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Table S1. Detailed Experimental Conditions for Seeding Crystallization. 

 
Exp. Seeding timea 

wt%  
Raspberry 

Ketoneb 

Seed size 
(μm) 

Seeds 
loading 
(wt %) 

1 
Before LLP separation, (the antisolvent was 
added continuously for 78 minutes) 

8.35 75-100 2 

2 
Before LLP separation, (the antisolvent was 
added continuously for 78 minutes) 

8.35 150-180 2 

3 
After LLP separation, (the antisolvent was added 
continuously for 87 minutes) 

7.69 75-100 2 

4 
After LLP separation, (the antisolvent was added 
continuously for 87 minutes) 

7.69 150-180 2 

a Note: LLPS occurred at 85 min of continuous addition of antisolvent, i.e., the mass 

fraction of raspberry ketone was 7.81%. LLPS was observed by stopping the stirring and 

then standing for a period of time (Figure S1). LLPS: liquid-liquid phase separation. 



b Note: the mass fraction of raspberry ketone in the solution at the time of seeds addition. 

 

 
Figure S1. (a) LLPS was observed by stopping the stirring and then standing for a period 

of time. (b) Oil droplets were observed under the microscope. 

 



 

Figure S2. (a) Microscope images of crystals with different degrees of agglomeration. (b)  

The images after image processing. 

 

Table S2. Ratios of different particle size fractions based on simplex-lattice design. 

Fine Medium Coarse 

1 0 0 

0 1 0 

0 0 1 

0 1/2 1/2 

1/2 0 1/2 

1/2 1/2 0 

1/6 1/6 2/3 

1/6 2/3 1/6 

2/3 1/6 1/6 

1/3 1/3 1/3 



Table S3. The 18 image descriptors extracted and their definitions. 

Type Symbol Descriptor Uniit Description 
 
 

Size 
(Dimensioned image 

descriptors 
describing the 
particle’s size) 

A Area mm2 Projection area of the particles 

P Perimeter mm Boundary length of the particles 

 
Deq 

 
Equivalent diameter 

 
mm Diameter of a coextensive circle，Deq=2 · ට𝐴 𝜋ൗ  

Fmax Maximal Feret 
diameter  

mm  
Maximal Feret diameter  

Fmin Minimal Feret 
diameter 

mm  
Minimal Feret diameter 

 
 
 
 

Shape 
(Dimensionless 

image descriptors 
describing the 

particle’s shape) 

c Circularity - Similarity with a circle, c=4·𝜋·A/P2 

r Roundness - Squared ratio of Equivalent diameter and major 
ellipse axis, r=( Deq/L)2 

 
s 

 
Solidity 

 
- 

Ratio of the projection area of the particles to 

the convex hull area，s=A/Aconvex 

e Elongation - Ratio of maximum Ferret diameter to minimum 
Ferret diameter, e= Fmax/Fmin 

αr Aspect ratio - Ratio of the long axis to the short axis of the 
best-fit ellipse, αr =L/B 

 
αLB 

 
Convex box ratio 

 
- 

Ratio between convex hull area and ellipse 
axes, αLB= Aconvex/L·B 

 
 

Roughness 
(Dimensionless 

image descriptors 
describing the 

roughness of the 
contour) 

 
ICAV 

 
Concavity index 

 
- 

Ratio of the maximum concave area of the 
projected particle to the projection area,  
ICAV= Aconcave/A 

 Concavity - Ratio of the particle projection area to the 
concave area, =A/A concave 

  
Convexity 

- Ratio of the convex hull perimeter of the 
particles to the boundary length, =Pconvex/P 
 

 
CDR 

 
Concave defect ratio 

 
- 

Ratio of the maximum concavity depth of the 
particle to the maximum Ferret diameter, 
CDR= dmax·Deq/Fmax 

ncoc Num. conc. - Number of concavity points 

d_max Max depth - Scaled max. concavity depth 

N Number of primary 
particles 

- Number of primary particles embedded in 
agglomerates 

 



Table S4. Algorithm for Auto-tuning of parameters in ANNs. 

Step 1 Initialize the number of hidden layers, the number of nodes, and the activation function (1 
represents tansigmoid, 2 represents logsigmoid)a. 

Step 2 Set the population count and generation count and start NSGA-II. 
Step 3 For a given population, determine the network architecture and the activation function. 
Step 4 Initialize the neural network weights and biases, which are then assigned to the created 

neural network. 
Step 5 Train and validate the ANN using Back Propagation and LMA. 
Step 6 Test the ANN using the test data and evaluate R2. 
Step 7 Determine the number of parameters. 
Step 8 Repeat Steps 3 to 7 for all individuals in the current generation. 
Step 9 Update the population by performing crossover, mutation and selection. 
Step 10 Run all generations or until NSGA-II converges. 

a Commonly used nonlinear activation functions： 

logsigmoid:    f(𝑥) = 11 + 𝑒𝑥𝑝(ି௫)                                                                                            (S1) 

tansigmoid:    f(𝑥) = ଶଵା௘௫௣(షమೣ) − 1                                                                                          (S2) 

b ANN: Artificial Neural Network. LMA: Levenberg-Marquardt algorithm. 

 

Table S5. The image descriptors represented by numbers 1 to 18. 

Number Image descriptor 
1 Num. conc. 
2 Max depth 
3 Number of primary particles 
4 Solidity 
5 Convexity 
6 Concavity 
7 Concavity index 
8 Concave defect ratio 
9 Elongation 

10 Convex box ratio 



11 Aspect ratio 
12 Circularity 
13 Roundness 
14 Area 
15 Equivalent diameter 
16 Maximal Feret diameter 
17 Minimal Feret diameter 
18 Perimeter 

 

 

Figure S3. The mean values of the image descriptors for fine (a), medium (b), and coarse 

(c) particles of the four samples versus their tapped bulk densities. Samples 1 and 2 were 

obtained under the conditions of adding small sized (75-100 μm) and large sized (150-180 

μm) seeds, respectively, before LLPS, samples 3 and 4 were obtained under the conditions 



of adding small sized (75-100 μm) and large sized (150-180 μm) seeds, respectively, after 

LLPS. 

 

 

Figure S4. The evolution of pareto front with iterative process. The functions f1 and f2 

represent the prediction accuracy and the number of model parameters, respectively. The 

red dots represent the latest Pareto solutions. The pale points indicate earlier solutions, and 

the darker points are from more recent iterations of the NSGA-II algorithm. 

 

Table S6. ANN model architecture on Pareto front ( training with 12 descriptors). 

Architecture 
Activation 
Function 

Number of Parameters R2 AIC 

[36-7-5-10-1] 2 370 0.8903 956.75 
[36-6-5-10-1] 1 328 0.8815 878.01 
[36-5-8-3-1] 1 264 0.8773 755.36 
[36-5-7-1] 1 235 0.8404 758.01 

[36-4-7-3-1] 1 211 0.8303 761.88 
[36-5-1] 2 190 0.8214 767.65 

[36-4-5-1] 1 179 0.8199 764.12 
[36-3-2-8-1] 2 152 0.7953 764.27 
[36-3-7-1] 2 147 0.7437 797.16 



[36-3-6-1] 2 142 0.7326 797.35 
[36-2-13-1] 2 127 0.6682 814.25 
[36-2-11-1] 2 119 0.6231 823.06 
[36-2-8-1-1] 2 109 0.5594 845.57 
[36-1-7-6-1] 1 106 0.5304 847.01 

 

Akaike Information Criterion(AIC): 

This work selected an architecture from the Pareto-optimal solutions by AIC, which 

prevents the over-fitting. The formulation of AIC is shown in Eq. S3 where S is sample 

size and N is number of parameters in ANN and MSE is mean square error. Among all the 

solutions, the one with least AIC is selected. 

AIC = 𝑆 ∗ 𝑙𝑜𝑔( MSE) + 2 ∗ 𝑁                                           (S3) 

 

The detailed method for selecting the descriptors: 

In this work, the image descriptors were selected mainly based on the relative size of 

the loadings of the first three principal components. Figure S5 shows the loading plots of 

the first three principal components. The specific selection method is as follows: 

(1) Firstly, the descriptors with relatively high loadings (1, 2, 4, 5, 12, 14, 17, 18) are 

selected according to the first principal component (as shown in Figure 6b). 

(2) Then the descriptors with relatively high loadings (3, 9, 11, 13, 15, 16) are selected 

according to the second principal component (as shown in Figure 6b). 

(3) Combined with the third principal component (as shown in Figure S5), the descriptors 

4 and 5 can be seen to have the relatively lowest loadings (The blue points). In addition, as 



can be seen in Figure 1, point 12 has significant variability with points 4, 5, and 6, so point 

12 is retained in this work, without considering descriptors 4 and 5. 

 

Figure S5. PCA loading plot for the first three principal components. The red points 

indicate the original data and the blue points indicate the projection on the xz plane. 

However, among the 12 descriptors selected, 14 and 18, 3 and 13, and 12 and 17 are 

somewhat correlated, it is hard to determine whether retaining only {14, 3, 12} is better 

than {14, 18, 3, 13, 12, 17} from the PCA loading map. Therefore, we compared the effect 

of using the descriptors {1, 2, 3, 9, 11, 12, 14, 15, 16} and {1, 2, 3, 9, 11, 12, 13, 14, 15, 

16, 17, 18} on the accuracy of the prediction model. Figure 3 shows the final Pareto front 

obtained by training with the descriptors {1, 2, 3, 9, 11, 12, 14, 15, 16} (a) and descriptors 

{1, 2, 3, 9, 11, 12, 13, 14, 15, 16, 17, 18} (b), respectively. 

If prediction accuracy is the single objective, the point A (R2 = 0.8712, RMSE = 23.81 

kg/m3 ) is considered as the best solution in the Pareto front in Figure S6a, whereas the 

point B (R2 = 0.8903, RMSE = 15.02 kg/m3 ) is considered as the best solution in Figure 

S6b, which indicates that keeping the descriptors {18, 13, 17} can improve the accuracy of 



the model after training. Therefore, the 12 descriptors {1, 2, 3, 9, 11, 12, 13, 14, 15, 16, 17, 

18} were finally selected. 

Although the final choice of 12 descriptors is still quite a lot compared to the initial 

number of 18 descriptors, the highest accuracy of the model was obtained by training. 

 

Figure S6. (a) Final Pareto front obtained by training using the descriptors {1, 2, 3, 9, 11, 

12, 14, 15, 16}. (b) Final Pareto front obtained by training using the descriptors {1, 2, 3, 9, 

11, 12, 13, 14, 15, 16, 17, 18}. The functions f1 and f2 represent the prediction accuracy 

and the number of model parameters, respectively. 


