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Abstract: Tissue engineering systems for orthopedic tissues, such as articular cartilage, are
often based on the use of biomaterial scaffolds that are seeded with cells and supplied with
nutrients or growth factors. In such systems, relationships between the functional outcomes
of the engineered tissue construct and aspects of the initial system design are not well known,
suggesting the use of mathematical models as an additional tool for optimal system design.
This study develops a reaction-diffusion model that quantitatively describes the competing
effects of nutrient diffusion and the cellular uptake of nutrients in a closed bioreactor system
consisting of a cell-seeded scaffold adjacent to a nutrient-rich bath. An off-lattice hybrid
discrete modeling framework is employed in which the diffusion equation incorporates a
loss term that accounts for absorption due to nutrient uptake by cells that are modeled
individually. Numerical solutions are developed based on a discontinuous Galerkin finite
element method with high order quadrature to accurately resolve fine-scale cellular effects.
The resulting model is applied to demonstrate that the ability of cells to absorb nutrients
over time is highly dependent on both the normal distance to the nutrient bath, as well as the
nutrient uptake rate for individual cells.
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1. Introduction

In tissue engineering applications for orthopedic tissues, such as articular cartilage or bone, a
common bioreactor system consists of cells seeded in a biomaterial scaffold that is supplemented with
nutrients or growth factors. In such systems, a diverse set of biophysical and physiological mechanisms
interact to govern the formation of extracellular matrix that gives rise to the tissue’s structure and
resilient load bearing properties. The relationships between functional outcome measures for engineered
tissue constructs and the design properties and conditions for the cell-scaffold system are not well
understood. Trial-and-error approaches based on experiments involving a diverse set of cell-scaffold
culture conditions can be time intensive and costly. The development of mathematical models for
evolution of primary quantities of interest in bioreactor systems, as well as their incorporation into the
design process, have the potential to accelerate the path to realization of optimal functional outcomes in
engineered tissues; see [1] for a review of modeling approaches.

Interactions between the biological and physical mechanisms that govern tissue engineering outcomes
occur at the microscopic scale of individual cells. On this scale, cell-cell and cell-matrix interactions
are typically time varying, nonlinear functions of the variables involved. While, in theory, it may be
possible to systematically quantify ensemble effects based on multiscale modeling techniques, such as
numerical homogenization [2,3], this approach typically requires a priori specification of the constitutive
forms of relations among dependent variables in the system. These constitutive relations may not
be easily identified and, overall, such techniques have seen little application in modeling orthopedic
tissue engineering in cell-scaffold systems. Several models for cartilage tissue engineering are based
on representing the evolving system as a coupled set of biological reactions idealized as a system of
ordinary differential equations [4,5]. Other approaches are spatio-temporal and based on continuum
representations via partial differential equations (PDEs) within the framework of reaction-diffusion
models [6–10] or mixture theories [11]. It should be noted that these studies involve the representation
and solution of a forward model, and ultimately, the design of tissue engineered constructs necessitates
the integration of such models into with optimality criteria; see e.g., [12].

In modeling other types of tissues, an alternate approach involves the explicit representation of
individual cells, with the total number of cells being sufficient to simulate and identify tissue-scale
phenomena of interest in the system [13]. In lattice-based models, each lattice cell on a regular grid
represents a region containing one constituent (e.g., cell, scaffold, extracellular matrix) in the system, and
the total energy is formulated on the grid and evolved via an iterative algorithm. In contrast, off-lattice
models do not employ a grid, but represent each cell as a subdomain within the system of macroscopic
governing equations that model the evolution of the engineered tissue construct. In this study, we
employ the off-lattice approach based on a hybrid discrete modeling framework [14–16]. Hybrid discrete
models [17–21] enable coupling of PDE continuum models for variables, such as nutrient concentration,
with models that treat cells as individual discrete entities for which biological or physiological dynamics
can be separately formulated.

We focus on two primary mechanisms in the cell-scaffold system, which are the diffusive transport of
nutrients and the loss of nutrients due to cellular uptake. The latter mechanism is assumed to be required
for the maintenance of cell viability and to sustain biosynthesis and cross-linking of extracellular matrix



Processes 2014, 2 335

proteins. In the associated hybrid discrete reaction-diffusion model, each individual cell has a small
region of influence in which nutrients are absorbed from the background medium. Robust numerical
solutions of the associated governing equations are employed and based on the use of discontinuous
Galerkin finite elements in space and a Crank-Nicolson finite difference method in time. Simulations are
performed to evaluate the competition for nutrients between cells located near and far from a nutrient
source, noting that tissue regeneration is known to occur earlier and faster in peripheral regions adjacent
to a nutrient-rich bath [22].

2. Model Description

We use a hybrid discrete modeling framework [14–16] in which a continuum model for nutrient
diffusion with a concentration of u(x, t) is augmented with source terms accounting for individual cells
that remove nutrients as the system evolves in time. The following nonlinear PDE model is considered
in a two-dimensional domain, Ω, and for t > 0:

ut = ∇ · (D(x)∇u)− f({xci}
Nc
i=1, u) = ∇ · (D(x)∇u)−

Nc∑
i=1

biubg(u)δε(x− xci), (x, t) ∈ Ω× (0, T ] (1)

Here, f denotes the loss term that models the uptake of nutrients from the domain, Ω, due to the
presence of Nc individual cells, each centered at xci = (xci , yci), i = 1 . . . Nc. The model (1) is of
the hybrid-discrete type, treating each cell as a discrete entity that absorbs nutrients according to a
prescribed nutrient dependent function, g(u), where ub in Equation (1) represents a background nutrient
concentration. For each individual cell, this absorption occurs over a region with spatial extent specified
by a support function, δε, with an associated characteristic length scale, ε. We associate the length scale,
ε, with a specified cell radius that, effectively, determines the volume fraction of cells in the engineered
tissue. The positive constants bi (i = 1, . . . , Nc) control the nutrient absorption rate and may vary for
each cell.

Our model assumes a two-dimensional rectangular domain Ω = [−1, 1] × [0, 1], where 1 mm is
taken as the unit of length. The domain, Ω, is sub-divided into two subdomains consisting of one region
on the left representing a nutrient-rich fluid bath Ω1 = [−1, 0] × [0, 1] and a second region on the right
representing a cell-seeded scaffold Ω2 = [0, 1]× [0, 1] (Figure 1). The support function, δε, for individual
cells is assumed to cover a two-dimensional disk, Ci, (i = 1, . . . , Nc), of radius ε = 5 µm, and centered
at the cell centers, xci , (i = 1, . . . , Nc). In constructing the model, cell centers are located in Ω2 in a
random, non-overlapping, manner. Once all cells have been placed in the domain, we define the cell
volume fraction, Φc, as the ratio of the total area occupied by cells divided by the area of Ω2. Each
cell is also assumed to remain stationary within Ω2 and to maintain its initial size throughout time. We
assume an initial nutrient concentration profile that is a positive constant on the left half of the domain,
Ω1, and zero on the right half of the domain, Ω2 (Figure 2). No flux boundary conditions ∂u/∂n = 0 are
prescribed on the entire boundary, ∂Ω, corresponding to an assumption that there is a fixed amount of
total nutrients available in the bioreactor. Lastly, in modeling diffusive nutrient transport, we assume a
globally constant diffusivity, Di, in each subdomain, Ωi (i = 1, 2), and that, in region Ω2, the diffusivity
D2 is the same in both the cellular and extracellular regions.
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Figure 1. Illustration of the domain Ω = Ω1 ∪ Ω2, where Ω1 = [−1, 0]× [0, 1] represents a
nutrient-rich bath and Ω2 = [0, 1]× [0, 1] contains a cell-seeded scaffold. The region on the
right (Ω2) contains 1024 cells randomly distributed. Each cell is represented by a disc with
a radius corresponding to ε = 5 µm.
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Figure 2. Illustration of the initial nutrient concentration profile on the domain, Ω. In the left
half, Ω1, the normalized nutrient concentration is assumed to be u = 0.2, and on the right
half, Ω2, the initial nutrient concentration is taken to be zero.

Detailed modeling of the complex intracellular dynamics that may be involved in nutrient uptake by
individual cells is beyond the scope of this study. Instead, to account for the effects of nutrient uptake
by individual cells, we consider a simplified representation of the cell supported function, δε(x − xci),
in Equation (1) that represents the spatial component of the cell model. Specifically, for i = 1, . . . , Nc,
we assume a uniform cell model: (Figure 3)

δε(x− xci) = 1, x ∈ Ci (2)

This model assumes that the absorption of nutrients in the bioreactor system occurs in a spatially uniform
manner within all regions, Ci, that represent the individual cells in Ω2.
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Figure 3. Illustration of the spatial component, δε, of the uniform cell model (2) with cell
radius ε = 5 µm.

Lastly, a model is needed for the function, g(u), in Equation (1) that governs the cell-mediated
regulation of nutrient uptake within each individual cell. Our model is formulated by multiplying the
cell supported function, δε, by a normalized nonlinear nutrient dependent loss term, g(u) [23], that is
assumed to have the form:

g(u) = 1− e−λ(u−u∗)2 , u ≥ u∗ > 0 (3)

and g(u) = 0 for u < u∗ (Figure 4). Here, u∗ is prescribed a priori and represents a minimum nutrient
concentration for cell viability, below which the cell ceases to absorb nutrients. The parameter λ > 0

regulates the rate of nutrient absorption as a function of local nutrient concentration within an exponential
model (3).

Figure 4. Illustration of the nutrient-dependent model for nutrient loss g(u) (3) as a function
of non-dimensional nutrient concentration in the cell model. The case with λ = 10/u2

b and
minimum nutrient concentration u∗/ub = 0.05 is shown, where ub is a background nutrient
concentration used in the non-dimensionalization.
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We non-dimensionalize our governing Equation (1) in a standard way by dividing u(x, t) by the
background concentration, ub, taking a = 1 mm as the unit of length and taking a2

D
as the unit of time,

where D = max{k=1,2}Dk. Transforming to non-dimensional variables, we have:

ū =
u

ub
, τ =

tD

a2
, χ =

x

a
, λ̄ = λu2

b (4)
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Based on this transformation, the following non-dimensional version of Equation (1) is obtained:

ūτ = ∇χ ·
(
D̄k∇χū

)
−

Nc∑
i=1

b̄ig(ū)δε̄(χ− χci), (χ, τ) ∈ Ω×
(

0, T̄ =
TD

a2

]
(5)

where b̄i = bia
2

D
, ε̄ = aε and D̄k = Dk

D
(k = 1, 2). In the subsequent sections of this paper, for simplicity

of notation, we drop the bar symbols.

3. Numerical Methods

Since our governing equations are nonlinear, inhomogeneous at the fine scale and do not possess
analytical solutions, we require numerical methods that are both stable and accurate. Consequently, we
employ high order discontinuous Galerkin (DG) finite element numerical schemes. Since finite elements
generate a variational formulation of Equation (5), we can readily handle the effects of the cell supported
functions, δε, via numerical quadrature and adequate levels of mesh refinement (see Figure 5). High order
solution approximations can be obtained by using higher degree basis functions. Specifically, due to its
local nature, the DG finite element method allows us to express and work with our quantities on single
mesh elements without the requirement of additional globally prescribed conditions. Another attractive
feature of the DG method is the ease with which it accounts for various types of boundary conditions
by incorporating them into the weak formulation. In contrast, regular finite elements typically require
restrictions on the finite element space, e.g., to enforce essential boundary conditions. Lastly, in the
context of adaptive mesh refinement, the DG method produces meshes with fewer degrees of freedom, as
it allows hanging nodes, whereas continuous finite element methods may require unnecessary refinement
in order to preserve mesh conformity. We now briefly describe the specific numerical method utilized to
solve the governing equations in this study.

Figure 5. Numerical treatment of cellular effects in the hybrid discrete model.
(A) High order quadrature with 37 points and based on a thirteenth-order Gaussian quadra-
ture rule, is used to adequately resolve the effects of the cell supported δε functions in the
element integrals; (B) Illustration of a typical uniform mesh taken from a portion of the
subdomain, Ω2.
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There is an assortment of DG variants that can be found in the literature. For a survey on DG methods
for elliptic problems, see [24–27], and for parabolic problems, see [28,29]. In this study, we have used
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the symmetric interior penalty discontinuous Galerkin finite element (SIP-DGFE) method for the spatial
discretization and the Crank-Nicholson finite difference scheme for the time discretization of (1). The
SIP-DGFE method produces, in primitive variable form, symmetric operators that can provide greater
flexibility during implementation. The following fully discrete numerical scheme corresponding to (1)
computes the discrete approximation, Um, of the nutrient concentration function u at t = tm:

Let 0 = t0 < t1 < . . . , tM = T be a partition of [0, T ], and τm := tm − tm−1. Find Um ∈ Vh, such that,(
dtU

m, vh
)

+ αh(U
m,1, vh

)
+ (f({xci}

Ncells
i=1 , Um,1), vh) = 0, ∀vh ∈ Vh (6)

Here,
dtU

m := (Um − Um−1)/τm, Um,1 := (Um + Um−1)/2

vh ∈ V h is a DG basis function, where V h is the DG finite dimensional space [25] consisting of
polynomial element basis functions, τm is the time step at the m-th time iteration and αh(·, ·) is the
DG bilinear form corresponding to the Laplacian operator in variational form with prescribed boundary
conditions (BC) [26]. It should be noted that, in our model, the fact that we have a priori knowledge
of the boundaries of the subdomains is crucial in choosing an appropriate triangulation for the entire
domain, such that the edge of the triangles follows the internal boundary that separates regions Ω1 and
Ω2. Specifically, within the context of DG finite elements, the bilinear form can naturally incorporate the
known discontinuity in the diffusion coefficient for such a triangulation.

The q-th-order DG basis polynomials, e.g., q ∈ {1, 2, 3, 4}, provide accuracy that is O(hq+1) for the
L2 norm of the spatial error at each time step, with h being the mesh discretization parameter. In this
study, we have set q = 3, which, in theory, gives us an L2-spatial error that is O(h4). Time discretization
using the Crank-Nicolson finite difference scheme provides second order accuracy in time, i.e., O(τ 2),
where τ = maxi τi. Hence, overall, we expect to have a global L2-error of O(hq+1 + τ 2). We note
here that standard convergence tests have been performed to gauge the aforementioned order and found
that our schemes performed as expected. Having the formulation in primitive variable form makes it
ideal to exploit the symmetry and positive definiteness of the associated operator. We have used an
implicit-explicit inner iteration scheme in order to treat the nonlinearities present in Equation (6). A
conjugate gradient solver with multigrid preconditioning (PCG) is used to solve the resulting linearized
algebraic system arising from our numerical discretization. The code is also capable of performing mesh
refinement and coarsening, as needed, by employing a marking strategy based on inverse estimates,
described in [30–32].

4. Results

The model and numerical techniques described above were used to evaluate interactions between
diffusive transport of nutrients and nutrient loss due to cellular uptake in the system represented in
Figure 1. Our focus was to quantitatively evaluate within region Ω2 the effect of distance from the
interface to region Ω1 on the ability of cells to absorb nutrients over time. An averaging operator is
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introduced to quantify the amount of nutrients present in each cell at a given time, t. Specifically, for any
function, κ ∈ L1(Ci), define the operator:

Liκ :=
1

|Ci|

∫
Ci

κ dχ (7)

which computes an average value of function κ over each disc, Ci, i = 1, . . . , Nc. Based on Equation (7),
at a specific time, tm, we calculate the nutrient being consumed by a cell, i, as:

Λm
i := big(LiU

m) (8)

Hence, the total amount of nutrients consumed by cell i during the entire simulation is given by:

Λi :=
M∑
m=1

Λm
i (9)

where M is the total number of time steps in the finite element numerical scheme. In all simulations
performed, the non-dimensional values of the diffusivities were set as D1 = 1 (in Ω1) and D2 = 0.5

(in Ω2), and the total time was chosen as T = 3.5. In non-dimensional units, parameters for the cell
model were taken as ε = 0.005 and λ = 10 (see Equation (3)). The non-dimensional value of the cell
absorption rate was then varied among the non-dimensional values bi = b = 0.5, 1, 2.5, 5.

Figure 6. Illustration of the total nutrient consumed by each cell in the cell-seeded scaffold
(Ω2) for the case b = 0.5.
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Overall, the total amount of nutrient absorbed per cell, Λi, varied with both spatial location and as
the nutrient absorption rate, b, was changed. The total amount of nutrient consumed by each cell is
shown as a function of spatial location within region Ω2 in Figure 6 for the case b = 0.5. We observe
that there is variation among the total absorption values in both spatial directions (X and Y ), but that
cells closer to the interface (X near zero) with the nutrient bath region, Ω1, consume substantially more
nutrients. For this particular case, cells furthest away from the interface (X near one) absorb almost ten
times fewer nutrients than the cells that are closest to the interface with the nutrient source. We also
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examined the effects on the total nutrient consumed by each cell as values of the nutrient absorption rate,
b, were varied. The cases for b = 0.5, 1, 2.5, 5 were simulated and are plotted in Figure 7 as a function
of the normal distance (X) to the interface between Ω1 and Ω2. These results clearly illustrate a strong
dependence of the total amount of nutrients consumed per cell on both the normal distance to the nutrient
source (X direction) and the nutrient absorption rate, b. For each fixed value of b, data points for total
nutrient consumed by all cells were curve fit to a fourth degree polynomial obtained using MATLAB’s
“cftool” package (see Figure 7). A comparison of the resulting polynomial fits indicates that cells distant
from the source of nutrients may have limited access to nutrients, independent of cellular absorption rate,
due to their inability to compete with cells closer to the supply for access to nutrients.

Figure 7. The effects of normal distance (X direction) to the source of nutrients and nutrient
absorption rate b on the total amount of nutrient consumed by each cell. Fourth degree
polynomials were fitted to the values of total nutrient consumed by each cell in the cases
b = 5 (red), b = 2.5 (black), b = 1 (green) and b = 0.5 (purple).
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5. Discussion and Conclusions

In this study, a reaction-diffusion model was developed to study the competing effects of diffusive
nutrient transport and cellular uptake of nutrients in a closed bioreactor system comprised of a
cell-seeded scaffold adjacent to a nutrient-rich bath. The model was formulated within the framework
of off-lattice hybrid discrete models [14–16] that couple cellular effects to PDE models for nutrient
diffusion via a loss term that accounts for nutrient absorption by each individual cell. Numerical
solutions of the resulting governing equations were developed based on the use of a discontinuous
Galerkin finite element method with high order quadrature being used to accurately resolve fine-scale
variations due to the microscopic effects of individual cells. The resulting numerical models were applied
to demonstrate that the normal distance of cells from the source of nutrients, as well as the nutrient
uptake rate for individual cells both strongly influence the ability of cells to absorb nutrients over time.
These findings are consistent with prior experimental studies demonstrating that regions of engineered
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cartilage constructed nearer to nutrient access points exhibit tissue growth faster than other regions of the
tissue [8,22].

The model of an engineered tissue construct presented in this study is based on several simplifying
assumptions. These include the restriction of the model to two spatial dimensions and the assumption
that intracellular and extracellular diffusivities were constant and equal. Furthermore, only two primary
mechanisms, nutrient transport due to diffusion and nutrient loss due to cellular uptake, were considered.
As such, the focus of this study was to demonstrate the potential benefits of a hybrid discrete modeling
approach in quantifying the collective effects, at the macroscopic scale, of cells whose dynamics are
specified via a distinct set of models formulated at a finer scale. A more detailed and accurate model
of cell-scaffold systems for orthopedic tissue engineering would require the incorporation of many
additional mechanisms into the models, including the balance of mass for bound and unbound system
constituents, the balance of momentum, intracellular dynamics and cell proliferation. In addition, recent
experimental studies for cartilage tissue engineered in hydrogels demonstrated that initial pore size can
strongly affect functional tissue outcomes [33], suggesting that mixture modeling approaches [4,11]
may be an appropriate framework for the development of more detailed models. While the modeling
framework proposed in the current study extends to model formulations that are more detailed and in
three dimensions, substantial increases in the computational cost of the associated numerical solutions
are to be expected and the amenability of both the modeling approaches and numerical methods to
parallelization and mesh adaptivity are important factors to consider in future model extensions.
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