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Abstract: The fate choice of human embryonic stem cells (hESCs) is controlled by 

complex signaling milieu synthesized by diverse chemical factors in the growth media. 

Prevalence of crosstalks and interactions between parallel pathways renders any analysis 

probing the process of fate transition of hESCs elusive. This work presents an important 

step in the evaluation of network level interactions between signaling molecules 

controlling endoderm lineage specification from hESCs using a statistical network 

identification algorithm. Network analysis was performed on detailed signaling dynamics 

of key molecules from TGF-β/SMAD, PI3K/AKT and MAPK/ERK pathways under two 

common endoderm induction conditions. The results show the existence of significant 

crosstalk interactions during endoderm signaling and they identify differences in network 

connectivity between the induction conditions in the early and late phases of signaling 

dynamics. Predicted networks elucidate the significant effect of modulation of AKT 

mediated crosstalk leading to the success of PI3K inhibition in inducing efficient endoderm 

from hESCs in combination with TGF-β/SMAD signaling. 
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1. Introduction 

Human embryonic stem cells (hESCs) are a promising raw material for regenerative medicine 

applications because of their potential for directed differentiation into clinically relevant cell types. In 

differentiating hESCs to lineages of pancreas, liver, etc., an important first step is the induction of 

Definitive Endoderm (called endoderm henceforth) [1]. The quality of later stage maturation is 

dictated by the initial pathway of endoderm differentiation [2]. Extensive research over a decade have 

given rise to alternate protocols for endoderm induction of hESCs that employ unique combinations of 

growth factors and small molecules [3–7]. These protocols aim to recapitulate signaling dynamics 

mimicking in vivo development of endoderm. Among these signaling mediators, activation of  

TGF-β/SMAD2,3 pathway by ligand molecules like Activin A (called Activin henceforth) has been 

identified as necessary to induce endoderm differentiation of hESCs [8]. Additionally, secondary 

modulation of parallel pathways have been shown to enhance endoderm specific differentiation; these 

include inhibition of PI3K pathway [4], or activation of FGF + BMP4 pathways [3], or activation of 

WNT pathway [6]. Among these commonly used supplementary constituents, inhibition of PI3K 

pathway has been consistently reported to enhance endoderm differentiation of hESCs in conjunction 

with Activin induction [9]. The resulting endoderm cells show good potential to transform into 

pancreatic β-like cells with continued differentiation [2,10]. 

The process of differentiation is induced by activation of specific signaling molecules by growth 

factors and small molecules. Activin in culture media binds to type 1 and type 2 receptors on the cell 

surface to form active heteromeric complexes [11]. These receptors then regulate downstream signals 

using the same mechanism as TGF-β receptor complexes. Briefly, the ligand receptor complex is 

responsible for C-terminal phosphorylation of regulatory SMAD molecules, namely SMAD2 and 

SMAD3 [12]. Active regulatory SMADs form homomeric complexes and they also complex with  

co-regulatory molecules like SMAD4 to form heteromeric complexes. These complexes shuttle to the 

nucleus to orchestrate a host of gene transcriptional events that maintain homeostasis and activate 

developmental programs [13]. Previous studies have shown that SMAD molecules play a major role in 

fate choice of hESCs [14–16]. However, the context of survival pathways like PI3K/AKT and mitogen 

activated pathways like MAPK/ERK ultimately decides whether active SMAD complexes support  

self-renewal or differentiation of hESCs. This is because of critical crosstalk interactions between  

TGF-β/SMAD and these other pathways participating in development [14,17]. 

Multiple experimental reports have shown the existence of significant crosstalk interfering with the 

TGF-β pathway during endoderm differentiation [17,18]. The efficiency of endoderm differentiation is 

consequently diminished without appropriate removal of interaction with parallel pathways. In spite of 

several experimental reports, there has not been a thorough mathematical and network level analysis of 

the existing interactions, which is the focus of the current paper. The primary goal of this work is to 

quantitatively evaluate the existence of network interactions and the direction of interaction from 



Processes 2015, 3 288 

 

signaling dynamics of hESCs differentiating to endoderm. Due to the high variability associated with 

hESC systems, it is also necessary to infer robust connections from noisy data. Bayesian models 

provide a natural framework to investigate the causal dependence between nodes in a network and 

derive probabilistic relationships that most likely explain experimental observations [19]. These 

models have proven successful in network reconstruction from noisy signal transduction data [20,21]. 

Among the different Bayesian models, non-stationary Dynamic Bayesian Networks (DBNs) provide 

the best representation of the adaptive nature of signal transduction networks [22]. 

In the present work, interactions between the signaling molecules belonging to the TGF-β/SMAD, 

PI3K/AKT and MAPK/ERK pathways controlling endoderm differentiation of hESCs were identified. 

The nature of interactions present in the signaling network and the sequence of signal propagation 

events are cumulatively captured in the dynamics of key molecules in a signaling pathway [23]. As a 

first step, a multiplex measurement platform was used to measure detailed dynamics of multiple 

signaling molecules of the TGFβ pathway along with key crosstalk molecules. The measurements were 

made under Activin induction condition along with a perturbed case where PI3K pathway was 

simultaneously inhibited. DBN analysis conducted on the entire time series of key signaling molecules 

from these pathways elucidated the presence of multiple crosstalk interactions regulating the endoderm 

induction conditions. The results show that the receptor levels play an important role in controlling 

majority of the intracellular signaling molecules in the early and late phases of the signaling dynamics. 

Further, molecule from PI3K/AKT pathway (p-AKT) shows significant crosstalk interactions in the 

high PI3K condition, which is removed in the low PI3K condition. The early signaling dynamics 

contained enough information to recapitulate the key crosstalk interactions. Overall, the analysis 

provided explanations for the network level differences between the Activin alone and Activin + PI3K 

inhibition condition used for endoderm induction. The DBNs showed the key crosstalk interactions 

removed under Activin + PI3K inhibition providing an explanation for its good endoderm 

differentiation potential at the signaling level. 

2. Methods 

2.1. Cell Culture and Treatment 

2.1.1. Human ESC Maintenance 

H1 hESCs were placed on hESC certified Matrigel (BD Biosciences, Billerica, MA, USA)-coated 

tissue culture plate for 5–7 days in mTESR1 (Stemcell Technologies, Vancouver, BC, Canada) at 37 °C 

and 5% CO2 before passaging. Cells were examined under the microscope every day and colonies with 

observable differentiation were picked and removed before the media changes. The maintenance 

protocol was adopted from our previous studies [2,9,10]. 

2.1.2. Experimental Induction of Endoderm from hESCs 

Human ESCs were allowed to grow to 60%–70% confluency before experiments were started. Once 

confluency was reached, endoderm differentiation was induced by adding 100 ng/mL Activin A  

(R & D Systems, Minneapolis, MN, USA) in the presence or absence of 1 μM Wortmannin  
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(PI3K inhibitor; Sigma-Aldrich, St. Louis, MO, USA) for 24 h (or otherwise indicated).  

The differentiation media were made using DMEM/F12 (Life Technologies, Grand Island, NE, USA), 

supplemented with 0.2% bovine serum albumin (BSA; Sigma-Aldrich, St. Louis, MO, USA) and 

1xB27 (Life Technologies, Grand Island, NE, USA). The induction protocol for endoderm was 

adopted from our previous study [2,9]. 

2.1.3. Measuring Experimental Dynamics of Signaling Molecules 

Intracellular expression of signaling proteins were measured by MagPix analysis using the TGFβ 

Signaling Pathway Magnetic Bead 6-Plex Cell Signaling Multiplex Assay (EMD Millipore, Catalog 

no.: 48-614MAG) according to manufacturer’s instructions. The detailed protocol for MagPix is 

described in our previous study [10]. Mean fluorescence intensity (MFI) was measured using the 

xMAP (Luminex, Madison, WI, USA) instrument. Measurements were obtained for 6 analytes, namely 

total TGFβ receptor 2 (t-TGFβRII), total SMAD4 (t-SMAD4), phosphorylated SMAD2 (p-SMAD2 

Ser465/Ser467), p-SMAD3 (Ser423/Ser425), p-AKT (Ser473) and p-ERK (Thr185/Tyr187). The time 

points selected for analysis were: 0, 0.5, 1, 1.5, 2, 3, 6, 12, 18 and 24 h (10 time points, each from a 

different well of tissue culture plate). Three repeats were conducted per experimental condition and 

quantitative analysis was performed on each repeat separately. Total protein content of the sample was 

measured using BCA total protein kit (Thermo Scientific, Grand Island, NE, USA), according to 

manufacturer’s instructions. 

2.2. Identification of Network Interactions from Experimental Time Series Signaling Data 

A DBN analysis was performed to identify the network structure that can explain the dynamics of 

signaling molecules during endoderm differentiation. Bayesian networks are probabilistic graphical 

models that relate nodes via directed edges, with the direction showing the causal relationship between 

the nodes [19]. These relationships are stronger as compared to correlative methods. Graphical models 

have nodes that represent entities that can interact (here molecules) and edges show how the nodes 

influence each other. The node where the edge originates is commonly called a parent node and the 

node where the edge ends is called a child node. Each node in the network is described by conditional 

probabilities as tables or functions. In continuous space, the relationship is represented by conditional 

probability distributions, and Gaussian distributions are commonly used to model the relationships [19,24]. 

Bayesian networks however cannot represent cyclic loops like feedbacks that are common in signal 

transduction networks. The problem of cyclic loops can be overcome by use of a generalization of 

Bayesian networks via DBNs [25]. 

2.2.1. Details of DBN Algorithm 

DBNs relate variables between adjacent time points such that a child node at a given time point is 

related to the parent nodes at a previous time point, thereby expanding the network in time. Based on 

the system and the dynamics, the relationship can go back one or several time steps. A common 

approach to construct DBN is by using score equivalence criterion [24]. Here, a scoring metric (for 

example, maximum likelihood (ML) estimate in combination with regularization strategies) is used to 
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evaluate how well a graph reconstructs the experimental data. Although DBNs provide good 

representation of biological networks, they are computationally expensive. Recently Grzegorczyk et al. 

developed a computationally efficient algorithm to identify non-stationary DBNs [25]. Specifically,  

in non-stationary DBNs, the network structure is kept constant between different time points, but the 

model parameters are allowed to vary between different time segments. The method has been 

successful in discovering biologically relevant interactions from diverse biological data sets including 

times series of gene expression and Milliplex protein concentrations across species [25–31]. The model 

systems are diverse, including circadian rhythms in A. thaliana, morphogenesis in D. melanogaster, 

synthetic metabolic networks in S. cerevisiae, serum inflammatory cytokine mediators in pediatric acute 

liver injury etc. [27,32]. Full details of the algorithm are presented in the manuscript and supplementary 

material of Grzegorczyk et al. [25]. A brief discussion of the algorithm based on the original 

manuscript is presented below. 
Consider a set of N interacting nodes of a signaling network represented by X1, X2,....., Xn  and a 

directed graph structure G. An edge pointing from Xi  to X j  in a DBN with time lag equal to one time 

step shows that the realization of X j  at time step t is dependent on the realization of its parent Xi  at 

time step t − 1. It is commonly assumed that a time lag equal to one time step is sufficient to represent 

the relationship, indicating that the data have to be sampled at the right time intervals for the dynamics 
to be represented correctly. The parent node set, π j , of a node X j  is the set of all nodes from which an 

edge points to X j  in . Grzegorczyk et al. proposed a non-stationary generalization of the Bayesian 

Gaussian with score equivalence model (called BGe), and it is a node-specific mixture of BGe models [25]. 

A linear Gaussian distribution is chosen for the local conditional distributions. The non-stationary 

DBN is based on the following Markov chain expansion: 
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where,  is the time course data, δVn(t ),k  is the Kronecker delta, V  is a matrix of latent variables that 

indicate which BGe mixture component generates a data point, ( )1 nK κ ,...,κ=  is a vector of mixture 

components, m  is the total number of time points. Vectors and matrices are denoted by single 
underbars in the symbols of all the equations of this manuscript. Each column of matrix V  is the 

vector V n , which divides the time series for a node into different time segments. The endpoints of 

these time segments are called as change-points. Each time segment between change-points is a 
different BGe model with parameters θn

k , which includes the mean and covariance matrix of the 

conditional dependences for the mixture component. The allocation scheme in Equation (1) provides 

representation of a nonlinear regulatory process by a piecewise linear process. From Equation (1),  

the marginal likelihood conditional on the latent variables is given by: 
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Equation (4) is the local change-point BGe score (called as cpBGe) for node n. In this work, a 

Gibbs MCMC sampling scheme was followed to sample from the local posterior distributions. 

Although, the location of change-points is inferred, the actual values of the parameters are not directly 

obtained since they are integrated out as seen from Equation (3). In this manuscript, correlation 

analysis was used in selected time segments to evaluate the nature of influence. In the algorithm, the 

change-points were sampled from a point process prior using dynamic programming and the graphs 

were sampled by sampling parent node set (restricted to 3 parents per node) from a Boltzmann 

posterior distribution using the cpBGe score. Additional details of the sampling procedure is given  

in [25]. The codes provided online by Grzegorczyk et al. were used in this work [25]. The sampling 

parameters were kept at nominal values suggested by Grzegorczyk et al. All simulations were 

performed in MATLAB® (Natick, MA, USA) on Linux 64-bit platform and single core of INTEL® 

(Santa Clara, CA, USA) Core™ 2 Quad CPU (Q8400 @ 2.66 GHz). 

2.2.2. Constructing the DBNs 

The DBN analysis was performed on each of the two experimental conditions separately to identify 

the network interactions that exist in each condition. The data were preprocessed as described in the 

results section prior to the DBN analysis (see Section 3.2). To construct the DBN, the marginal edge 

probability was monitored for each Gibbs sampling step. The marginal edge probability for a given 

edge denotes the fraction of the graphs in which that edge was present. Each Gibbs sampling step 

represents an instance of the network that can best explain the experimental time series. In the early 

phases of the simulation, the network is not yet stabilized and hence, the likelihood scores and the 

marginal edge probabilities fluctuate. The marginal edge probabilities of the final network were 

calculated after a burn-in phase when the distributions have stabilized. The DBN algorithm was 

applied to each repeat of the three available for each condition. The marginal edge probability scores 

from networks obtained for the three repeats were averaged to obtain a consensus network for a given 

condition or time zone. Finally, only those edges that were present in more than 50% of the sampled 

graphs were kept in the consensus DBN, a criterion used in the study by Azhar et al. [27]. Any value 

less than 50% indicates that the number of samples in which the associated edge was absent is more 

than the number of samples in which it is present. Specific details of the application of DBN for the 

dataset evaluated in this paper are explained in Section 3.2. 

3. Results and Discussion  

3.1. Dynamics of Signaling Molecules during Endoderm Induction 

Figure 1 shows the dynamics of six signaling molecules after Activin A addition in the presence 

(shown by blue dashed line) and absence (shown by red continuous line) of PI3K inhibitor, called as 

low and high PI3K conditions respectively. The original data was normalized by time 0 values to 
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obtain the fold change. The mean levels and standard deviation from 3 experimental repeats are plotted 

here. The time points selected for the study include: 0, 0.5, 1, 1.5, 2, 3, 6, 12, 18 and 24 h. The high 

PI3K condition represents the differentiation protocol where only the TGF-β/SMAD2,3 pathway is 

externally activated while the PI3K/AKT pathway is left unperturbed. In this condition, p-AKT levels 

are maintained near the basal levels, only slightly lower (Figure 1A). For the purpose of this 

manuscript, the basal levels are defined as the protein levels at time 0. It is seen that the mean levels of 

p-AKT fluctuate in the early time points (<6 h). Levels of t-TGFβRII (Figure 1B) also remain close to 

basal levels under high PI3K signaling. For p-SMAD2 (Figure 1C), an overshoot behavior is seen with 

levels reaching the maximum within 2–3 h and settling at intermediate levels by 6 h. For p-SMAD3 

(Figure 1D), the dynamics shows a different behavior than p-SMAD2 even though both are activated 

by the same ligand-receptor complex. In general, the dynamics shows a continuous increase instead of 

the overshoot behavior seen for p-SMAD2. t-SMAD4 (Figure 1E) is maintained near the basal levels 

for this condition. p-ERK shows a minimal and delayed increase (Figure 1F) under high PI3K. 

 

Figure 1. Dynamics of key molecules from the TGF-β/SMAD, PI3K/AKT and 

MAPK/ERK pathways for two endoderm induction conditions. (A–F) p-AKT, t-TGFβRII, 

p-SMAD2, p-SMAD3, t-SMAD4 and p-ERK dynamics under high and low PI3K 

conditions. H1 hESCs were treated with 100 ng/mL Activin A in the presence or absence 

of 1 μM Wortmannin (PI3K inhibitor) for 24 h. The protein levels were quantified using 

Multiplex MagPix Assay. The mean and standard deviation (number of repeats = 3) in 

protein levels are represented here as fold change over time 0 levels. 

The low PI3K condition represents a modulation over the high PI3K condition with the PI3K/AKT 

pathway externally inhibited in addition to activation of TGF-β/SMAD2,3 pathway. In this condition, 

we see a considerable decrease in p-AKT levels since it is a downstream effector of PI3K signal  
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(Figure 1A). However, interestingly this decrease is short-lived. Even after continued inhibition of 

PI3K, the levels of p-AKT start increasing from 3 h with the levels reaching near basal levels by 12 h. 

The levels of t-TGFβRII in this condition are lower than high PI3K condition at time points from 6 h 

(Figure 1B). The dynamics of p-SMAD2 is similar to the high PI3K condition (Figure 1C) with 

slightly higher fold-change at early time points. The fold-change in p-SMAD3 is higher compared to 

high PI3K signaling and it also shows substantial increase at later time points. t-SMAD4 (Figure 1E) 

shows fluctuations at early time points and a slight reduction at later time points (from 6 h). p-ERK 

(Figure 1F) shows a slow rise as compared to p-SMAD2,3 and the increase is substantial as compared 

to high PI3K signaling. Thus, overall, the low PI3K condition results in higher fold-changes in levels 

of phosphorylated SMAD3 and ERK than high PI3K condition. Further, low PI3K results in higher 

expression of two important endoderm genes, SOX17 and CER (Figure S1, also see [9] for more 

marker comparisons). 

The dynamics shown in Figure 1 is the first detailed study of signaling dynamics obtained for 

hESCs under endoderm induction conditions. Two unique features are observed for hESCs, namely the 

rise in p-AKT levels under continued PI3K inhibition and the divergent dynamics of p-SMAD2 and  

p-SMAD3 under high Activin levels. Further, as is typical for hESC system, there is high degree of 

variability in the levels of most molecules and the degree of variability is different at different time 

points. The variability is higher for low PI3K condition, a possible effect resulting from high degree of 

cell death observed in this condition since PI3K is an important cell survival pathway. The differences 

in the levels and dynamics of molecules between high and low PI3K conditions indicate existence of 

crosstalk interactions between the TGF-β/SMAD2,3, PI3K/AKT and MAPK/ERK pathways. Previous 

reports from the Dalton group has indicated interactions between these pathways using static end-point 

analysis [17]. Here, we use a computational framework to identify all possible interactions from the 

information contained in the signaling dynamics. 

3.2. Predictions of Network Interactions by DBN Analysis on Entire Time Series 

We employed DBN algorithm developed by Grzegorczyk et al. for network identification [25].  

As detailed in Section 2.2.1, the algorithm infers a causal relationship (hence directed graph) between 

the nodes in the network across any two adjacent time points from a given time series data. To apply 

the algorithm to the high and low PI3K data, the data were preprocessed by normalizing the raw MFI 

values of each protein by its maximum MFI value for the given time series. The data consists of 10 

time points, namely 0, 0.5, 1, 1.5, 2, 3, 6, 12, 18 and 24 h for 6 nodes in the network and 3 

experimental repeats per condition. The normalized data are presented in the supplementary figures, 

Figures S2 and S3 for high and low PI3K conditions respectively. A common concern with biological 

datasets is the inherent variability arising from batch-to-batch and well-to-well variability. This is 

further enhanced in hESC systems, used in the current work, due to inherent variations in 

differentiation, which cannot be conveniently controlled in the current experimental setting. However, 

even though the individual repeats elicited high variability in measured MFI values, many features of 

the overall protein dynamics was largely conserved (see Figures S2 and S3). Hence we performed the 

DBN on normalized data for each individual repeats separately. Figure 2 presents the directed graphs 

(or digraphs, used interchangeably in this manuscript) obtained from the DBN analysis. 
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3.2.1. DBN Analysis and Consensus Graph 

Figure 2A,C shows the consensus digraphs for the high and low PI3K data. To construct the graph, 

DBN is first performed for each of the three repeats separately. This gives rise to three DBNs for each 

condition. The consensus graph in Figure 2 is constructed by averaging the edge probability across the 

repeats and keeping the edges that occur ≥ 50% of the times. The convergence diagnostics for the 

DBNs for each repeat is presented in Figure S4. The log likelihood score stabilized very early in the 

sampling runs for both conditions (see Figure S4A,B). For the current data, it was found that 250 

Gibbs sampling steps were sufficient to converge to the marginal edge posterior distribution (see 

Figure S4C,D). This was confirmed over independent sampling runs, due to stochastic nature of the 

algorithm. Then, 500 sampling steps were performed to obtain enough samples in the converged region 

to calculate the marginal edge probabilities. At the end of 500 Gibbs sampling steps, the final marginal 

edge probabilities were calculated using the latter half of the 500 samples (the early half belongs to the 

burn-in phase of the simulation). The mean marginal edge probabilities from the three samples are 

presented in Figure 2B,D. Any edge, which was present in less than 50% of the samples, was removed 

from the consensus graph. Note that the DBN for each sample represents the network that can explain 

the entire time series of that sample, with only network parameters allowed to vary between time segments. 

 

Figure 2. Dynamic Bayesian Networks inferred for endoderm induction conditions 

(A) Consensus graph for high PI3K data. The thickness of the edges reflects the value of 

edge probabilities (≥0.5); (B) Marginal edge probability table for high PI3K data. The 

parent node is the node whose value at time step (t − 1) affects the value of child node at 

time step t; (C) Consensus graph for low PI3K data; (D) Marginal edge probability table 

for low PI3K data. 
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3.2.2. High PI3K Condition 

The consensus graph shows the average interactions that are present for the given experimental 

condition across the three samples. As seen from Figure 2A, the dynamics of the receptor influences 

all the other molecules in the network, both molecules of the TGF-β pathway (p-SMAD2,3, SMAD4) 

and molecules of parallel pathways (p-AKT and p-ERK). The receptor is also self-regulated. The mean 

marginal edge probabilities in Figure 2B show that these edges are present in 100% of the sampled 

graphs (t-TGFβRII as the parent node and all the other molecules including the receptor being the child 

node). Next common edges include p-ERK regulation by p-AKT and p-AKT regulation by p-SMAD3 

present in 97% and 96% of the graphs respectively. Remaining possible interactions include: 

Regulation of the receptor levels by p-AKT (74%), t-SMAD4 by p-AKT and t-SMAD4 (60%–70%), 

p-SMAD3 by p-AKT (55%), p-AKT self-regulation (52%), p-SMAD3 and p-ERK by t-SMAD4 

(57%). The graphs for the individual repeats are presented in Figure S5. 

3.2.3. Low PI3K Condition 

For the low PI3K condition, the edges originating from the receptor are similar to the high PI3K 

case and are also reflected in 100% of the graphs (Figure 2C,D). Next highly represented edges include  

p-SMAD2 regulation by t-SMAD4 (94%) and t-SMAD4 self-regulation (81%). Remaining possible 

interactions include: t-SMAD4 as a parent node for p-SMAD3 (77%), p-AKT (76%), p-ERK (56%),  

p-ERK as the parent node for t-TGFβRII (71%) and p-AKT (50%), p-SMAD2 as a parent node for  

t-TGFβRII (77%), p-SMAD2 (76%), t-SMAD4 (58%) and p-ERK (51%). The graphs for the 

individual repeats are presented in Figure S6. 

3.2.4. Comparison between Digraphs of High and low PI3K Conditions 

Influence of Total Receptor Levels 

The DBN analysis identified several similarities and differences in the interactions present in the 

two conditions. Firstly, the dynamics of the total receptor levels affect the downstream molecules in 

both the conditions. This influence of total receptor levels is reflected in all the individual samples 

across both the conditions (Figures S5 and S6). This indicates that the changes in the receptor levels 

are important in influencing the downstream molecules during endoderm induction. 

Interactions between Intracellular Molecules 

Among the TGF-β pathway molecules, p-SMAD2 has increased regulatory interactions in the low 

PI3K condition, especially influencing the receptor levels. Further, p-SMAD2 shows influence on  

p-SMAD3 and p-ERK in sample 1 of high PI3K (Figure S5). p-SMAD3 shows interactions with p-

AKT in the high PI3K condition. This interaction is removed in the low PI3K condition. The low PI3K 

condition also shows increased role for t-SMAD4 in influencing the p-SMAD2 and p-SMAD3 

dynamics. p-AKT shows striking differences in the connections between the two conditions. For 

example, p-AKT interacts with and regulates majority of the nodes in the high PI3K condition. 

However, in the low PI3K condition, p-AKT does not regulate other nodes, but instead acts as a child 
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node for all of its interactions. This is an interesting prediction, because the levels of p-AKT increased 

back in spite of continued inhibition in the low PI3K condition. The current analysis indicates that a 

short-term decrease in p-AKT levels is sufficient to remove the influence of p-AKT on TGF-β pathway 

molecules. Next important difference is in the regulatory role of p-ERK. p-ERK is not regulating any 

of the other nodes in the high PI3K condition. This is also reflected in each of the repeats in high PI3K 

condition (Figure S5). Interestingly in the low PI3K condition, p-ERK takes an important role in 

regulating the receptors. p-ERK shows increased regulatory role on p-SMAD3 and t-SMAD4 in one of 

the samples (see sample 3 in Figure S6). This sample also had the highest increase in p-ERK by 24 h 

among all the samples (data not shown), indicating that this specific sample is crossing the threshold 

for p-ERK mediated regulation of SMAD molecules. 

3.2.5. Change-points Inferred by cpBGe Model 

During DBN analysis, the algorithm segments the time series data in a non-supervised,  

node-specific manner. The ends of these time segments are called as change-points. Mathematically, 

the parameters of the distribution change at a change-point, but the specific structure of the network is 

not allowed to vary. Therefore, the nature (strength and/or direction) of the regulatory relation between 

the nodes for all the time points of a segment remains the same but different from the time points in the 

preceding and succeeding segments. Currently, the algorithm fits a Gaussian mixture model for each 

node separately and assigns the time points in the data to a specific mixture component. Two time 

points belonging to the same mixture component of a node will show the same regulatory relation with 

its parent nodes at these two time points. The algorithm also calculates the posterior probability of 

pairs of time points being co-allocated in this way. The co-allocation matrices for the time steps of 

high and low PI3K condition for each repeat are shown in Figure 3. The axes of each plot represent the 

time step (whose actual value is given at the bottom of the figure). The black/white shading of the plot 

shows the posterior probability of two time points being assigned to the same mixture component of 

the cpBGe model. Black region shows 0 probability while white region shows a probability of 1. This 

plot can be made for each node in the network. For the current data, it was observed that all the nodes 

showed identical change-points, indicating that these nodes are regulated together. The co-allocation 

plot in Figure 3 is representative of all the nodes in the network. 

Based on Figure 3, many of the adjacent time points are well correlated as the high probability 

regions fall along the diagonals of the plot. This is an important observation given that each time point 

is obtained from different tissue culture well in the same experiment. More importantly, here we 

concentrate on those time segments that maintain the same regulatory relation for at least three 

consecutive time points. The high PI3K condition shows four main segments for each repeat  

(Figure 3A). Out of these, (0.5, 1, 1.5 h) and (6, 12, 18 h) are the segments containing three time points 

in at least two of the repeats. In each of these time segments, the parent node is active for the first two 

time points and the associated child node is active for the last two time points. Hence, the same 

regulatory relation between the parent and child node is active for at least two time points. Although 

the regulatory relation is changing frequently along the time series, the most repeated network edges 

are not changing along the time series, as they are kept fixed by the algorithm. The low PI3K data 

shows more variability in the number of change-points. Repeats 1, 2 and 3 show four, five and three 
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time segments respectively. Of these, repeat 2 contains very short time segments. Only one of the time 

segments, containing (0.5, 1 and 1.5 h) is repeated twice in repeats 1 and 3. 

The presence of many change-points in the same condition may be because of high variability in 

data, which is common for hESC systems. However, the presence of highly likely interactions 

identified by the DBNs indicates that there is a high degree of correlation between the nodes in spite of 

the variability in the data. In addition, the presence of correlation between many of the adjacent time 

points indicate that in spite of the uncontrolled variations, the dynamic information of signal transfer is 

still maintained. 

 

Figure 3. Co-allocation matrices for the high and low PI3K time series. (A) High PI3K 

condition; (B) Low PI3K condition. The axes represent time step. The actual time values 

corresponding to the time step are given below the plots. The black/white shading indicates 

the posterior probability of two time points being assigned to the same mixture component, 

ranging from 0 (black) to 1 (white). As seen from the figure, there are several time 

segments inferred from the data, 4 for the high PI3K condition and 3–5 for the low PI3K 

condition. All nodes show identical change-point behavior (data not shown), although this was 

not pre-fixed in the algorithm. The crosses indicate the time segments selected for network 

inference in different time zones. 

3.3. Changes in Regulatory Structure across Time Zones 

Previous section showed that the same regulatory relationship is maintained within some of the 

early and late time zones. This includes (0.5, 1, 1.5 h) which for both conditions is taken as early. The 

time points (6, 12, 18 h) are taken as late for high PI3K data and (12, 18, 24 h) for the low PI3K data. 

Since these early and late time segments have a consistent sampling interval of 0.5 and 6 h 

respectively, they were selected for further analysis to check if the regulatory interactions existing in 

the early and late time zones of the dynamics is the same (these segments are marked by crosses in 

Figure 3). This is necessary to check if the crosstalk interactions exist throughout the 24 h time series, 
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or only in certain time zones. Therefore, DBN analysis was done on each zone separately. It is important to 

note that each of the resulting networks is particular to the time segment of interest since the algorithm 

has not seen data from the other zone. Nevertheless, the regulatory structure identified in each segment 

will confirm if these segments contain similar information as any other portion of the dynamics. 

3.3.1. High PI3K Condition 

Figure 4A,B presents the consensus graph and marginal edge probabilities respectively for the early 

time points averaged over repeats 2 and 3. The network is very similar to the network obtained using 

the entire time series of high PI3K condition (Figure 2A), with some minor differences. The key 

regulations by the receptor as well as supplementary crosstalk interactions are identified from the early 

time points. Figure 4C,D presents the consensus graph and marginal edge probabilities respectively for 

the late time points, averaged over repeats 1 and 2. The network obtained only contains regulation by 

the receptor and some repeats contain the regulation by p-AKT on the receptor and p-ERK levels. 

 

Figure 4. Dynamic Bayesian Network inferred for endoderm induction conditions under 

different time zones and high PI3K. (A) Consensus graph for high PI3K data, early 

dynamics (t = 0.5, 1, 1.5 h); (B) Marginal edge probability table for high PI3K data, early 

dynamics; (C) Consensus graph for high PI3K data, late dynamics (t = 6, 12, 18 h);  

(D) Marginal edge probability table for high PI3K data, late dynamics. 

The performance of DBN algorithm is dependent on the sampling resolution of the dataset, and 

increased time points to a certain extent have been shown to reduce falsely identified connections [33]. 

Since in our current analysis in Figure 4 we are restricted to low number of time points, we further 
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verified our prediction by artificially increasing the sampling resolution of the dataset by linear 

interpolation of the original experimental data. It is important to note that the original sampling time 

points were based on the fact that the TGF-β signaling pathway shows a slow response (with dynamic 

changes of the order of hours in many cell lines [34]) and at the current sampling resolution, the key 

dynamic features like slow increase/decrease, first order and overshoot behavior are captured fairly 

well. Hence, a linear interpolation is a good assumption for the current analysis. The resulting 

consensus graphs obtained by tripling the data points (Figure S7A) shows that the most repeated 

connections involving the receptor mediated and p-AKT mediated dependences are re-captured in the 

resolved data-set. However, some of the less represented connections (mostly those with edge 

probability less than 0.58) originating from p-SMAD3 and t-SMAD4 are lost and p-SMAD2 regulation 

is regained. When additional time points were added, no further changes in the graph were observed 

(data not shown), as also seen by Yu et al. where the number of true and false positive connections 

reached a plateau after a certain point [33]. Similar conclusions are seen for the late time points  

(Figure S7B). Hence this increases confidence on the current predictions, indicating the robustness of 

the more repeated connections. 

3.3.2. Low PI3K Condition 

Figure 5A,B presents the consensus graph and marginal edge probabilities respectively for the early 

time points, averaged over repeats 1 and 3. The network is very similar to the network obtained using 

the entire time series of low PI3K condition (Figure 2B), with some minor differences. The key 

regulations by the receptor as well as supplementary crosstalk interactions are identified from the early 

time points. Figure 5C,D presents the consensus graph and marginal edge probabilities respectively for 

the late time points. Here late time points of 12, 18 and 24 h for repeat 3 were chosen based on Figure 3. 

It is seen that only the receptor-mediated regulation is identified in this region with no additional 

crosstalk interactions identified. When the sampling resolution is increased to contain triple the current 

number of time points in the early and late phases each, similar conclusions (see Figure S8) are 

obtained as the high PI3K case, with most represented connections from Figure 5 retained and some 

less represented connections (<0.51 in early and <0.63 in the late phase) lost. 

3.4. Correlation between Molecule Pairs in the Early and Late Time Zones 

The DBNs do not directly infer the strength and direction of regulation (positive or negative). This 

is because the parameters are integrated out during the calculation of the cpBGe scores (see  

Equation (3)). Alternately, this can be investigated by using correlation metrics. Since the algorithm 

here fits a linear Gaussian mixture model at each time segment between the change-points, the nature 

of interaction between pairs of nodes (parent and child nodes) within a time segment can be measured 

using linear correlation coefficients. For the purpose of comparison, Pearson correlation coefficient 

between pairs of molecules was calculated at the early and late time zones for each condition and averaged 

over the time zones for repeats selected from Figure 3. These coefficients are presented in Figure 6. Note 

that in Figure 6 the influence of a selected node on all the other nodes in the network (not just the child 

node) is presented. Based on the identified DBNs, the correlation coefficients are presented in three 

major groups showing the influence of receptors, p-AKT and p-ERK on the nodes in the network. 
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Figure 5. Dynamic Bayesian Network inferred for endoderm induction conditions under 

different time zones and low PI3K. (A) Consensus graph for low PI3K data, early 

dynamics (t = 0.5, 1, 1.5 h); (B) Marginal edge probability table for low PI3K data, early 

dynamics; (C) Consensus graph for low PI3K data, late dynamics (t = 12, 18, 24 h);  

(D) Marginal edge probability table for low PI3K data, late dynamics. 

3.4.1. Influence of Total Receptor Levels 

As seen from Figure 6A, most of the molecules show positive and strong correlation with the 

receptor in the early and late time zones of both conditions. This indicates that the receptor is 

positively influencing the downstream molecules. It is interesting to note that the correlation is heavily 

dependent on the interaction with parallel pathways. For example, presence of high PI3K weakens the 

correlation between the receptors and downstream molecules both in the early and late time points. 

Suppression of PI3K significantly increases most of the correlation coefficients. 

3.4.2. Intracellular Regulation by p-AKT 

As shown from Figure 6B, p-AKT shows negative correlation with the p-SMAD2,3 molecules in 

the high PI3K condition. Among the p-SMADs, the correlation is stronger for p-SMAD3. The 

correlation is weak in the low PI3K case and from the DBNs, it is seen that edges from p-AKT to  

p-SMADs are absent in this condition. Therefore our results show that in the low PI3K condition, 

although the p-AKT levels increase to basal levels at later time points, the influence of p-AKT on  

p-SMADs is lost. A mostly negative correlation is also seen between the p-AKT and t-SMAD and 
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positive correlation between p-AKT and the receptors in the DBNs. For p-ERK, DBN analysis showed 

regulation by p-AKT. Correlation coefficients show that the regulation is negative in the early time 

zone and positive in the late time zone. 

 

Figure 6. Correlation tables for high and low PI3K condition. (A) Receptor mediated 

regulation; (B) p-AKT mediated regulation; (C) p-ERK mediated regulation. The Pearson 

correlation is calculated between the parent nodes at time step (t − 1) and all other nodes at 

time step t. The early time points 0.5, 1, 1.5 h (both conditions) and the late time points 

correspond to 6, 12, and 18 for high PI3K and 12, 18, 24 for low PI3K. The average 

correlation coefficients across 2 repeats (selected in Figure 3) are used for high and low 

PI3K. However, for the low PI3K late time points, only repeat 3 is used. 

3.4.3. Intracellular Regulation by p-ERK 

The consensus DBNs from all the conditions showed that p-ERK has a minor role in regulating the 

levels of most molecules. The influence if it exists is mainly for the low PI3K condition as seen from 

some samples in this condition. Based on correlation analysis, the correlation coefficients are weak in 

the high PI3K condition (Figure 6C). But, comparatively stronger correlation coefficients are seen in 

the low PI3K condition. The type of regulation is however mixed. The correlation with p-SMAD2 is 

positive in the early time zone and negative in the late time zone. The correlation with p-SMAD3 and 

t-SMAD4 are negative. In the early low PI3K condition, p-ERK shows a positive correlation with p-AKT. 

3.5. Network Regulation during Endoderm Differentiation 

This work is the first account in identifying specific signaling interactions governing endoderm 

differentiation of hESCs using network analysis tools. The DBNs inferred for the high and low PI3K 

data accomplished two major tasks: (1) They identified molecular interactions within the TGF-β 

pathway along-with crosstalk interactions with parallel pathways; and (2) They identified distinct 
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pathway regulations during the early and late phases of the signaling dynamics. One key prediction 

from the entire analysis is the influence of receptor levels on downstream molecules including SMAD, 

AKT and ERK. In the canonical pathway, TGFβRII is known to activate SMAD molecules after 

formation of the ligand-receptor complex [35]. TGFβ signaling also participates in several  

non-canonical signaling leading to activation of PI3K/AKT and MAPK/ERK pathways in many cell 

lines [35,36]. Our analysis indicates that the levels of the receptors (TGFβRII) are still in the regime 

where they are limiting and any change in their level is reflected downstream. In addition, it is 

interesting to note that in each repeat, we repeatedly obtain the receptor-mediated edges, indicating 

that the connections are maintained in spite of sample variability. 

Several important interactions from p-AKT were identified indicating the existence of p-AKT 

mediated crosstalk in high PI3K condition and its removal under low PI3K. Ours is the first systematic 

study to identify these crosstalk interactions in differentiating hESCs. The regulation of p-SMAD3 by 

p-AKT is well known in other cell lines, mainly inhibition of p-SMAD3 phosphorylation by mTORC1 

and sequestration of non-phospho SMAD3 by p-AKT [37–41]. The regulation of p-SMAD2 by p-AKT 

is observed only in one sample of the high PI3K condition (Figure S5). Literature shows that most negative 

regulation of p-AKT is on p-SMAD3 and not p-SMAD2 [39], however some reports indicate negative 

regulation of both p-SMAD2 and p-SMAD3 by p-AKT in neuroblastoma and CHO cell lines [42,43]. The 

removal of crosstalk interactions with p-AKT in the low PI3K condition is interesting although the 

actual mechanism needs further study. One possibility is that the SMADs have undergone predominant 

nuclear translocation under inhibition of p-AKT and p-SMAD is no longer accessible to  

p-AKT [37,38,40]. The regulation of the receptors and t-SMAD4 by p-AKT was also seen but these 

interactions are not as widely studied as those of p-AKT and p-SMADs. 

The DBNs showed regulation of p-ERK by p-AKT in the high PI3K condition. It is well reported 

that p-ERK is inhibited by p-AKT and many of its downstream effectors (via mTORC1) in multiple 

cell lines [44]. Previous study has shown the interaction between AKT1 and cRAF in hESCs leading to 

inhibition of RAF/MEK/ERK signaling [17]. Our experiments show that the levels of p-ERK are 

higher in low PI3K condition and the influence of p-AKT on p-ERK is also absent from the low PI3K 

DBNs. This indicates that this interaction negatively influences endoderm induction. However,  

a positive correlation was seen between p-ERK and p-AKT in the early low PI3K condition. ERK is 

known to influence the AKT pathway based on the context [44] indicating that this interaction may be 

seen during endoderm differentiation via additional networks interactions in these pathways. 

4. Conclusions 

Network inference is an area of active research in systems biology, with a multitude of methods 

currently being explored, starting from correlative and clustering methods to more involved algorithms 

utilizing Boolean, Bayesian and Differential Equation frameworks [45–50]. Many attempts to compare 

different approaches have led to the conclusion that there is no true gold standard method currently 

available that can identify all true positive connections (those present and inferred) with minimal false 

positive (not present but inferred) and false negative (present and not inferred) connections [51,52]. 

During benchmarking tests on in silico signal transduction dataset to check the network reconstruction 

accuracy of the DBN algorithm used in this work, Grzegorczyk et al. obtained favorable values for 
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several measures of accuracy for datasets with wide range of signal to noise ratio (SNR) [25,32] and 

these measures were comparable to other methods for similar node numbers, connectivity and SNR [51]. 

Due to the success on a variety of datasets, the algorithm by Grzegorczyk et al. was used to determine 

the network connections in this work. Significant care was taken to infer connections from independent 

repeats of the same experimental condition due to high variability of the system and emphasis was 

given to most repeated connections across independent repeats. While current analysis indicates 

robustness of the predictions across independent repeats, verification of such robustness is only possible by 

running selective perturbation experiments [53,54], which will be considered in our future work. 

Precise control of differentiation of hESCs is a difficult problem due to the high variability and 

multiple signaling mediators associated with this process. While experiments have identified features 

of signal transduction that orchestrate this process, rational design using network level properties is not 

well studied. This work is an important contribution in this direction. Using network analysis methods, 

we uncovered signaling interactions existing amongst the common mediators of endoderm 

differentiation of hESCs. One of the most common predictions across all conditions and repeats was 

that the receptor levels are most influential in governing the downstream pathway molecules in most 

cases. The TGF-βRII levels correlated well with the canonical and non-canonical molecules.  

The influence of receptor levels on downstream signals provides an avenue to understand the origins of 

variability that is common in hESC system and it is reasonable to expect that cell-to-cell variability in 

receptor levels will lead to variability of downstream signals and eventually cell fate specification.  

In mouse ES cells, it was previously shown that variability in the activity of TGF-β pathway 

(Activin/Nodal and BMP) controlled the variability in the level of pluripotency marker, NANOG,  

in the self-renewal state and modulation of receptor activity using small molecule inhibitors influenced 

the heterogeneity of NANOG in subpopulations [55]. 

A significant observation was the strong crosstalk interactions of p-AKT with the mediators of TGF-β 

pathway during Activin induction condition and complete removal of any of these interactions under 

PI3K inhibition. The introduction of p-AKT mediated interactions and their removal is captured in the 

independent repeats of the high and low PI3K conditions. Importantly, p-AKT levels could not be 

continuously suppressed experimentally by continued inhibition of PI3K pathway, and it regained its 

basal expression. However in spite of the increase in p-AKT expression levels, the correlation 

remained weak with most molecules like p-SMAD2,3 and p-ERK, indicating continued removal of 

crosstalk. This is counter-intuitive and demonstrates the necessity of network level analysis to 

comprehend experimental data, in particular for such complex and dynamic systems. The influence of  

p-AKT on p-ERK was seen in the high PI3K condition. Report from Dalton Lab has shown increases in 

p-ERK under p-AKT inhibition in hESCs leading to activation of WNT signaling supporting endoderm 

differentiation [17]. This can explain the increase in p-ERK levels under PI3K inhibition in our system. 

In addition, a weaker regulatory role for p-ERK was predicted in the high PI3K condition, with some 

enhancement under the low PI3K condition. Possibility of p-ERK mediated interactions under low 

PI3K signaling is interesting. It is known that p-ERK has additional roles in linker phosphorylation of 

SMAD molecules which can affect the nucleo-cytoplasmic shuttling and ultimately their dynamics as 

modeled by Liu et al. in this issue of the journal [56]. This could be the reason for seeing increasing  

p-ERK influence on SMAD molecules under low PI3K condition in some samples. But, since this was 

observed in only some samples of low PI3K that used the entire time series information, additional 
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investigation needs to be done. Future studies of long-term p-ERK dynamics (>24 h) and perturbation 

experiments will enable further exploration of this portion of the network. Overall, the identified 

DBNs demonstrate significant biologically relevant interactions. Such agreement with literature 

observations along with prediction of additional interactions prove the applicability of quantitative 

methods for teasing out the network level properties of complex systems like hESCs. 

Another important result from DBN analysis was inference of time zones (change-points) where the 

network parameters changed thereby, indicating an adaptive nature of the network. The nature of the 

data indicated multiple change-points, with two major change-points in the early and late phases of the 

dynamics. Application of DBN analysis in the early and late segments showed that the early dynamics 

is more informative and could adequately identify the network inferred by using the entire time series. 

This hints at the importance of measuring early dynamics of signal transduction. Further, the late time 

segments showed strong influence of the receptors levels on other molecules with weaker influence of 

any crosstalk interaction. It was also seen that the performance of the DBN algorithm in each time 

zone was better when the number of time points was increased. However, there was no change in the 

most representative connections, but it enabled loss of some less represented connections. 

We recognize that the additional interactions identified here require further testing by perturbation 

experiments. Further, the interactions identified by DBN need not be direct associations from a 

biological standpoint, but the resulting effect via intermediated processes. The interacting molecules 

are solely dependent on the molecules tracked in the experiments. These observations, however, need 

further investigation in hESCs. An important point to note is that DBN analysis is a useful tool to 

generate hypothesis based on existing experimental data. The identified networks can inform future 

experimentation and the network themselves may undergo refinement, a common workflow in systems 

biology. Hypotheses provided by DBNs can be utilized by detailed modeling approaches like 

differential equations to investigate the kinetics of the process. 
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Nomenclature 

DBN Dynamic Bayesian Network 

DE Definitive Endoderm 

hESCs Human Embryonic Stem Cells 

p-SMAD2 phosphorylated SMAD2 

p-SMAD3 phosphorylated SMAD3 

p-AKT phosphorylated AKT 

p-ERK phosphorylated ERK 

TGFβ Transforming growth factor-beta 

t-TGFβRII total TGFβ receptor 2 

t-SMAD4 total SMAD4 

SMAD, PI3K, AKT and ERK are common signaling proteins 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Semb, H. Definitive endoderm: A key step in coaxing human embryonic stem cells into 

transplantable beta-cells. Biochem. Soc. Trans. 2008, 36, 272–275. 

2. Jaramillo, M.; Mathew, S.; Task, K.; Barner, S.; Banerjee, I. Potential for pancreatic maturation of 

differentiating human embryonic stem cells is sensitive to the specific pathway of definitive 

endoderm commitment. PLoS One 2014, 9, e94307. 

3. Xu, X.; Browning, V.L.; Odorico, J.S. Activin, bmp and fgf pathways cooperate to promote 

endoderm and pancreatic lineage cell differentiation from human embryonic stem cells.  

Mech. Dev. 2011, 128, 412–427. 

4. McLean, A.B.; D’Amour, K.A.; Jones, K.L.; Krishnamoorthy, M.; Kulik, M.J.; Reynolds, D.M.; 

Sheppard, A.M.; Liu, H.; Xu, Y.; Baetge, E.E. Activin a efficiently specifies definitive endoderm 

from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed. 

Stem Cells 2007, 25, 29–38. 

5. D’Amour, K.A.; Agulnick, A.D.; Eliazer, S.; Kelly, O.G.; Kroon, E.; Baetge, E.E. Efficient 

differentiation of human embryonic stem cells to definitive endoderm. Nat. Biotechnol. 2005, 23, 

1534–1541. 

6. Nostro, M.C.; Sarangi, F.; Ogawa, S.; Holtzinger, A.; Corneo, B.; Li, X.; Micallef, S.J.;  

Park, I.-H.; Basford, C.; Wheeler, M.B. Stage-specific signaling through tgfβ family members and 

wnt regulates patterning and pancreatic specification of human pluripotent stem cells. 

Development 2011, 138, 861–871. 

7. Basma, H.; Soto-Gutierrez, A.; Yannam, G.R.; Liu, L.; Ito, R.; Yamamoto, T.; Ellis, E.; Carson, S.D.; 

Sato, S.; Chen, Y.; et al. Differentiation and transplantation of human embryonic stem  

cell-derived hepatocytes. Gastroenterology 2009, 136, 990–999. 



Processes 2015, 3 306 

 

8. Sulzbacher, S.; Schroeder, I.S.; Truong, T.T.; Wobus, A.M. Activin a-induced differentiation of 

embryonic stem cells into endoderm and pancreatic progenitors—The influence of differentiation 

factors and culture conditions. Stem Cell Reviews Rep. 2009, 5, 159–173. 

9. Mathew, S.; Jaramillo, M.; Zhang, X.; Zhang, L.A.; Soto-Gutierrez, A.; Banerjee, I. Analysis of 

alternative signaling pathways of endoderm induction of human embryonic stem cells identifies 

context specific differences. BMC Syst. Biol. 2012, 6, 154. 

10. Richardson, T.; Kumta, P.N.; Banerjee, I. Alginate encapsulation of human embryonic stem cells 

to enhance directed differentiation to pancreatic islet-like cells. Tissue Eng. Part A 2014, 20, 

3198–3211. 

11. Attisano, L.; Wrana, J.L.; Montalvo, E.; Massague, J. Activation of signalling by the activin 

receptor complex. Mol. Cell. Biol. 1996, 16, 1066–1073. 

12. Massague, J.; Seoane, J.; Wotton, D. Smad transcription factors. Genes Dev. 2005, 19,  

2783–2810. 

13. Wu, M.Y.; Hill, C.S. Tgf-beta superfamily signaling in embryonic development and homeostasis. 

Dev. Cell 2009, 16, 329–343. 

14. Dalton, S. Signaling networks in human pluripotent stem cells. Curr. Opin. Cell Biol. 2013, 25, 

241–246. 

15. Avery, S.; Zafarana, G.; Gokhale, P.J.; Andrews, P.W. The role of smad4 in human embryonic 

stem cell self-renewal and stem cell fate. Stem Cells 2010, 28, 863–873. 

16. Sakaki-Yumoto, M.; Liu, J.M.; Ramalho-Santos, M.; Yoshida, N.; Derynck, R. Smad2 is essential 

for maintenance of the human and mouse primed pluripotent stem cell state. J. Biol. Chem. 2013, 

288, 18546–18560. 

17. Singh, A.M.; Reynolds, D.; Cliff, T.; Ohtsuka, S.; Mattheyses, A.L.; Sun, Y.; Menendez, L.;  

Kulik, M.; Dalton, S. Signaling network crosstalk in human pluripotent cells: A smad2/3-regulated 

switch that controls the balance between self-renewal and differentiation. Cell Stem Cell 2012, 10, 

312–326. 

18. Pauklin, S.; Vallier, L. The cell-cycle state of stem cells determines cell fate propensity. Cell 2013, 

155, 135–147. 

19. Needham, C.J.; Bradford, J.R.; Bulpitt, A.J.; Westhead, D.R. A primer on learning in bayesian 

networks for computational biology. PLoS Comput. Biol. 2007, 3, e129. 

20. Woolf, P.J.; Prudhomme, W.; Daheron, L.; Daley, G.Q.; Lauffenburger, D.A. Bayesian analysis of 

signaling networks governing embryonic stem cell fate decisions. Bioinformatics 2005, 21,  

741–753. 

21. Zielinski, R.; Przytycki, P.F.; Zheng, J.; Zhang, D.; Przytycka, T.M.; Capala, J. The crosstalk 

between egf, igf, and insulin cell signaling pathways—Computational and experimental analysis. 

BMC Syst. Biol. 2009, 3, 88. 

22. Murphy, K.P. Dynamic Bayesian Networks: Representation, Inference and Learning.  

Ph.D. Thesis, University of California, Berkeley, CA, USA, 2002. 

23. Heinrich, R.; Neel, B.G.; Rapoport, T.A. Mathematical models of protein kinase signal transduction. 

Mol. Cell 2002, 9, 957–970. 

24. Koller, D.; Friedman, N. Probabilistic Graphical Models: Principles and Techniques; MIT Press: 

Cambridge, MA, USA, 2009. 



Processes 2015, 3 307 

 

25. Grzegorczyk, M.; Husmeier, D. Improvements in the reconstruction of time-varying gene 

regulatory networks: Dynamic programming and regularization by information sharing among genes. 

Bioinformatics 2011, 27, 693–699. 

26. Grzegorczyk, M.; Husmeier, D. Non-homogeneous dynamic bayesian networks for continuous data. 

Mach. Learn. 2011, 83, 355–419. 

27. Azhar, N.; Ziraldo, C.; Barclay, D.; Rudnick, D.A.; Squires, R.H.; Vodovotz, Y.; Pediatric Acute 

Liver Failure Study Group. Analysis of serum inflammatory mediators identifies unique dynamic 

networks associated with death and spontaneous survival in pediatric acute liver failure.  

PLoS One 2013, 8, e78202. 

28. Emr, B.; Sadowsky, D.; Azhar, N.; Gatto, L.A.; An, G.; Nieman, G.F.; Vodovotz, Y. Removal of 

inflammatory ascites is associated with dynamic modification of local and systemic inflammation 

along with prevention of acute lung injury: In vivo and in silico studies. Shock 2014, 41, 317–323. 

29. Aerts, J.M.; Haddad, W.M.; An, G.; Vodovotz, Y. From data patterns to mechanistic models in 

acute critical illness. J. Crit. Care 2014, 29, 604–610. 

30. Dojer, N.; Gambin, A.; Mizera, A.; Wilczynski, B.; Tiuryn, J. Applying dynamic bayesian 

networks to perturbed gene expression data. BMC Bioinf. 2006, 7, 249. 

31. Chang, R.; Shoemaker, R.; Wang, W. Systematic search for recipes to generate induced 

pluripotent stem cells. PLoS Comput. Biol. 2011, 7, e1002300. 

32. Grzegorczyk, M.; Husmeier, D. A non-homogeneous dynamic bayesian network with sequentially 

coupled interaction parameters for applications in systems and synthetic biology. Stat. Appl. Genet. 

Mol. Biol. 2012, 11, doi:10.1515/1544-6115.1761. 

33. Yu, J.; Smith, V.A.; Wang, P.P.; Hartemink, A.J.; Jarvis, E.D. Advances to bayesian network 

inference for generating causal networks from observational biological data. Bioinformatics 2004, 

20, 3594–3603. 

34. Schmierer, B.; Hill, C.S. Tgfbeta-smad signal transduction: Molecular specificity and functional 

flexibility. Nat. Rev. Mol. Cell Biol. 2007, 8, 970–982. 

35. Guo, X.; Wang, X.-F. Signaling cross-talk between tgf-β/bmp and other pathways. Cell Res. 2008, 

19, 71–88. 

36. Zhang, Y.E. Non-smad pathways in tgf-β signaling. Cell Res. 2008, 19, 128–139. 

37. Conery, A.R.; Cao, Y.; Thompson, E.A.; Townsend, C.M., Jr.; Ko, T.C.; Luo, K. Akt interacts 

directly with smad3 to regulate the sensitivity to tgf-beta induced apoptosis. Nat. Cell Biol. 2004, 

6, 366–372. 

38. Danielpour, D.; Song, K. Cross-talk between igf-i and tgf-β signaling pathways. Cytokine Growth 

Factor Rev. 2006, 17, 59–74. 

39. Song, K.; Wang, H.; Krebs, T.L.; Danielpour, D. Novel roles of akt and mtor in suppressing  

tgf-beta/alk5-mediated smad3 activation. EMBO J. 2006, 25, 58–69. 

40. Remy, I.; Montmarquette, A.; Michnick, S.W. Pkb/akt modulates tgf-β signalling through a direct 

interaction with smad3. Nat. Cell Biol. 2004, 6, 358–365. 

41. Zhang, L.; Zhou, F.; ten Dijke, P. Signaling interplay between transforming growth factor-β 

receptor and pi3k/akt pathways in cancer. Trends Biochem. Sci. 2013, 38, 612–620. 



Processes 2015, 3 308 

 

42. Qiao, J.; Kang, J.; Ko, T.C.; Evers, B.M.; Chung, D.H. Inhibition of transforming growth  

factor-beta/smad signaling by phosphatidylinositol 3-kinase pathway. Cancer Lett. 2006, 242, 

207–214. 

43. Sun, T.; Ye, F.; Ding, H.; Chen, K.; Jiang, H.; Shen, X. Protein tyrosine phosphatase 1b regulates 

tgf beta 1-induced smad2 activation through pi3 kinase-dependent pathway. Cytokine 2006, 35, 

88–94. 

44. Aksamitiene, E.; Kiyatkin, A.; Kholodenko, B.N. Cross-talk between mitogenic ras/mapk and 

survival pi3k/akt pathways: A fine balance. Biochem. Soc. Trans. 2012, 40, 139–146. 

45. Villaverde, A.F.; Banga, J.R. Reverse engineering and identification in systems biology: 

Strategies, perspectives and challenges. J. R. Soc. Interface 2014, 11, 20130505. 

46. Banerjee, I.; Maiti, S.; Parashurama, N.; Yarmush, M. An integer programming formulation to 

identify the sparse network architecture governing differentiation of embryonic stem cells. 

Bioinformatics 2010, 26, 1332–1339. 

47. Chemmangattuvalappil, N.; Task, K.; Banerjee, I. An integer optimization algorithm for robust 

identification of non-linear gene regulatory networks. BMC Syst. Biol. 2012, 6, 119. 

48. Guillen-Gosálbez, G.; Miró, A.; Alves, R.; Sorribas, A.; Jiménez, L. Identification of regulatory 

structure and kinetic parameters of biochemical networks via mixed-integer dynamic optimization. 

BMC Syst. Biol. 2013, 7, 113. 

49. Rodriguez-Fernandez, M.; Rehberg, M.; Kremling, A.; Banga, J.R. Simultaneous model 

discrimination and parameter estimation in dynamic models of cellular systems. BMC Syst. Biol. 

2013, 7, 76. 

50. Penfold, C.A.; Wild, D.L. How to infer gene networks from expression profiles, revisited.  

Interface Focus 2011, 1, 857–870. 

51. Lee, W.P.; Tzou, W.S. Computational methods for discovering gene networks from expression 

data. Brief Bioinform. 2009, 10, 408–423. 

52. Bansal, M.; Belcastro, V.; Ambesi-Impiombato, A.; Di Bernardo, D. How to infer gene networks 

from expression profiles. Mol. Syst. Biol. 2007, 3, doi:10.1038/msb4100120. 

53. Tegner, J.; Yeung, M.K.; Hasty, J.; Collins, J.J. Reverse engineering gene networks: Integrating 

genetic perturbations with dynamical modeling. Proc. Natl. Acad. Sci. USA 2003, 100, 5944–5949. 

54. Molinelli, E.J.; Korkut, A.; Wang, W.; Miller, M.L.; Gauthier, N.P.; Jing, X.; Kaushik, P.; He, Q.; 

Mills, G.; Solit, D.B.; et al. Perturbation biology: Inferring signaling networks in cellular systems. 

PLoS Comput. Biol. 2013, 9, e1003290. 

55. Galvin-Burgess, K.E.; Travis, E.D.; Pierson, K.E.; Vivian, J.L. Tgf-β-superfamily signaling 

regulates embryonic stem cell heterogeneity: Self-renewal as a dynamic and regulated equilibrium. 

Stem Cells 2013, 31, 48–58. 

56. Liu, J.; Dai, W.; Hahn, J. Mathematical modeling and analysis of crosstalk between mapk 

pathway and smad-dependent tgf-β signal transduction. Processes 2014, 2, 570–595. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


