which after processing will 
feedback on the same network that produced the initial triggers (e.g., ROS, AMP) thus 
modulating their levels. Modified from Aon, 2013 [1]. Systems Biology of Metabolic and 
Signaling Networks. Springer 2014. 

The autopoietic nature of the living is based on networks connected by overall cyclic topologies 
(Figure 1), thus making their study relevant for understanding the control and regulation of cells’ and 
organisms’ behavior in health and disease. From this perspective, cell function can be seen as the 
unfolding in space and time of three different kind of interacting networks: mass-energy, information, 
and signaling [1]. Topologically, cyclic connectivity bestows self-organizing properties to these 
networks as they occur in thermodynamically open systems such as cells, sustained by continuous 
exchange of energy and matter with the environment; for this trait it is essential to include dynamic 
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analysis, a basic ingredient for understanding emergent organization in complex networks. The output 
of mass-energy/information networks, composed of proteins, transcriptional factors, metabolites, is at 
the same time input for signaling networks which output activates or represses those same networks that 
produced them [1,3,27]. The overall result of this process is the phenotype represented by the fluxome, 
which accounts for the whole set of fluxes sustained by a diverse range of processes associated with vital 
cellular functions such as growth, division, differentiation, autophagy, apoptosis/necrosis, or the 
response to key environmental signals such as starvation or hypoxia [1]. 

3. Metabolism and the Fluxome as a Phenotypic Signature 

A metabolic network can be interpreted, in a topological sense, as an interconnected ensemble of 
nodes, denoting intermediary metabolites, and edges, representing enzyme-catalyzed reactions.  
The familiar metabolic chart is a well-known representation of how biochemical reactions are wired. 
However, the topological portrayal of metabolism is insufficient. The full description of a biological 
system comprises the structure (catalog of individual components, e.g., proteins, genes, enzymes, 
transcriptional factors), the pattern of organization denoting how the components are wired (linked), 
organized topologically (e.g., linear or branched sequence of reactions, feed-forward, feed-back), and 
morphologically (membrane-bound or functional compartmentalization), and the function, how the ensemble 
works (i.e., unfolding in space and time of functional interrelationships, mass-energy-information fluxes, 
response to stimuli, growth) [1,28,29]. 

Metabolism is remodeled as a result of disease or inborn genetic error, involving gene-environment, 
gene-nutrient interactions that alter the rate (flux) at which metabolites are turned over. In a metabolic 
network, flux is defined as the rate (i.e., molar per unit time) at which metabolites are converted or 
transported between compartments. One primary metabolite flux is affected in an inborn error with 
Mendelian inheritance. However, in a complex disease or metabolic disorder, an entire network of 
metabolite fluxes might be altered to cause a phenotype [30]. 

The fluxome, or set of metabolic fluxes, that give rise to the metabolome represents a direct functional 
dynamic readout of the interaction between the genome and the environment, thus a unique phenotypic 
signature [31,32]. Although untargeted metabolomics still does not capture the entirety of the metabolome, 
this approach renders detectable ions across a wide m/z range using mass-spectrometry platforms [33]. 
Bioinformatic tools enable alignment, integration, and comparison of all m/z ion intensities between 
different biological samples and identify differentially changing ions. 

A major advantage of fluxomics over genomics and proteomics is that it is based on information from 
the metabolome that is far smaller compared to the total number of genes or proteins [34]. For example, 
in the mouse there are ~600 essential low-molecular-weight intermediates [35], whereas there are 
~10,000 proteins and ~22,000 protein-encoding genes [3]. 

4. From Metabolomics to Fluxomics: A Brief Survey of Existing Methodologies 

Modeling of metabolic networks can be done based on constraints of mass and charge conservation 
along with stoichiometric and thermodynamic ones [9,36,37]. Accounting for the stoichiometry of  
the reactants and products of biochemical reactions, flux balance analysis (FBA) can estimate metabolic 
fluxes without knowledge about the kinetics of the participating enzymes. 
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FBA constraint-based models can encompass large metabolic networks, however, by leaving 
regulatory interactions and detailed kinetics uncounted only yields results that are valuable for the rather 
limited biological situation of systems at steady-state, excluding time-dependent behavior and, 
implicitly, prediction [3,9]. Moreover, in FBA the equation system is usually underdetermined, thus no 
unique solution can be found by simply solving the linear equation system [38]. FBA uses linear 
optimization both for flux calculation and the sensitivity to experimental error [39]. To limit the solution 
space, linear optimization requires an objective function, e.g., maximization of ATP synthesis and/or 
NADH and NADPH generation. Different constraints can be used to limit the solution space, e.g., redox 
balance, thermodynamics [40]. 

Isotope-labelled precursors of metabolic pathways, mainly 13C-labelled substrates can be used for 
estimating metabolic fluxes [41]. Although 13C-fluxomics does not rely on cofactor balances or 
optimization functions [37] it requires a priori knowledge of possible distributions of the tracer used 
within the network. Due to metabolic network size restriction, most flux analyses performed with this 
methodology so far has been limited to the central carbon metabolism [31]. To minimize deviations of 
calculated fluxes from measured isotope enrichments and measurable rates (substrate, product, biomass), 
13C-fluxomics simultaneously fits free flux parameters. 13C-fluxomics can be used to even resolve 
parallel and cycle pathways and reversible reactions, which are inaccessible to FBA. In addition to 
metabolic steady-state 13C-fluxomics requires isotopic steady state, i.e., all metabolite labelling and 
concentrations should be constant over the course of the analysis, and expensive tracer molecules along with 
mass spectrometry or NMR instrumentation. Depending on the label position in the tracer, e.g., glucose 
labelled in the first position ([1-13C]glucose) or uniformly labelled [U-13C]glucose), allows to differentiate 
the contribution of some metabolic pathways [31]. For example, unlike [1-13C]glucose, [1,2-13C]glucose 
allows to detect both newly synthesized glycogen and ribose 5-phosphate molecules instead of only the 
former. Thus glycogen synthesis and oxidative pentose phosphate pathway fluxes can be quantified 
using one tracer. 

Kinetic models can circumvent the limitations of stoichiometric approaches because their description 
also includes regulatory interactions and kinetic mechanisms. Recently, a novel metabolomics-fluxomic 
procedure enabling the translation of high throughput metabolite profiles (metabolome) into the fluxome 
was reported [32]. From a network perspective, this approach assesses the nodes experimentally via 
metabolomics, and the edges computationally integrating the concentration of metabolites into 
enzymatic or transport rate expressions. A detailed computational kinetic model accounting for 
regulatory interactions was utilized and parameterized with a set of optimized Vmax values using an 
analytical platform comprising several integrated quantitative methodologies (Figure 2). Tested with 
metabolite profiles obtained from Langendorff-perfused mouse hearts, Cortassa and collaborators were 
able to quantitatively reproduce the metabolome concentration profile corresponding to the main 
catabolic routes (glycolysis, polyols, glycogenolysis, pentose phosphate) involved in glucose 
degradation. Further metabolic control analysis showed that the step catalyzed by phosphofructokinase 
together with ATP demand and glycogenolysis exert the highest control on the glycolytic flux. The 
negative flux control exerted by phosphofructokinase on the pentose phosphate (PP) and polyol 
pathways revealed that the extent of glycolytic flux directly affects flux redirection through these 
pathways, i.e., the higher the glycolytic flux the lower the PP and polyols [32]. Because the volume of 
possible solutions exhibited by the model depends on the choice of objective function to optimize Vmax, 
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further validation of this procedure will need an independent experimental approach to quantify 
metabolic fluxes. 13C flux analysis can be combined with mechanistic kinetic modeling for flux 
estimation corroboration. Although this contribution represents a step forward for addressing 
multifaceted metabolic disorders such as cancer and diabetes that may help in designing new therapeutic 
strategies, it is not exempt of limitations. Like all -omics technologies, it does not address 
compartmentation and cellular heterogeneity. When applied to cell populations, metabolomics assumes 
an average cell that ignores cellular heterogeneity and compartmentation thus unable to discriminate 
distinct metabolite concentrations in different subcellular compartments. Other potential limitations of 
this approach involve missing regulatory mechanisms that specifically occur under intracellular conditions. 

 

Figure 2. Integrated quantitative analytical approach of a computational model for 
translating metabolite profiles into metabolic fluxes. The method of Cortassa et al. (2015) [32] 
utilizes the experimentally obtained metabolome in terms of actual metabolite concentrations 
as initial input, to calculate the fluxome, or set of metabolic fluxes from which the initial 
metabolite profile emerged. Depicted is the platform of analytical and quantitative 
methodologies used interactively and iteratively with the computational model. 

5. Prediction, Control and Modulation of Complex Dynamic Behavior 

The full power of systems biology approaches can be unveiled by the use of quantitative methods of 
model validation and their ability to predict and analyze complex dynamic behavior, e.g., rhythms [42–44]. 
The systole-diastole cycle of heart dynamics [10,45], nutrition and circadian dynamics [46], plant cell 
growth and differentiation [47] or microbial transitions from simple to mixed substrate utilization [48,49] are 
relevant examples from the biomedical, plant biology and microbial physiology fields. In these cases, as 
well as many others, the possibility of engineering nonlinear dynamic behavior represents a valuable 
asset in any computationally-based systems biology approach. Accounting for nonlinear mechanisms 
opens the possibility of addressing emergent, self-organized behavior in the form of, e.g., chemical 
waves, oscillations. This capacity has been shown to be crucial in the case of heart arrhythmias where 
blockage of membrane channels can prevent ventricular fibrillation mediated by mitochondrial or Ca2+ 
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oscillations [50–53]. An integrated experimental-computational modeling approach enabled a mechanistic 
understanding of the conditions under which mitochondrial energy-redox criticality can originate 
arrhythmias during acute heart failure [10,16,54–57]. 

Self-synchronized continuous cultures of the yeast Saccharomyces cerevisiae exhibit ultradian 
rhythmicity in which the cell population functions like a multicellular, multi-oscillatory system 
communicating via metabolites like acetaldehyde [43,58]. Several periods of 13 h, 40 min and 4 min 
were detected in the O2 and CO2 time series obtained by mass spectrometry. Further analysis of these 
time series revealed that the broad range of temporal scales among multi-oscillatory states exhibit  
self-similar scaling, described by an inverse power law [59]. 

The existence of scale-free dynamics in temporal organization in the ultradian domain in yeast 
suggested that a change in one time scale will be felt across the frequency range from the intracellular 
to the intercellular. Inhibiting mitochondrial respiration at the level of cytochrome oxidase with 
hydrogen sulfide (H2S) abated all oscillatory frequencies including the 40 min-period ultradian clock. 
This result provided proof of principle in support of the idea that multi-scale timekeeping is an emergent 
property of the overall network involved in metabolism, growth and proliferation of yeast [44,60]. This 
finding also poses the interesting possibility that, in principle, multi-rhythmic processes could be 
modulated over the whole frequency range. 

6. The Next Frontier: Multiscale Systems Biology 

The 1999 influential article by Hartwell and colleagues introduced the notion that functional 
“modules” represent a critical level of biological organization that obey general “design principles” and 
are profoundly shaped by evolutionary constraints [61]. Departing from the concept that a functional 
module is a discrete entity whose function is separable from those of other modules, they suggested that 
modules can be insulated from or connected to each other. Consequently, higher-level functions can be 
built by connecting modules together. 

The modular approach has become paramount in computational modeling of complex systems [62], 
synthetic biology [63] and multi-scale modeling that integrates different mechanistic models of gene 
expression networks, proteins, and metabolic pathways with the purpose to aid in system-wide 
predictions across scales [64–66]. 

Multi-scale modeling is actively developed in microbiology, Mycoplasma genitalium [65] and plant 
biology, specifically for in silico approaches to improving photosynthetic efficiency [67,68]. In the 
Mycoplasma case, a bottom-up approach was adopted to simulate emergent phenotypes from individual 
molecules and their interactions. The known annotated functions of the 525 genes containing genome of 
the Mycoplasma urogenital parasite were taken into account to simulate a wide range of behaviors at the 
single cell level [65]. In plants, computational models of shoot and root development, and canopy 
microclimate were integrated to account for interactions with the rest of the plant system or crop 
ecosystem. Many of these models have been used in isolation to predict synthetic and systems as a mean 
to improve photosynthetic efficiency ignoring, however, interactions with the rest of the plant system or 
crop ecosystem [68]. 

Using a modular approach, a multi-scale computational model of gene dynamics, carbon partitioning, 
organ growth, shoot architecture, and development in response to environmental signals was established 
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for Arabidopsis thaliana [69]. Among other abilities this model exhibited flexible control of photosynthesis 
across photoperiods, and predicted the pleiotropic phenotype of a developmentally mis-regulated 
transgenic line. Multi-scale models can be used as an in silico bench test of genetic or experimental 
strategies designed to improve photosynthetic efficiency. For example, the test of potentially new 
pathways of photosynthetic carbon metabolism to be engineered in crops for increasing photosynthetic 
efficiency was simulated and the impact on the complete photosynthetic system evaluated via an energy 
balance analysis [70]. This approach led to predict the strategy that would actually increase net 
photosynthetic efficiency [68]. 

7. Concluding Remarks 

Without losing sight of the important limitations in all the approaches and methodologies analyzed in 
this review, we remain optimistic about their inherent potential and attributes. To cope with the enormous 
complexity of the problems addressed [2,45], we are now able to computationally model very 
complicated systems, and to analyze their control and regulation, as well as predict changes in qualitative 
behavior. We possess an arsenal of theoretical tools (each with its own plethora of methods) and high-
throughput technologies that allow the simultaneous monitoring of an enormous number of variables. 
Powerful imaging methods and online monitoring systems provide the means of studying living systems 
at high spatial and temporal resolution for several variables simultaneously. 

The fluxome represents a dynamic picture of the phenotype because it captures the metabolome that 
reflects the functional interactions between the environment and the genome. Ultimately, the fluxome 
integrates the outcomes from the genome, transcriptome and proteome, including posttranslational 
modifications, hence being a unique phenotypic signature of cells. Thus, in maladies like diabetes and 
cancer to know about metabolic fluxes becomes crucial because systemic metabolic remodeling occurs. 
Current combined experimental-computational methods enable quantification of rate-controlling steps 
of flux and metabolite concentrations from high throughput metabolomics. These advancements open 
new possibilities to perform predictive metabolic engineering at the organ level, including complex 
dynamic behavior. 

Gains in crop and food production for the forthcoming decades rely on improving overall crop 
photosynthetic efficiency. Based on our understanding of the photosynthetic process, this goal is 
achievable today thanks to the knowledge available to model a whole crop plant in silico. Among other 
tools, multi-scale computational models will be helpful in biological discovery and system-wide 
integration of systems biology studies applied to function at the cellular, organ, organism, populations 
and their interactions with the environment. This approach will be useful for a synergic optimization of 
all these relevant facets. 

Author Contributions 
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