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Abstract: Abnormal conditions greatly reduce the efficiency of hydraulic fracturing of unconventional
gas reservoirs. Optimizing the fracturing scheme is crucial to minimize the likelihood of abnormal
operational conditions, such as pressure channeling, casing deformation, and proppant plugging.
This paper proposes a novel machine learning-based method for optimizing abnormal conditions
during hydraulic fracturing of unconventional natural gas reservoirs. Firstly, the main controlling
factors of abnormal conditions are selected through a hybrid controlling analysis, upon which a
surrogate model is established for predicting the occurrence probability of abnormal conditions,
rather than whether abnormal conditions happen or not. Subsequently, a machine learning-based
optimization algorithm is developed to minimize the occurrence probability of abnormal conditions,
acknowledging their inevitability during the fracturing process. The optimal results demonstrate the
proposed method outperforms traditional methods, on average. The proposed methodology is more
in line with the needs of practical operation in an environment full of uncertainty.

Keywords: unconventional gas; abnormal conditions; machine learning; probability optimization;
differential evolution

1. Introduction

The prediction of abnormal working conditions plays an important role in the im-
provement of construction success and work efficiency during unconventional natural
gas hydraulic fracturing [1]. Most unconventional natural gas is characterized by low
permeability and low porosity, which makes it difficult to achieve better extraction re-
sults with conventional extraction methods [2]. Therefore, large-scale hydraulic fracturing
is needed to expand the seepage channel to obtain industrial gas flow. Indeed, during
large-scale hydraulic fracturing, it is common to encounter abnormal operating conditions,
such as pressure channeling, casing deformation, and proppant plugging [3–5]. These
abnormal conditions will lead to a series of serious consequences, such as production loss,
environmental pollution, and waste of resources, and increase the difficulty and risk of the
unconventional natural gas mining process [6]. Prior to conducting large-scale hydraulic
fracturing operations, it is crucial to optimize the operational scheme and implement effec-
tive preventive measures [7]. This should be performed based on accurate predictions of
these abnormal conditions. Currently, research on methods to prevent abnormal working
conditions in hydraulic fracturing is centered around several aspects [8]. These include
the establishment of complex working condition models, the utilization of multivariate
sensor fusion technology, the application of intelligent algorithms, and the development of
advanced control methods [9,10].

These approaches aim to enhance the ability to detect and mitigate abnormal condi-
tions, thereby improving the overall operational efficiency and safety of hydraulic fracturing
processes [11]. Certainly, it is important to acknowledge that these methods do have certain
limitations and challenges. Some of the shortcomings include difficulties in establishing
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accurate models and adjusting parameters, uncertainties associated with sensor data, the
high complexity of algorithms, and increased computational overhead [12,13]. These lim-
itations highlight the need for further research and development to address these issues
and find more efficient and reliable solutions for preventing abnormal working conditions
in hydraulic fracturing operations [14].

With the development of artificial intelligence, people have begun to turn to the use of
machine learning methods to predict and prevent abnormal working conditions. A neural
network algorithm is employed to monitor the oil pressure and casing pressure in the
process of hydraulic fracturing in real-time to carry out early warning of accidents [15]. By
using a support vector machine algorithm, the fracture parameters and reservoir properties
(permeability and oil saturation) in the fracturing process are studied and analyzed to
carry out prediction of the post-fracturing effect [16,17]. By using a restricted Boltzmann
machine algorithm, post-fracturing production prediction of unconventional natural gas
reservoirs is carried out to achieve prediction of the post-fracturing effect [18]. By using a
decision tree algorithm, the open flow capacity of the gas well after fracturing is analyzed
to evaluate the fracturing effect [19]. A decision tree algorithm is employed to analyze the
open flow capacity of the gas well after fracturing to predict the effect after fracturing [20].
A data-driven method is employed to analyze the production of unconventional reservoirs
such as shale and tight sandstone to predict the post-fracturing effect [21]. A random forest
algorithm is employed to predict the production of fractured oil wells and the optimal
fracturing parameters to predict the post-fracturing effect [22].

In this paper, a machine learning-based surrogate model is constructed to predict the
occurrence probability of abnormal conditions. Additionally, a probabilistic optimization
model for abnormal conditions is established based on the predictions of the machine
learning model. In this optimization model, the prediction results of the machine learn-
ing model are not classified using a softmax operation. Instead, they directly output the
expected probabilities of various abnormal conditions. According to the content of the
article, optimization of fracturing construction parameters is achieved by optimizing the
probability of abnormal conditions occurring. By leveraging a probabilistic optimization
model based on machine learning predictions, construction parameters can be adjusted and
optimized to minimize the likelihood of abnormal conditions during the fracturing process.

The rest of this paper is organized as follows: Section 2 describes the machine learning
prediction model, including data collection and processing, principal control factor analysis,
model construction and optimization, and comparative analysis of model results. Section 3
discusses the optimization model construction and the comparative analysis of a series of
experimental results obtained using the optimization model algorithm. Finally, Section 4 is
the conclusion of this study.

2. Prediction of the Odds of Abnormal Conditions Based on Machine Learning
2.1. Data Acquisition and Processing

In practice, due to improper behavior during the recording or operation process, the
collected data was of low quality and needed to be preprocessed first. This preprocessing
included data cleaning, segmentation, normalization, etc. Basic information and processing
of the datasets used in this study are introduced in this section. According to the data
analysis process shown in Figure 1, the analysis of the parameters required for abnormal
conditions was performed.

Outlier screening primarily utilizes the 3σ method to identify abnormal data and
determine abnormal conditions in order to facilitate screening. The sources of anomalies
mainly consist of data anomalies (valuable) and entry anomalies (worthless, deleted, or
modified) caused by accidents. The 3σ method is a commonly employed criterion for outlier
screening. An outlier refers to a measured value that deviates from the mean value in a set
of measured values by more than twice the standard deviation. During data processing, it
is necessary to eliminate high anomalies, and whether to eliminate the abnormal values
depends on the specific circumstances.
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Figure 1. Flow chart of the proposed approach. 
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lizes the correlation and similarity of data on different factors to fill in and correct missing 
values or outliers in data. The concept behind this method is that if a sample has the k 
most similar samples in the feature space (i.e., the nearest neighbors in the feature space), 
and a majority of these samples belong to a certain category, then it can be inferred that 
the sample also belongs to that category. Consequently, the KNN classification algorithm 
can be employed to automatically fill in default data. The flow chart illustrating the pro-
cess of default value filling is depicted in Figure 2 [23,24]. 

The target oilfield reflects typical hydraulic fracturing of conventional shale gas in 
China. We performed the experiment on a real-world oilfield dataset sampled from the 

Figure 1. Flow chart of the proposed approach.

The K-Nearest Neighbor (KNN) classification algorithm is a relatively mature classifi-
cation method in theory, and it is also a machine learning algorithm. The algorithm utilizes
the correlation and similarity of data on different factors to fill in and correct missing values
or outliers in data. The concept behind this method is that if a sample has the k most similar
samples in the feature space (i.e., the nearest neighbors in the feature space), and a majority
of these samples belong to a certain category, then it can be inferred that the sample also
belongs to that category. Consequently, the KNN classification algorithm can be employed
to automatically fill in default data. The flow chart illustrating the process of default value
filling is depicted in Figure 2 [23,24].

The target oilfield reflects typical hydraulic fracturing of conventional shale gas in
China. We performed the experiment on a real-world oilfield dataset sampled from the
shale gas reservoir in Sichuan Province, China. Notably, the total dimension and records
were 18 and 538, respectively. There were some outliers in the dataset, and we adopted
related algorithms to identify and remove the outliers.
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2.2. Hybrid Analysis of the Main Controlling Factors of Abnormal Conditions

To determine the influence intensity of each controlling variable impacting on a target
variable, five machine learning methods were utilized for further analysis, including
correlation analysis, grey correlation analysis, main control factor identification based
on mutual information, feature importance ranking based on embedded method, and
Apriori correlation analysis, in which the occurrence of abnormal conditions was the
target variable and the factors affecting the abnormal conditions were the input variables,
whose dimension was 17, corresponding to Table 1. Based on the influence intensity values
obtained, quantitative sorting was conducted from largest to smallest. The factors at the
forefront of the sorting were selected as the main control factors that impact the occurrence
of abnormal conditions [25,26].
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Table 1. Parameters and the corresponding symbols.

Parameter Name Symbols

Actual total number of temporary plugging sections A1
Average cluster spacing (m) A2

Average pump stop pressure gradient (%) A3
Average segment length (m) A4

Comprehensive sand ratio (%) A5
Construction displacement (m3) A6

Flow back ratio (%) A7
Normal temporary blocking pitch proportion range (%) A8
Overall proportion of temporary plugging section (%) A9

Normal temporary plugging ratio of temporary plugging section (%) A10
Seam temporary plugging in place average pressure rise A11

Seam temporary plugging in place pressure range A12
The duration of the well is long (h) A13

TOC (%) A14
Total cumulative gas production (m3) A15

Total fracturing fluid (m3) A16
Young’s modulus (GPa) A17

2.2.1. The Sorted Significance of Factors for Abnormal Conditions

- Rank Correlation Analysis

Rank correlation analysis, including correlation analysis, grey correlation analysis,
and Apriori correlation analysis, is a type of non-parametric statistical method used to
measure the correlation between two variables. Its main significance lies in the fact that
the degree of correlation can be evaluated by the rank correlation coefficient, which is not
affected by the data distribution [27].

The calculation formula for the rank correlation coefficient, specifically Spearman’s
rank correlation coefficient, grey correlation analysis, and Apriori correlation analysis, is
as follows:

ρ = 1 − 6Σd2

n(n2 − 1)
(1)

where ρ represents Spearman’s rank correlation coefficient, d denotes the rank difference
corresponding to the two variables, and n is the number of samples.

Based on the rank correlation analysis, the sorted significance of factors impacting
on pressure channeling, casing deformation, and proppant plugging were analyzed. The
results, named as Ac

i , are shown in Figure 3 and Table 2.
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correlation analysis. In (a–c), Ai (i = 1, 2, . . .) represents different main control factors. For example,
A1 represents the actual total number of temporary plugging sections, and A2 denotes the average
cluster spacing. For more details, please refer to Table 1.
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Table 2. The sorted significance of factors for each abnormal condition based on the rank correla-
tion analysis.

Abnormal Conditions Sorted Significance of Factors

pressure channeling A16 > A6 > A14 > A17 > A5 > A15 > A11 > A12 >
A4 > A8 > A2 > A9 > A7 > A1 > A10 > A13 > A3

casing deformation A10 > A9 > A6 > A3 > A12 > A11 > A16 > A1 >
A14 > A7 > A5 > A2 > A13 > A17 > A15 > A8 > A4

proppant plugging A1 > A16 > A13 > A14 > A2 > A5 > A17 > A8 >
A15 > A7 > A6 > A11 > A12 > A3 > A4 > A9 > A10

- Mutual Information

Mutual information is an index employed to measure the correlation or dependence
between two random variables. Its calculation formula is as follows:

I(X; Y) = ∑ P(X, Y)log∑
[

P(X, Y)
P(X)P(Y)

]
(2)

where X and Y are two random variables, P(X, Y) is the probability of X and Y occurring
at the same time, and P(X) and P(Y) are the probability of X and Y occurring alone,
respectively [28].

Based on mutual information, the sorted significance of factors impacting on pressure
channeling, casing deformation, and proppant plugging were analyzed. The results, named
as Am

i , are shown in Figure 4 and Table 3.
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Table 3. The sorted significance of factors for each abnormal condition based on mutual information.

Abnormal Conditions Sorted Significance of Factors

pressure channeling A16 > A13 > A1 > A3 > A9 > A4 > A5 > A8 >
A12 > A14 > A10 > A7 > A2 > A17 > A15 > A15 > A11

casing deformation A10 > A2 > A13 > A12 > A16 > A4 > A9 > A3 >
A7 > A8 > A17 > A14 > A1 > A15 > A11 > A5 > A6

proppant plugging A16 > A6 > A5 > A4 > A11 > A15 > A1 > A12 >
A14 > A17 > A13 > A10 > A9 > A8 > A7 > A3 > A2

- Embedded Method

The embedded method is a machine learning method for feature selection. Its main
significance is to improve model performance and generalization ability by automatically
selecting the most relevant and important features during model training [29].
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Taking L1 regularization as an example, the calculation formula is as follows:

minLoss(θ) + λ∗ || θ ||1 (3)

where Loss(θ) represents the loss function of the model, θ denotes the parameter of the
model, || θ ||1 represents the L1 norm (the sum of absolute values) of θ, and λ denotes the
regularization parameter, which is used to control the degree of feature selection.

Based on the embedded method, the sorted significance of factors impacting on
pressure channeling, casing deformation, and proppant plugging were analyzed. The
results, named as Ae

i , are shown in Figure 5 and Table 4.
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Table 4. The sorted significance of factors for each abnormal condition based on the embedded method.

Abnormal Conditions Sorted Significance of Factors

pressure channeling A7 > A6 > A3 > A8 > A13 > A1 > A2 > A16 >
A9 > A15 > A10 > A14 > A4 > A17 > A5 > A12 > A11

casing deformation A10 > A9 > A3 > A1 > A13 > A16 > A12 > A11 >
A2 > A5 > A7 > A6 > A4 > A8 > A15 > A17 > A14

proppant plugging A16 > A6 > A3 > A5 > A8 > A11 > A1 > A12 >
A15 > A17 > A4 > A14 > A13 > A7 > A10 > A2 > A9

2.2.2. The Main Controlling Factors of Abnormal Conditions

Through the analysis of the sorted significance of factors impacting on abnormal
conditions in Tables 2–4 of Section 2.1, we found that different methods in evaluating the
significance of factors have distinct results. To alleviate the effects caused by the difference
existing in machine learning, we proposed a comprehensive method for determining
the main controlling factors from the perspectives of subjective and objective. For the
perspective of subjective, the experts’ experience method was applied to calculate the
sorted significance of factors, named as

(
j, As

i
)
, where i, j = 1, 2, . . . , 17, and i, j denote the

indexes of factors and sorting significance of factors, respectively. Then, the combined
weighting method can be formulized as follows:

Ai = αi[As
i ] + βi[Ao

i ], i = 1, 2, . . . , 17 (4)

where Ai is the sorted significance of factors; αi and βi denote the subjective and objective
weights, respectively; [·] denotes a function aiming at returning the indexes of sorting
significance of factors; and Ao

i =
[
Ac

i , Am
i , Ae

i
]

denotes the objective sorted significance
of factors.
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By setting αi = 0.4, βi = [0.1, 0.2, 0.3], we obtained the comprehensive sorting results
of significance regraded to each factor impacting on abnormal conditions, as shown in
Table 5.

Table 5. The sorted significance of factors for each abnormal condition based on subjective and
objective analysis.

Abnormal Conditions Sorted Significance of Factors

pressure channeling A6 > A16 > A3 > A13 > A7 > A1 > A8 > A2 >
A14 > A9 > A4 > A17 > A10 > A17 > A5 > A12 > A11

casing deformation A16 > A3 > A2 > A12 > A4 > A6 > A7 > A8 >
A10 > A9 > A14 > A13 > A1 > A15 > A11 > A5 > A17

proppant plugging A16 > A6 > A4 > A14 > A3 > A1 > A12 > A5 >
A15 > A17 > A7 > A10 > A11 > A9 > A8 > A13 > A2

According to Table 5, we can conclude that the main controlling factors that have
a greater impact on abnormal conditions are the average cluster spacing A2, the aver-
age pump stop pressure gradient A3, the average segment length A4, the construction
displacement A6, the flow back ratio A7, the TOC A14, and the total fracturing fluid A16.

2.3. Machine Learning-Based Surrogate Models
2.3.1. Model Construction

Firstly, taking the abnormal conditions as the output variables and the main controlling
factors affecting abnormal conditions as the input variables, a machine learning model
was established aimed at predicting the occurrence probability of abnormal conditions.
Secondly, the field data were divided into training data with the size of training data set as
0.8, and test data with the size of test data set as 0.2, and then the model was trained and
tested based on corresponding data, and consequently obtained multiple training confusing
matrices and test confusing matrices for the three typical abnormal conditions. Thirdly, the
results in confusing matrices were employed to judge whether the selected main control
factors were reasonable. If reasonable, the current main controlling factors were retained
for the next step. If it was unreasonable, we analyzed whether the unreasonable reason was
improper selection of the main controlling factors or improper selection of models. Finally,
according the unreasonable reason, the corresponding experiment was adjusted. If the
main controlling factors were improperly selected, the quantitative sorting steps Y = F(X1)
of the main controlling factors in the analysis of abnormal conditions were returned. If the
model was improperly selected, the experiment went back to the model selection step in
the establishment of the machine learning model [30,31].

The above clearly illustrates how reasonable and unreasonable subsequent processes
should be carried out when the results of the confusion matrix are used to determine
whether the selected control factors are reasonable, with emphasis on the treatment process
when the results are unreasonable. The specific process is clearly shown in Figure 6 below.

Taking the occurrence of abnormal conditions Y = f (X1, X2 . . . , Xn) as the output
variable and the main control factors affecting abnormal conditions as the input variables,
a machine learning model aimed at predicting abnormal conditions was established based
on the negative log-likelihood loss function, which is shown as follows:

L(y, Y) = −(y ∗ log(Y) + (1 − y) ∗ log(1 − Y)) (5)

where X represents the occurrence index of pressure channeling, casing deformation, and
proppant plugging; Xi represents the influencing factors; f represents the regression model;
and y, Y represent the real and predicted values of whether the abnormal working condition
occurs, respectively.
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According to the main controlling factors of abnormal conditions obtained from
Table 5, this section uses a variety of typical machine learning algorithms, including SVM,
decision tree, random forest, extra trees, extra tress forest, gradient boosting, AdaBoost,
bagging, gradient boosting trees, XGBoost, LightGBM, CatBoost, and CART, to model
and predict the abnormal conditions in the study block, and uses 20% of the model data
to validate. At the same time, the input and output parameters of the model, taking the
abnormal conditions as the output parameters and the main controlling factors affecting
abnormal conditions as the input parameters, are listed in Table 6.

Table 6. Controlling factors and output variables.

Input Parameter Output Variable

A2, A3, A4, A6, A7, A14, A16

Whether pressure channeling occurs
Whether casing deformation occurs
Whether proppant plugging occurs

2.3.2. Model Validation

By using various machine learning algorithms (support vector machine and decision
tree) and ensemble learning algorithms (random forest, extra trees, etc.), prediction and
modeling were carried out based on three abnormal conditions in the study area. Thus, the
training and verification results of each algorithm for casing deformation, pressure chan-
neling, and proppant plugging prediction were obtained from corresponding experiments.
The results are shown in Table 7 [32,33].

By comparing the performance of various machine learning algorithms (support vector
machine, decision tree, random forest, extra trees, etc.) in abnormal condition prediction,
it was found that the extra trees and AdaBoost methods had optimal performance in pre-
dicting casing deformation. Random forest, AdaBoost, and bagging methods had optimal
performance in predicting pressure channeling, while the random forest and extra trees
methods had optimal performance in predicting proppant plugging. Overall, ensemble
learning, including extra trees, random forest, AdaBoost and bagging, had higher accuracy
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in the training and testing performances of predicting casing deformation, pressure chan-
neling, and proppant plugging. This is because, in the case of a small sample size, ensemble
learning can realize the integration of weak learners, and then can comprehensively utilize
the diversity of sample attributes to improve the accuracy of fitting and prediction.

Table 7. Fitting results of machine learning model for abnormal working condition prediction.

Algorithm
Casing Deformation Pressure Channeling Proppant Plugging

AOTS AOVS AOTS AOVS AOTS AOVS

SVM 0.71 0.83 0.92 0.88 0.95 0.94
Decision tree 1.00 0.61 1.00 0.88 1.00 0.88

Random forest 1.00 0.72 1.00 0.94 1.00 0.94
Extra trees 1.00 0.77 1.00 0.88 1.00 0.94

Extra trees forest 1.00 0.72 1.00 0.83 1.00 0.88
Gradient Boosting 1.00 0.66 1.00 0.88 1.00 0.83

Ada Boost 1.00 0.83 1.00 0.94 1.00 0.88
Bagging 0.95 0.66 0.98 0.94 1.00 0.88

Gradient Boosting Trees 1.00 0.67 1.00 0.87 1.00 0.85
XG Boost 1.00 0.73 1.00 0.84 1.00 0.83

Light GBM 1.00 0.76 1.00 0.78 1.00 0.85
Cat Boost 1.00 0.74 1.00 0.92 1.00 0.83

CART 0.98 0.76 0.98 0.93 1.00 0.82
Note: the accuracy of the training set and the verification set for each algorithm are denoted by AOTS and
AOVS, respectively.

On average, the AdaBoost algorithm had higher accuracy in the training and testing
performances of predicting casing deformation, pressure channeling, and proppant plug-
ging situations. Next, the confusion matrices of the ensemble learning algorithm on casing
deformation, pressure channeling, and proppant plugging in the training set and test set
are presented in Figure 7.

Processes 2024, 12, x FOR PEER REVIEW 11 of 18 
 

 

deformation, pressure channeling, and proppant plugging in the training set and test set 
are presented in Figure 7. 

tru
e 

va
lu

e 0

1

predicted value

0 1

71
(TN)

12
(FP)

6
(FN)

Confusion matrix based on 
casing deformation

（a）

18
(TP)

 

tru
e 

va
lu

e 0

1

predicted value

0 1

95
(TN)

0
(FP)

6
(FN)

Confusion matrix based on 
pressure channeling

（b）

6
(TP)

 

tru
e 

va
lu

e 0

1

predicted value

0 1

94
(TN)

6
(FP)

7
(FN)

Confusion matrix based on 
proppant plugging

（c）

0
(TP)

 

Figure 7. Confusion matrix based on different conditions. 

As shown in Figure 7a–c represent the test confusion matrices based on pressure 
channeling, casing deformation, and proppant plugging obtained by the AdaBoost algo-
rithm, respectively. The test confusion matrix is further explained below. The test confu-
sion matrix in (a) shows that there are 83 observations labeled as 0 where 71 prediction 
results (TN) are correct and 12 prediction results (FP) are incorrect, while there are 24 
observations labeled as 1 where 6 prediction results (FN) are incorrect and 18 prediction 
results (TP) are correct. Similarly, Figure 7b,c test confusion matrices are also explained in 
this way. In particular, 0 means that the corresponding abnormal conditions do not occur, 
and 1 means that the corresponding abnormal conditions occur. Therefore, the accuracy 
of the verification sets of casing deformation, pressure channeling, and proppant plugging 
obtained by the AdaBoost algorithm were 83%, 94%, and 88%, respectively. accuracy = (TN + TP) (TN + FP + FN + TP)⁄  (6)

Overall, it can be found that the AdaBoost algorithm had higher accuracy in the train-
ing and testing stages of predicting pressure channeling, casing deformation, and prop-
pant plugging situations. 

3. Optimization of the Fracturing Scheme Based on a Surrogate Model 
In the process of unconventional natural gas hydraulic fracturing, it is impossible to 

completely avoid the occurrence of abnormal conditions due to the uncertainty of the con-
struction site. The only thing we can do is to minimize the probability of abnormal condi-
tions by optimizing the prediction of abnormal conditions, thereby improving the effi-
ciency and safety of fracturing operations. 

3.1. Model Construction 
To address continuous optimization in classification tasks, the aforementioned ma-

chine learning methods were employed to calculate the occurring probability, not the oc-
curring classification. Here, the output of the machine learning model was a three-dimen-
sional vector 𝑌 = (𝑦1, 𝑦2, 𝑦3) where 𝑦1, 𝑦2, and 𝑦3 are real values in [0, 1], standing for 
the occurring classification of abnormal conditions, pressure channeling [1, 0, 0], casing 
deformation [0, 1, 0], and proppant plugging [0, 0, 1], respectively. 

Then, a single-objective optimization model was established to reduce the occurrence 
of abnormal conditions. The decision variables were the controlling factors shown in Table 
6, including average cluster spacing, average pump stop pressure gradient, average seg-
ment length, construction displacement, flow back ratio, TOC, and total fracturing fluid, 
represented by X , … , X . The constraints were engineering parameters and their drainage 

Figure 7. Confusion matrix based on different conditions.

As shown in Figure 7a–c represent the test confusion matrices based on pressure chan-
neling, casing deformation, and proppant plugging obtained by the AdaBoost algorithm,
respectively. The test confusion matrix is further explained below. The test confusion matrix
in (a) shows that there are 83 observations labeled as 0 where 71 prediction results (TN) are
correct and 12 prediction results (FP) are incorrect, while there are 24 observations labeled
as 1 where 6 prediction results (FN) are incorrect and 18 prediction results (TP) are correct.
Similarly, Figure 7b,c test confusion matrices are also explained in this way. In particular,
0 means that the corresponding abnormal conditions do not occur, and 1 means that the
corresponding abnormal conditions occur. Therefore, the accuracy of the verification sets of
casing deformation, pressure channeling, and proppant plugging obtained by the AdaBoost
algorithm were 83%, 94%, and 88%, respectively.

accuracy = (TN + TP)/(TN + FP + FN + TP) (6)
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Overall, it can be found that the AdaBoost algorithm had higher accuracy in the
training and testing stages of predicting pressure channeling, casing deformation, and
proppant plugging situations.

3. Optimization of the Fracturing Scheme Based on a Surrogate Model

In the process of unconventional natural gas hydraulic fracturing, it is impossible
to completely avoid the occurrence of abnormal conditions due to the uncertainty of the
construction site. The only thing we can do is to minimize the probability of abnormal
conditions by optimizing the prediction of abnormal conditions, thereby improving the
efficiency and safety of fracturing operations.

3.1. Model Construction

To address continuous optimization in classification tasks, the aforementioned ma-
chine learning methods were employed to calculate the occurring probability, not the
occurring classification. Here, the output of the machine learning model was a three-
dimensional vector Y = (y1, y2, y3) where y1, y2, and y3 are real values in [0, 1], standing
for the occurring classification of abnormal conditions, pressure channeling [1, 0, 0], casing
deformation [0, 1, 0], and proppant plugging [0, 0, 1], respectively.

Then, a single-objective optimization model was established to reduce the occurrence
of abnormal conditions. The decision variables were the controlling factors shown in
Table 6, including average cluster spacing, average pump stop pressure gradient, average
segment length, construction displacement, flow back ratio, TOC, and total fracturing
fluid, represented by X1, . . . , X6. The constraints were engineering parameters and their
drainage region, including high-quality reservoir thickness, high-quality reservoir drilling
rate, maximum principal stress, minimum principal stress, TOC, gas content, porosity, total
hydrocarbons, etc. Moreover, the parameter θ denotes the model parameter.

Then, we have the following objective function:

min
n
∑

i=1
fi
(
X, θi)pi

(
X, θi)

s.t.Xi ≤ Xi ≤ X̄i, 1 ≤ i ≤ 6
. (7)

where fi
(
X, θi) represents whether the abnormal condition occurs or not; pi

(
X, θi) repre-

sents the occurrence probability of abnormal conditions [34,35]; and Xi and X̄i represent
the lower and upper bound of the i-th construction parameter, respectively.

A genetic algorithm, also known as a genetic optimization algorithm (GO) is a heuris-
tic search algorithm, inspired by the theory of biological evolution, and used to solve
optimization problems. A genetic algorithm simulates the process of biological evolution,
and searches the solution space of the problem by simulating natural selection, crossover,
and mutation mechanisms to find the optimal solution or approximate optimal solution.
The flow chart illustrating the process of a GO is depicted in Figure 8.

The core idea of particle swarm optimization (PSO) is derived from the behavior law
of birds foraging (Table 8). By using the information sharing of individuals in a group,
the whole group can complete the retrieval of each region in the exploration of space, and
finally find the location of food, that is, the existence of the optimal solution. Then, we have
the following interpretation function:

vk+1 = ω ∗ xk+ c1 ∗ r1 ∗
(

Pk
pbset−xk

)
+ c2 ∗ r2 ∗

(
Pk

gbset − xk
)

(8)

A differential evolution algorithm (DE) is a kind of efficient global optimization
algorithm. It is also a heuristic search algorithm based on groups, where each individual in
the group corresponds to a solution vector. Now, the DE is widely used to solve complex
optimization problems, and has achieved very good results. It simulates the process of
biological evolution and generates a set of solutions through continuous evolution in order
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to find the optimal solution to the problem. The flow chart illustrating the process of a DE
is depicted in Figure 9.
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Table 8. Description of parameters in the PSO algorithm expression.

Parameter Meaning

k Iterations
ω Inertia weight
c1 Individual learning factor
c2 Group learning factor

r1, r1 Random numbers in [0, 1] increase the randomness of the search
xk In the k iteration, the position of the particle
vk In the k iteration, the displacement of the particle

Pk
pbset The optimal location to which individual particles arrive

Pk
gbset The optimal location for the particle population to reach

3.2. Model Solution and Result Comparison

As shown in Table 9, a series of machine learning methods are applied to map the
classification into probability, aiming at optimizing the hydraulic fracturing scheme. The
mapping probability denotes the occurrence probability of abnormal conditions, whose
results should approximate 1, e.g., [1, 0, 0] → 0.86 means the occurring probability of
pressure channeling is 0.86 under the extra trees method for well 1.

Due to the machine learning model in Section 2 not having explicit expressions, the
generic gradient-based optimization algorithm was no longer applicable. Therefore, it was
necessary to employ heuristic algorithms based on evolutionary strategies, including a
genetic optimization algorithm (GO), particle swarm optimization (PSO) algorithm, and
differential evolution algorithm (DE) to achieve scheme optimization [36–40].
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Table 9. The predictive probability of abnormal conditions under machine learning.

Extra Trees Decision Tree Random Forest

Well Well 1 Well 2 Well 3 Well 1 Well 2 Well 3 Well 1 Well 2 Well 3

Abnormal conditions [1, 0, 0] [0, 1, 0] [0, 0, 1] [1, 0, 0] [0, 1, 0] [0, 0, 1] [1, 0, 0] [0, 1, 0] [0, 0, 1]

Occurring Probability 0.86 0.99 0.74 0.98 0.99 0.96 0.86 0.98 0.72

Logistic Regression Ada Boost Bagging

Well Well 1 Well 2 Well 3 Well 1 Well 2 Well 3 Well 1 Well 2 Well 3

Abnormal conditions [1, 0, 0] [0, 1, 0] [0, 0, 1] [1, 0, 0] [0, 1, 0] [0, 0, 1] [1, 0, 0] [0, 1, 0] [0, 0, 1]

Occurring Probability 0.58 0.58 0.58 0.68 0.82 0.89 0.98 0.98 0.83

Note: [1, 0, 0], [0, 1, 0], and [0, 0, 1] denote the occurrence of pressure channeling, casing deformation, and
proppant plugging, respectively.

By using three optimization algorithms to optimize the three abnormal conditions, we
found that the optimization effects of these three optimization algorithms were different.
From this, we present data on the changes in the values of the main control factors before
and after the optimization of the three algorithms, as well as the corresponding changes in
the probability of occurrence of abnormal working conditions (Figure 10).

According to Table 10, comparing the occurring probability of abnormal conditions
before and after optimization, we can conclude the following observations for better un-
derstanding the optimization results: First, for wells 1–3, any optimization algorithm (GO,
PSO, and DE) can better reduce the probability of occurrence of any abnormal conditions
(pressure channeling, casing deformation, and proppant plugging) by the corresponding
optimized construction parameters, e.g., the occurring probability of pressure channeling
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in well 1 reduces from 0.86 to 0.27 under the GO, where A2 = 9.01, A4 = 76.19, A5 = 3.95,
A6 = 12.05, A7 = 35.19, A14 = 5.07, and A16 = 43, 869 are optimized as A2 = 8.64,
A4 = 66.07, A5 = 7.15, A6 = 10.90, A7 = 46.34, A14 = 6.65, and A16 = 27, 148. Second,
to avoid pressure channeling in well 1, the GO and DE were more efficient than the PSO
algorithm, i.e., the original probability 0.86 was optimized as 0.27 by the GO and DE,
while the optimized result of PSO was 0.30; to avoid casing deformation in well 2, the DE
was more efficient than the GO and PSO, i.e., the original probability 0.98 was optimized
as 0.34 by the DE, while the optimized results of the GO and PSO were 0.35 and 0.36,
respectively; to avoid proppant plugging in well 3, the PSO algorithm was more efficient
than the GO and DE, i.e., the original probability 0.72 was optimized as 0.28 by PSO, while
the optimized result of the GO and DE was 0.29. Third, the average optimization reduction
probabilities of the three algorithms, the GO, PSO, and DE, for abnormal conditions were
0.86 − [0.27, 0.30, 0.27] = [0.59, 0.56, 0.59], 0.98 − [0.35, 0.36, 0.34] = [0.63, 0.62, 0.64],
and 0.72 − [0.29, 0.28, 0.29] = [0.43, 0.44, 0.43], respectively, which means the PSO algo-
rithm has the most significant optimization effect and the DE has the lowest optimization
result in occurring probability.
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Table 10. Comparison of the results before and after optimization.

Pressure Channeling before and after Optimization in Well 1.

Pressure Channeling A2 A4 A5 A6 A7 A14 A16 Probability

Original input/output 9.01 76.19 3.95 12.05 35.91 5.07 43,869 0.86
Optimized by GO 8.64 66.07 7.15 10.90 46.34 6.85 27,148 0.27
Optimized by PSO 23.14 57.68 7.55 13.55 47.62 6.76 20,000 0.30
Optimized by DE 8.64 66.07 7.13 10.90 46.73 6.69 27,148 0.27

Casing deformationbefore and after optimization in well 2.

Casing deformation A2 A4 A5 A6 A7 A14 A16 Probability

Original input/output 9.51 72.1 3.78 12.00 32.03 3.83 45,838 0.98
Optimized by GO 10.18 76.79 4.09 11.36 29.12 5.31 46,849 0.35
Optimized by PSO 10.09 93.09 4.39 9.78 19.23 5.42 33,382 0.36
Optimized by DE 10.18 76.79 3.87 11.36 28.85 5.57 46,849 0.34

Proppant pluggingbefore and after optimization in well 3.

Proppant plugging A2 A4 A5 A6 A7 A14 A16 Probability

Original input/output 8.91 74.35 7.18 13.50 23.11 3.46 38,554 0.72
Optimized by GOA 10.68 93.20 6.38 12.69 22.31 3.24 32,400 0.29
Optimized by PSOA 9.90 100.0 7.56 14.06 21.95 3.87 33,125 0.28
Optimized by DEA 10.68 93.20 6.29 12.69 22.62 2.89 32,400 0.29

Note: The GO, PSO algorithm, and DE are denoted by bold GO, PSO, and DE, respectively. A2, A4, A5, A6,
A7, A14, and A16 denote the average cluster spacing, average segment length, comprehensive sand ratio, construction
displacement, flow back ratio, TOC, and total fracturing fluid parameter, respectively.
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According to the optimized results of features A2, A4, A5, A6, A7, A14, and A16 in
Table 10, reducing the A6 (construction displacement) helps to reduce the probability
of pressure channeling, casing deformation, and proppant plugging, and increasing the
A4 (average segment length) helps to reduce the probability of casing deformation and
proppant plugging.

4. Conclusions

This paper firstly focuses on establishing a machine learning model to analyze the
primary controlling factors that affect abnormal conditions during unconventional natural
gas hydraulic fracturing. Then, to avoid the occurrence of abnormal conditions, a series
of machine learning methods were applied to predict abnormal conditions in hydraulic
fracturing. Subsequently, under the pretrained model of prediction, three typical optimiza-
tion algorithms, including the GO, PSO algorithm, and DE, were conducted to optimize
the fracturing parameters for reducing the occurrence probability of abnormal conditions.

Based on the analysis of the primary control factors and the optimization model
prediction, the specific conclusions of this study are as follows:

(1) The main factors affecting abnormal conditions.

For pressure channeling, the main controlling factors are the total amount of fractur-
ing fluid, liquid strength, comprehensive sand ratio, maximum sand ratio, and average
cluster spacing.

For casing deformation, the main controlling factors are liquid strength, Young’s
modulus, and the mechanical brittleness index.

For proppant plugging, the main controlling factors are 100–200 mesh sand dosage,
construction displacement, total amount of fracturing fluid, and sand strength.

(2) Prediction of abnormal conditions.

By comparing diverse machine learning algorithms, it can be concluded that the
random forest algorithm, additional tree algorithm, and AdaBoost algorithm have higher
accuracy when training and testing whether abnormal conditions occur, which provides
a fundamental for choosing the optimal machine learning method for optimization in
avoiding the occurrence of abnormal conditions.

(3) A single-objective optimization model to reduce the occurrence probability of abnor-
mal conditions was established.

(4) By comparing three different optimization algorithms, it can be concluded that differ-
ent evolution algorithms have different optimization effects.

(5) In particular, proper parameters in hydraulic fracturing can help to reduce the probabil-
ity of pressure channeling, casing deformation, and proppant plugging, and increasing
the average segment length helps to reduce the probability of casing deformation and
proppant plugging.

In addition to the factors collected in this paper, abnormal conditions may also be
related to factors such as in-situ stress distribution, well completion, natural fractures, and
adjacent well construction. These data are typical multi-source heterogeneous data. Conse-
quently, future research will aim to develop a predictive method for abnormal conditions
that incorporates spatiotemporal information. Additionally, the goal is to establish a more
accurate and reasonable optimization model for abnormal conditions.
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