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Abstract: The study of evolutionary algorithms (EAs) has witnessed an impressive increase during
the last decades. The need to explore this area is determined by the growing request for design and
the optimization of more and more engineering problems in society, such as highway construction
processes, food and agri-technologies processes, resource allocation problems, logistics and trans-
portation systems, microarchitectures, suspension systems optimal design, etc. All of these matters
refer to specific highly computational problems with a huge design space, hence the obvious need for
evolutionary algorithms and frameworks, or platforms that allow for the implementing and testing
of such algorithms and methods. This paper aims to comparatively analyze the existing software
platforms and state-of-the-art multi-objective optimization algorithms and make a review of what
features exist and what features might be included next as further developments in such tools, from a
researcher’s perspective. Additionally, it is essential for a framework to be easily extendable with
new types of problems and optimization algorithms, metrics and quality indicators, genetic operators
or specific solution representations and results analysis and comparison features. After presenting
the most relevant existing features in these types of platforms, we suggest some future steps and the
developments we have been working on.

Keywords: multi-objective optimization; evolutionary algorithms; frameworks; software; platforms

1. Introduction
1.1. Evolutionary Computing

Over the last decades, the contributions to the field of multi-objective evolutionary
algorithms (MOEAs) have grown exponentially. The growing need for real time autom-
atization and optimization has become an imperative request in the current engineering
area. For instance, the development of microarchitectures is a very relevant example when
it comes down to searching for optimal solutions in the set of all possible design solutions.
If such an architecture were to have 15 parameters, each of them taking 5 possible values,
the total number of combinations would be higher than 30.5 × 109. An exhaustive search
is completely inefficient, since the search space of 30.5 billion combinations is gigantic,
especially the time required to simulate each combination. Similarly, the approach of
hardware implementation and testing would not work, due to the huge amount of costs.
Evolutionary computing and its specific algorithms can represent solutions to combinatorial
problems characterized by huge complexities, especially those where the time for thorough
problem analysis decreases. Evolutionary computing began by borrowing and applying
ideas from the biological evolutionary theory, like natural selection and genetic inheritance,
particle swarms-based and ant colony-based algorithms, red deer mating customs, gray
wolf attacks, etc., into computer science and engineering and continues to look toward
new biological research findings for inspiration. Furthermore, in most cases, a problem
needs to be optimized considering at least two objectives. These objectives usually have an
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antagonist behavior. The improvement of one of these objectives might lead to a decrease
in the performance of the other objectives, which makes the optimization process more
difficult to achieve.

There are four major categories of MOEAs which differ depending on the problem
representation model:

- Evolutionary strategies: Proposed and developed starting in 1970 by Ingo Reichenberg
and Hans-Paul Schwefel [1]. The representation of individuals consists of floating-
point numbers and the main characteristic is the variable step of mutation.

- Genetic programming: Developed from 1990 by John Koza [2]. Data is represented as
trees with crossover being accomplished through prune and graft operations. It fits
very well in languages such as LISP.

- Evolutionary programming: Introduced in 1960 by J.L Fogel [3]. It is very similar to
genetic programming but the representation is performed by the use of a finite state
machine and is mutation based (no crossover).

- Genetic algorithms: These algorithms are the most widely known type of evolutionary
algorithms. The mechanism for formalizing the prediction of individuals’ quality in
successive generations, the so-called Schemata Theory was introduced, with their
help, by John Holland in 1970 [4].

Given the wide interest of researchers in the current scientific community [5,6] for
genetic algorithms it is really necessary to have one or more software tools that provide the
chance to analyze and compare these algorithms. Our goal is to increase awareness about
the importance of developing such tools by emphasizing the needs that the researchers’
community might find relevant to be included by the framework software developers.
Moreover, it is essential to have a common platform for benchmarking existing algorithms.
Also, such a platform might offer some very important details about the actual imple-
mentations of the algorithms, since their code is very rarely made public by the authors.
Therefore, we present a systematic review of the current state-of-the-art frameworks, ana-
lyzing their features from multiple perspectives such as algorithms and problems library,
quality indicators, and possibilities of parallelization, but also their limitations and niches
to be exploited in future research and development, etc.

All of these algorithms and developments are perfectly applicable to smart industrial
engineering processes. Industry 5.0 integrates more and more optimization and automatiza-
tion methods in different fields, such as quality control, energy management, human–robots
collaboration, food and agri-technology processes, physical or human resource allocation
problems in cloud computing, construction or manufacturing industries, logistics and trans-
portation systems, the design of microarchitectures and 3D micro-architected implants, etc.

The rest of this paper is structured as follows: Section 2 presents the research strategy
and how this work might prove to be useful for all researchers who are studying this
area; Section 3 briefly describes some state-of-the art evolutionary algorithms; the most
well-known multi-objective optimization frameworks are presented in Section 4. This
is divided in five categories, each of them corresponding to the description of one such
framework; the last section is a short summary of what these tools currently provide, the
limitations and constraints they have and future developments (e.g., new MOEAs) we
intend to integrate in FADSE 2.0 (Framework for Automatic Design Space Exploration)
software tool [7].

1.2. Objectives

We have two goals: (1) to identify the most used and cited frameworks in the scientific
literature that are used to develop and test evolutionary algorithms and, (2) to perform
a review of these frameworks and multi-objective optimization evolutionary algorithms
regarding benefits, constraints, and limitations. Based on our experience with these tools,
we built the analysis around the following research questions:
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RQI: Which are the most useful tools/platforms available for working with Multi-Objective
Optimization Evolutionary Algorithms and their target problems?

RQII: What essential features do they provide?
RQIII: Which are the constraints and limitations?
RQIV: How easily to extensible and maintainable are these tools from a software perspective?

2. Research Strategy

To address the issues presented above, we searched and analyzed several MOEA
frameworks from the Scopus database, based on their popularity (number of references) in
the scientific community. In Table 1, we present the 10 most cited works ([8–17]) from the
Scopus database related to multi-objective optimization algorithms and platforms.

Table 1. Top 10 most cited papers from Scopus database related to multi-objective optimization
algorithms and platforms.

Authors Title Source Year Times Cited

Tian, Y.,
Cheng, R.,
Zhang, X.,
Jin, Y. [8]

PlatEMO: A MATLAB Platform
for Evolutionary Multi-Objective
Optimization [Educational
Forum]

IEEE Computational
Intelligence Magazine, 12(4),
pp. 73–87, 8065138

2017 1406

Evins, R. [9]
A review of computational
optimization methods applied to
sustainable building design

Renewable and Sustainable
Energy Reviews, 22,
pp. 230–245

2013 551

Altiparmak, F.,
Gen, M.,
Lin, L.,
Paksoy, T. [10]

A genetic algorithm approach
for multi-objective optimization
of supply chain networks

Computers and Industrial
Engineering, 51(1), pp. 196–215 2006 496

Zhu, Z.,
Zhang, G.,
Li, M.,
Liu, X. [11]

Evolutionary Multi-Objective
Workflow Scheduling in Cloud

IEEE Transactions on Parallel
and Distributed Systems, 27(5),
pp. 1344–1357, 7127017

2016 324

Kaur, K.,
Garg, S.,
Aujla, G.S.,
Kumar, N.,
Rodrigues, J.J.P.C.,
Guizani, M. [12]

Edge Computing in the
Industrial Internet of Things
Environment: Software-Defined-
Networks-Based Edge-Cloud
Interplay

IEEE Communications
Magazine, 56(2), pp. 44–51 2018 301

Alba, E.,
Luque, G.,
Nesmachnow, S. [13]

Parallel metaheuristics: Recent
advances and new trends

International Transactions in
Operational Research, 20(1),
pp. 1–48

2013 238

Liu, S.,
Wang, S.,
Zhu, F.,
Zhang, J.,
Krishnan, R. [14]

HYDRA: Large-scale social
identity linkage via
heterogeneous behavior
modeling

Proceedings of the ACM
SIGMOD International
Conference on Management of
Data, pp. 51–62

2014 229

Wang, Y.,
Liu, H.,
Zheng, W.,
Xia, Y.,
Li, Y.,
Cheng, P.,
Guo, K.,
Xie, H. [15]

Multi-objective workflow
scheduling with
deep-Q-network-based
multi-agent reinforcement
learning

IEEE Access, 7,
pp. 39974–39982, 8676306 2019 209
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Table 1. Cont.

Authors Title Source Year Times Cited

Liu, Q.,
Cai, W.,
Shen, J.,
Fu, Z.,
Liu, X.,
Linge, N. [16]

A speculative approach to
spatial-temporal efficiency with
multi-objective optimization in a
heterogeneous cloud
environment

Security and Communication
Networks, 9(17), pp. 4002–4012 2016 199

Zhou, X.,
Zhang, G.,
Sun, J.,
Zhou, J.,
Wei, T.,
Hu, S. [17]

Minimizing cost and makespan
for workflow scheduling in
cloud using fuzzy dominance
sort based HEFT

Future Generation Computer
Systems, 93, pp. 278–289 2019 196

Apart from those already mentioned, there are many more frameworks proposed
in the literature, each of them trying to overcome the weaknesses of its predecessors. In
the work presented in [18], the authors proposed Java-based open-source Design Space
Explorer, which includes a series of state-of-the art algorithms. In the original paper an
automotive domain case-study is shown in order to demonstrate the applicability of the tool.
The FADSE (Framework for Automatic Design Space Exploration) software tool, developed
by the researchers in [7] is focused on automatic design space exploration for multicore
and manycore systems, taking into account the continuing growth of computing systems
complexity. Developed in Java, the framework is flexible and provides easy extension and
portability. Most of the applications developed in our research group were mapped on
FADSE and we are currently in the process of extending it with new algorithms, problems,
or quality indicators. In the work presented in [19], a C++ template library, which provides
multi-objective optimization, is presented. Due to its object-oriented design, it enhances
easy extensibility for developing different hybrid optimization methods. Moreover, the
integration of new real-world problems is facilitated by the interfaces and template design.
The work presented in [20] introduced the idea of a so-called AutoMOEA algorithm. The
goal is to achieve and develop new algorithms that might outperform the existing MOEAs in
terms of performance and quality on continuous and combinatorial optimization problems.

The analyzed frameworks are not limited to the engineering and computer science
field. Multi-objective optimization platforms are proposed in the literature for many differ-
ent other domains, such as molecular drug-design evolution—AIDD [21]—or metabolism
absorption and toxicology analysis—ChemMORT [22]. In Section 5.2, we broaden the dis-
cussion to present applications in additional fields such as health, bioinformatics, or finance.

Some other notable such tools are implemented in the following programming lan-
guages: Java—[23,24]; C/C++—[25,26]; C#—[27].

Bibliometric Study

In order to achieve a thorough analysis of the presented aim, we also conducted a
bibliometric study of the papers published in this area. Figure 1 summarizes the main steps
we employed as follows:

1. Choosing the research criteria: We decided to select research papers from the Scopus
database referring to “multi-objective”, “algorithms”, “optimization” and “platforms”.

2. Choosing the time period: We selected the “2005–present” period to provide our
study a higher relevance. Prior to 2005, there was a significantly smaller number of
publications than after 2005.

3. Analysis of results: An investigation of over 1760 papers returned by the criteria from
steps 1 and 2. This analysis included the number of citations, the interest, and the
relevance of the paper subject and the most frequent of the selected keywords.
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4. Pre-processing data: Before using the data gathered from Scopus, we had to prepro-
cess some of the keywords and syntaxes. In most cases, we aggregated two or more
terms referring to the same concept, but still kept the total number of occurrences of
all of them. For example, we combined “genetic algorithm” and “genetic-algorithms”
as “genetic algorithm”. Similarly, instead of “energy consumption”, “energy distribu-
tion”, “energy optimization” we used “energy utilization”.

5. Analysis of occurrences: An investigation of the key terms to have strong correlations
with each other, as indicated by authors from the Scopus database. We used the
VOSviewer tool [28] in order to perform these advanced clustering correlations. We
selected only the keywords that occurred at least 35 times. Moreover, by using the
same tool, we generated in Figure 2 a map of the current research trends in scientific
literature. The 4 clusters obtained are presented in Tables 2–5.
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The first cluster (red) focuses on swarm-based algorithms applied in different optimiza-
tion areas like resource allocation, cloud computing, the Internet of Things, and efficient
energy utilization. The keywords belonging to the second cluster (green) gravitate around
multi-objective genetic algorithms applied in design space exploration and optimization
problems from the industrial engineering domain, using MATLAB as an evaluation plat-
form. The third cluster (blue) contains the keywords specific to Pareto dominance for
multi-objective optimization problems with NSGA-II [29] as the main algorithm used in
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decision-making or for product design with specific constraint problems. Finally, the fourth
cluster (yellow) focuses on evolutionary algorithms and other heuristics or learning algo-
rithms for problem solving and optimization, using benchmarking on standard platforms,
but this could also be applied in engineering education by simulation and virtual reality
environments required by digital twin transition (green and digital). Tables 2–5 shows the
clustering of frequent keywords in that 1769 articles found.

Table 2. VOSviewer cluster 1.

Cluster 1—Swarm-Based Algorithms

ID Keyword Occurrences

1 ant colony optimization 36
2 artificial-intelligence 49
3 cloud-computing 116
4 costs 60
5 energy utilization 173
6 integer programming 39
7 internet of things 39
8 network security 42
9 particle swarm optimization 168
10 performance 44
11 quality of service 61
12 resource allocation 40
13 scheduling 131
14 virtual machine 37

Table 3. VOSviewer cluster 2.

Cluster 2—Multi-Objective Genetic Algorithms

ID Keyword Occurrences

1 algorithm 152
2 computer software 195
3 design 105
4 efficiency 53
5 genetic algorithm 568
6 matlab 84
7 multi-objective 1273
8 optimization 459
9 optimization algorithm 91
10 optimization problems 86
11 parameters estimation 50
12 structural optimization 77

Table 4. VOSviewer cluster 3.

Cluster 3—Pareto Dominance for MO Problems

ID Keyword Occurrences

1 constrained optimization 44
2 decision making 99
3 economic and social effects 101
4 multi-objective problem 173
5 nsga-ii 70
6 optimal systems 62
7 pareto optimal solutions 46
8 pareto principle 116
9 product design 50
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Table 5. VOSviewer cluster 4.

Cluster 4—Categories of Algorithms

ID Keyword Occurrences

1 benchmarking 38
2 embedded systems 45
3 evolutionary algorithm 231
4 heuristic algorithm 53
5 learning algorithm 77
6 objective functions 55
7 reinforcement learning 35

Apart from the main focus of each cluster, from Tables 2–5 we can also extract different
categories of problems which the provided algorithms can be applied on. These problems,
suggested by the VOSviewer analysis, are shown in Table 6. Certainly, the keywords in
Table 6 represent the general terms for such optimization areas. They can be divided into
many other sub-categories.

Table 6. Generated problems from the VOSviewer analysis.

Cluster 4—Evolutionary Algorithms

ID Problem Occurrences

1 costs optimization 60
2 energy utilization 173
3 internet of things 39
4 network security 42
5 resource allocation 40
6 scheduling 131
7 economic and social effects 101
8 embedded systems 45

3. State-of-the-Art Algorithms

Among the evolutionary algorithms discussed in the literature, two of the most
successful are NSGA-II [29] and SPEA2 [30]. These two are part of the genetic algorithms
category, and, by using similar concepts, they both offer an output of a population of
non-dominated solutions. Despite this common non-dominated sorting and ranking
approach, it is interesting to notice that both algorithms provide two different mechanisms
for diversity preservation. After the current population is sorted in fronts of non-dominated
solutions, if the number of required solutions from one front is less than the total size of
that front, a diversity criterion is applied to select only the required number of individuals.
In NSGA-II, this mechanism is called crowding distance, whilst in SPEA2 it is called
environmental selection.

Over the time, a couple of improvements based on the idea of NSGA-II were proposed.
For example, in CNSGA-II [31], the authors proposed a geometric distribution when
selecting individuals from the non-dominated sorted population. This approach is intended
to help diversity. NSGA-III [32,33] comes with a different approach, that is to use a reference-
point based sorting approach. FD-NSGA-II [34] is a relatively new idea that incorporates
the fuzzy logic in NSGA-II and SPEA2 in order to obtain a fuzzy Pareto dominance
(FD) algorithm.

SMPSO [35] is another bio-inspired algorithm that aims to use the behavior of different
particles in nature. It consists mainly of two parts: a cognitive component—a particle trying
to improve its position in the swarm—relative to its own position; a social component—a
particle trying to improve its own position—relative to the swarm leader position.

There are also some new attractive and fertile algorithms recently published in the
literature, such as RDA—Red Deer Algorithm [36]—Gray-Wolf [37], or Hyena [38] which
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demonstrated, according to the authors’ experiments, the capability of yielding competitive
results. These algorithms are also inspired by the reproduction of different species of
animals in nature.

MOGBO [39] introduces a different approach compared to the existing algorithms,
which is a gradient-based optimization procedure. The work presented in [40] proposes
a memetic algorithm, APMA, where the crossover operator is usually replaced by a local
search towards the last generations.

In the work presented in [41], the authors introduced the idea of solving optimiza-
tion problems with irregular Pareto fronts. They designed two metrics based on parallel
distance. These two metrics are then used in the mating and environmental selection
phases to improve diversity and quality. It also helps in reducing the selection pressure.
The difficulty of selection increases as the number of objectives increases as well. In the
work presented in [42] a new algorithm called MaOEA-LAMG (Learning Assessment and
Mapping Guidance), which uses past information, is presented. The motivation was to
reduce the pressure selection if the number of objectives becomes bigger and bigger.

Another important aspect of such algorithms is the computing complexity. Ideally, if
the problems to be optimized are complex, there should be some parallelization or task-
management approach in order to speed-up the simulations. In the work presented in [43],
a new interesting approach suggests dividing the original problem into multiple sub-tasks
that can be executed separately. This would definitely help the main simulation, but it
would be very demanding from the resources point of view.

Our research group introduced the CAFZGA—Controlled Apparent Front Zones
Genetic Algorithm [44]—to exploit the vulnerabilities of MOEA, such as computational
costs caused by Pareto-dominance. Evolutionary algorithms built on Pareto-dominance
suffer from a loss of selection pressure as the number of objectives increases and the
probability of finding non-dominated solutions in the population decreases. CAFZGA
introduces a new genetic algorithm for multi-objective optimization based on Apparent
Front Ranking and crowding distance. Computationally, CAFZGA is more efficient than
GAs using Pareto-dominance because the set of support vectors for generating the Apparent
Front Boundary is significantly smaller than the population. CAFZGA would enable a
faster generation of results and the reduction of complexity (comparing with NSGA-II or
other Pareto techniques) yielding a performance increase of ~250%, especially in the cases of
problems with more than two objectives or in the situation where fitness evaluation would
consume a lot of time (as in the case of processor architectures simulated on standardized
benchmark suites with billions of instructions). Moreover, the Pareto-front does not need
to be known beforehand, thus simplifying the evaluations of problems where a true Pareto-
front is required for quality indicators.

In the next section, where we present frameworks, we also analyze if they provide the
possibility to use algorithms such as the ones presented in this section.

4. Frameworks

Taking into consideration the number of citations per each tool and our continuous
experiences with them, we selected 5 frameworks for analysis: PlatEMO [8], PyMOO [45],
jMetal [46,47], Evolver [48], and FADSE [7].

It is worth mentioning that data from Table 7 were collected as of March 2024. Evolver
was published in December 2023, hence the lack of citations.

Table 7. Analyzed frameworks.

Framework No. of Scopus Citations First Publication Date Current Version Language

jMetal 969 2006 6.1 Java
FADSE 43 2010 2.0 Java

PlatEMO 1372 2017 4.5 MATLAB
PyMOO 748 2020 0.6.0 Python
Evolver 0 2023 1.0.1 Java
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Since the authors of jMetal have published several papers for each major update since
2011, such as the research presented in [49], they should be also taken into consideration
when counting the number of citations. There are other two interesting libraries published
by jMetal authors: jMetal.NET (2011, C#), whose development has been stopped and
jMetalPy (2017, Python), whose development is still on-going.

Regarding FADSE, the authors did not specify any versioning method, so we assume
that the current version is 2.0: version 1.0 corresponding to the work presented in [7,50]
and version 2.0 corresponding to the work presented in [51].

Despite the flexibility provided by programming languages, it is also important to take
into consideration the energy consumption, since evolutionary algorithms are usually run
on complex computational problems. In the work presented in [52], the author shows the
CO2 consumption of several programming languages over the course of a high-demanding
simulation in astrophysics. Based on this research, it is obvious that Python has a much
higher CO2 consumption level 10 times higher than Java and 100 times higher than C++.

In the work presented in [53], the authors presented comprehensive research over the
energy consumption of several programming languages. One of their research questions
was ‘Is faster, greener?’. According to the energy equation Energy (J) = Power (W) × Time (s),
a single general accepted answer cannot be given, since Power is not constant. Nevertheless,
a reduction in execution time would imply a reduction in Energy consumption. In the same
study, the authors present a Pareto set of optimal programming languages depending on
different minimization objectives such as memory and time, energy and time, etc. Their
conclusion is that compiled languages tend to be the fastest and most energy efficient ones.
In the work presented in [54], a benchmarked classification of programming languages
according to energy consumption is performed. The results show that C, C++, Rust, Ada
and Java are the top 5 from this point of view, having the lowest energy consumption. It
is also commonly known fact that C, C++ and Rust have been optimized and designed
in this way. Similar findings were reported in an earlier study [55] that conducted an
experiment on 14 compiled and interpreted programming languages by running tasks
from the Rosetta Code programming chrestomathy. Their findings show that, among the
compiled programming languages, C/C++ and Java offer the best performance, energy-
wise, while JavaScript exhibits the highest energy savings among the interpreted languages,
with Swift and Python being the most inefficient. The work presented in [56] performed
a comparison of four different sorting algorithms, implemented in three programming
languages, and concluded that both the choice of language and algorithm play a significant
role in energy efficiency. They also emphasize that a large part of energy consumption
is determined by the computational complexity of the solution. A comparison between
the carbon footprints of four different nature-inspired optimization algorithms (Genetic
Algorithm, Particle Swarm Optimization, Differential Evolution, Artificial Bee Colony)
implemented in MATLAB is presented in the work presented in [57]. Their findings show
Differential Evolution to be the greenest of the four, while Artificial Bee Colony has the
highest energy consumption. The algorithm implementation, as well as the configuration
parameters used when performing the experiment affect the overall environmental impact
of each simulation. Thus, to mitigate the environmental concerns and enhance computa-
tional efficiency, optimization techniques can be applied at the algorithm level in order to
reduce the computational complexity.

The presence of a graphical user interface (GUI) for frameworks represents an impor-
tant feature which allows the user to interact and customize the values for each parameter
in the application, to select and configure the problems and algorithms, perform the sim-
ulation, and inspect the results without having to write any new code. This improves
the usability and increases the accessibility of the tool to non-IT specialists as well, as it
eliminates the need for software development knowledge. Additionally, the GUI should
display the evolution of solutions around the true Pareto-front and the quality indicators
generation-by-generation over the entire run, which allows for the real-time assessment
of the algorithm’s behavior and the quality of solutions. The framework should provide
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easy extensibility, meaning that the software architecture should be well structured, such
that the interface level facilitates the easy integration of new algorithms and new problems
that could enhance the tool. For example, in the work presented in [58] we designed a GUI
framework for meta-optimization which can be easily used by any kind of user. In general,
some of the essential software principles applied in UI design are: simplicity, usability,
clarity and consistency.

Additionally, it is important to address the community support for each framework.
This support might consist of the free use of platforms and will provide links to open-source
code for community development, such as forums, FAQ or GitHub.

Moreover, despite the small or large number of optimization problems, a framework
should also be reviewed from the type of problems perspective. The majority of the ana-
lyzed frameworks consists only of synthetic benchmark problems. Ideally, a framework
must provide real-world scenario optimization problems, such as turning processes [59]. In
the manufacturing industry, travelling salesman problems are extended by vehicle routing
problems and the optimization of fuel consumption and CO2 emissions [60], suspension de-
sign optimization [58], multi-objective optimizations of multicore processors architectures
Sniper [61], M-SIM [62], etc.

4.1. PlatEMO

PlatEMO is developed in MATLAB, so it can be easily run by any specialist from
Industrial Engineering with less programming skills on any operating system, provided
that the MATLAB tool is installed. It consists of a GUI (Figure 3) which allows users to
configure and run different simulations. The results are also displayed in a convenient
visual way, as shown in Figure 3.
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The main features of PlatEMO are as follows.

• It is an open-source framework The source code is publicly available on GitHub for
developers’ contributions.

• It consists of a very rich and complex library of algorithms. There are more than
250 algorithms available in the application, divided in 4 categories: single objective,
multi-objective (2 or 3 objectives) and many-objective (4 or more objectives). It consists
of a large number of optimization problems—over 100 such problems.

• It provides easy extensibility. The software architecture is structured well so that
the interface level allows an easy extensibility of the tool with new algorithms and
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problems. In order to run different algorithms or problems, no more code is needed,
since the GUI allows the user to select the desired options. This GUI allows the user to
see the generation-by-generation evolution of solutions around the true Pareto-front
and quality indicators of the results over the entire run.

• The software design allows the implementation of different meta-optimization al-
gorithms, such as that presented in [63]. It would be possible to create at least two
threads, each of them for one of the super-positioned algorithms, followed by starting
the simulation on the same problem.

Features that are missing and what additions might be useful:

• A check-pointing mechanism to save individuals or populations periodically, in case
some simulations fail before the end of the last generation.

• It does not address the mechanism of parallelization of the evaluation functions inside
the individuals. This could generate very long runs in case of a complex and time-
consuming problem.

• It does not include relatively new proposed algorithms such as RDA, Gray-Wolf,
MOGBO, etc.

• It does not allow the user to change the range of the design variables, nor the con-
straints, where possible, for the selected optimization problems.

4.2. PyMOO

PyMOO (Python Multi-Objective Optimization) has been developed in Python, a
language that has become very popular for research purposes due to its libraries and code
level syntax, which provides a very handy way to work with mathematical intelligence
or Artificial Intelligence concepts, such as: built-in functions, models selection, matrix
operations, and machine learning algorithms and so on.

Its main features are as follows:

• It is an open-source framework. It is publicly available on GitHub for developers’
contributions.

• It provides single-objective, multi-objective, and many-objective test problems.
• Optimization constraints are also available for the user.
• It contains gradient information provided by automatic differentiation [64].

The software architecture is divided in 3 main parts, each of them having separated
sub-modules, which makes it easy for further extension with new algorithms and problems:

• Problems: single-, multi-, and many-objectives;
• Optimization (genetic operations): Crossover, Mutation, Survival, etc.;
• Analytics: Visualization, Performance Indicator, Decision Making. This extra feature,

called Decision Making, provides some options to select one solution from the final
Pareto-front, depending on different preferences.

PyMOO has strong parallelization of the solutions mechanism, such as: multi-threaded
execution, distributed computing and vectorized computations. This might also help with
integrating meta-optimization or superposition algorithms. As described earlier, for such
an implementation, a multi-threaded architecture is required.

The authors benchmarked their implementations against some existing resources
provided by the actual authors of state-of-the-art algorithms, as mentioned, so it can be
considered an error-free tool. It provides a visual representation of the results: Pareto-front,
solutions, and optimization problems characteristics.

Unfortunately, there are some weaknesses:

• In order to run new simulations, the user has to write new code.
• Every time a new algorithm or the same algorithm with different parameters needs to

be started, a new object has to be created.
• This also applies to the other components: problems, quality indicators, etc. This is not

necessarily a major problem, but some researchers might be interested in black-box
usage of the tool: initial-config + results interpretation.
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• The MOA library is extremely poor, containing less than 20 algorithms.
• The same happens with problems. There are few problems for testing those algorithms.

Therefore, it does not include relatively new proposed algorithms such as: RDA,
Gray-Wolf, MOGBO, etc.

Their results are indeed displayed in a GUI (Figure 4) as a Pareto-front, but it would
have been better to display as much analysis as possible, like it is in PlatEMO (selectable
quality indicators, generation-by-generation graphs).
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A checkpointing mechanism is missing and it might prove to be very useful.

4.3. jMetal

jMetal is a Java library, originally created in 2006, which have gone through major
updates since its first publication. It is an open-source library rather than an application
itself, which can be included in an existing application, or it be used as starting point for a
project. It is publicly available on GitHub for developers’ contributions.

It was also ported in Python, as a multi-objective library called JMetalPy [65].
Its main features are as follows:

• It contains a very rich set of algorithms and problems, around 100 state-of-the art
algorithms.

• There are 3 possible categories: single-objective, multi-objective and many-objective
algorithms.

• The software architecture consists of a very good object-oriented base design. Each
category of algorithms inherits its own specific path, making it easy to maintain and
easy to use. Therefore, a very easy extensibility with new algorithms and problems
is possible.

• Documentation, code snippets, and examples of how to use different features and
quality indicators are provided.

• It is relatively easy to integrate a meta-optimization and super-position mechanism
within jMetal. The software design makes it feasible for such extensions.

The weaknesses shown by the platform are:

• There is no parallelization mechanism addressed.
• There is no checkpointing mechanism addressed.
• The results are not displayed in a visual manner. As mentioned earlier, it might be

regarded as a library, but the end should be given a confirmation about the end of the
simulation and the obtained results.
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• It does not include relatively new proposed algorithms such as: Hyena, Gray-Wolf,
MOGBO, etc.

4.4. Evolver

Evolver is a tool developed by a group of researchers that includes the authors of the
original jMetal tool, as mentioned above. It implements the idea of meta-optimization:
to find, using evolutionary algorithms, the optimum parameters configuration for an
evolutionary algorithm that aims to optimize a problem. The full code is hosted on GitHub
for contributions.

Since all the core of Evolver is in fact, the jMetal library, it comes with all the advantages
and weaknesses from jMetal. Therefore, in the next paragraph we are only focusing on the
extra features, such as meta-optimization, that Evolver provides.

Its main characteristics are:
A practical implementation idea of meta-optimization. It could very useful to know

what the optimal configuration for a specific algorithm is before starting it. The algorithm
itself might yield better or worse results, depending on the configuration. There are not
many such tools in the literature that approach the meta-optimization area so such a
concrete implementation is really useful.

• The algorithm, whose optimal configuration is to be found and is referred to as a
Configurable Algorithm is given a training set. This set is actually a collection of
optimization problems; hence the diversity of training is provided.

• It could be easily extended to work with any real-world engineering problem. As an
example, in the original paper, the authors present a case-study of an injector design
problem. As an objective of meta-optimization, a list of quality indicators is set to be
minimized. This list is configurable.

The project consists of two parts:

• Evolver—the core of the meta-optimization approach (jMetal, problems, etc.);
• Evolver Dashboard—a user-friendly web application built with Python, which allows

the user to configure and modify all of the parameters for meta-optimization. The web-
interface provides a very detailed and relevant visualization of the results: generation-
by-generation population, indicator values, time, evaluations, pareto-front, etc.

• The project comes also as a pre-built docker package to ease the interaction with the
tool. It provides easy software extensibility.

The main weaknesses are as follows:

• The algorithmic idea of meta-optimization might take a lot of time to run, typically
when the problem to optimize is very complex. An evolutionary algorithm itself might
require a significant amount of time, let alone an algorithm which uses a population
of such evolutionary algorithms.

• Considering the previous idea, checkpointing, individual reusability mechanisms, and
evaluation parallelization should be addressed.

• A logging feature to save the progress or status of simulation at some points in
time would be useful, as well. In the case of a long-run simulation, the evaluation
of some individuals may fail or the simulation itself may fail, therefore, leading to
unknown scenarios.

4.5. FADSE

FADSE (Framework for Automatic Design Space Exploration) is a Java framework
which focuses on multi-objective optimization algorithms. As mentioned earlier, it was
originally developed by Horia Calborean and further extended by Radu Chis within
the ACAPS (Advanced Computer Architecture and Processing Systems—https://centers.
ulbsibiu.ro/acaps/ (accessed on 12 March 2024) research group for his PhD thesis.

Its main features are as follows:

https://centers.ulbsibiu.ro/acaps/
https://centers.ulbsibiu.ro/acaps/
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• An open-source framework that is based on jMetal library. Therefore, it comes with
a rich library of algorithms and problems. It is publicly available on GitHub for
developers’ contributions.

• It includes single and multi-objective algorithms.
• Apart from the existing problems from jMetal, FADSE has been extended with some

new engineering problems such as the multi-objective optimization of mono- and
multi-core architectures as GAP—Grid ALU Processor [66]—SNIPER [61], or MSIM [62].

• It provides quality indicators and several monitoring reports to see the progress of the
current simulations.

• It also provides a robustness mechanism including a SQL database connection in order
to save the already simulated individuals. It is also tolerant to simulation failures due
to the checkpointing mechanism.

• It is possible to use fuzzy logic rules in order to help algorithms to obtain a faster
convergence. This fuzzy mechanism is easy to extend and manipulate by domain
knowledge experts.

• There is a parallelization mechanism implemented in FADSE, such that, if connected
to a computer network or high-performance computers, individuals are sent among
this network and simulated at the same time.

There are also some things to be improved, such as:

• The main drawback of FADSE is that it uses jMetal version 0.8. This is one of the
first versions of jMetal and it is outdated. The object-orientated design is very poor.
Therefore, the extensibility of the tool is very difficult because of this poor software
design. Since the jMetal library used is that old, FADSE misses many of the more
recent algorithms.

• The same thing is valid for optimization problems and metrics.
• Moreover, all the changes have been made directly inside the code of this old meta-

heuristics library over time. That means that an update to a recent version of jMetal is
extremely difficult because of the lack of compatibilities between the current jMetal
version included in FADSE and other recent jMetal versions.

• It does not provide a GUI, but the input to FADSE is given in a custom xml file.
Nevertheless, FADSE provides features to run simulations on High-Performance
Computers within Local Area Networks.

• Nevertheless, the documentation is missing, which makes it very difficult for develop-
ers to get started with FADSE.

• It is not possible to implement any meta-optimization or superposition mechanism
because the software architecture was designed so that a simulation allows only one
thread to be started for one optimization problem.

4.6. General Comparison

Table 8 synthesis the main features of previously analyzed frameworks.
In general, the comparison of the performance of some optimization algorithms is

realized according to the degree of complexity of the algorithms (e.g., MN3—NSGA, or
MN2—NSGA-II, SPEA2, where M is the number of objectives and N is the population size of
genetic algorithm, MV—CAFZGA, where V is the size of support vectors), and is tested on
synthetic benchmarks (ZDT1-6, SCH, KUR, DTLZ1–DTLZ9, WFG1-9, etc.) [8,30,31,44–48].
Actually, all analyzed frameworks use the synthetic benchmarks mentioned as test prob-
lems. The computational efficiency and potential environmental impact of using these
algorithms depends on the language the platform has been written in but also on the
complexity of the optimization problem (most of the time non-polynomial). On the other
hand, regarding FADSE, the authors continuously extend the framework, which could
run the synthetic benchmarks, but the focus is on real-life problems from the domain of
computer architecture (automatic design space exploration of different single/multi-cores
processors), industrial engineering (turning process, suspension optimization), energy
sector (prediction of electricity consumption and production), etc. The authors have shown
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that by using an automatic design space exploration process, the solutions found are far
superior to a manual run. In the work presented in [50], the automatic DSE run on the
GAP simulator found configurations with twice the performance for the same energy con-
sumption compared to the manual runs, while in the work presented in [51], the authors
have shown that automatic DSE on complex actuator models has found configurations
with better operation characteristics (smoother curves) with a 5% decrease in size, which
translates into a more efficient design.

Table 8. General comparison of the selected 5 frameworks.

Feature/Framework PlatEMO PyMOO jMetal Evolver FADSE

Multi-objective focus ✓ ✓ ✓ ✓ ✓

Rich algorithms library ✓ ✗ ✓ ✓ ✓

Rich problems library ✓ ✗ ✓ ✓ ✓

Parallelization ✗ ✗ ✗ ✗ ✓

Checkpointing ✗ ✗ ✗ ✗ ✓

Easy extensibility ✓ ✓ ✓ ✓ ✗

GUI ✓ ✗ ✗ ✓ ✗

Open-source ✓ ✓ ✓ ✓ ✓

Comprehensive documentation ✓ ✓ ✓ ✓ ✗

In addition to presenting a comprehensive comparison of five of the most cited or
promising multi-objective optimization frameworks, this paper aims to invite the research
community into wider adoption and provides open contributions in developing such
platforms, helping in researching and innovating any scientific domain. In Table 9 we
present the number of contributors and the number of watchers for each platform. The
advantage of such platforms, at least in the case of FADSE on which the authors are working,
allows for the optimization of almost any type of problem, the only thing necessary being
the development of connectors that map the solution of the problem in chromosomes
specific to the genetic algorithms used.

Table 9. Community support for the selected 5 frameworks.

Framework Link GitHub # of Contributors # of Watchers

PlatEMO https://github.com/BIMK/PlatEMO
(accessed on 12 March 2024) 12 45

PyMOO https://github.com/anyoptimization/pymoo
(accessed on 12 March 2024) 37 32

jMetal https://github.com/jMetal/jMetal
(accessed on 12 March 2024) 43 54

FADSE https://github.com/horia-calborean/fadse
(accessed on 12 March 2024) 3 6

Evolver https://github.com/ElsevierSoftwareX/SOFTX-
D-23-00488 (accessed on 12 March 2024) 3 0

Although there are many quality indicators proposed in the literature [67,68], we
decided to compare these frameworks by considering 10 commonly used indicators: Hyper-
volume (HV) [69], Two Sets Hypervolume Difference (TSHD) [70], Epsilon (EP) [68], Spread
(SP) [29], Generalized Spread (GS) [71], NPS—Number of Pareto Solutions (NPS) [72], Mean
Ideal Distance (MID) [73], Generational Distance (GD) [74], Inverted Generational Distance
(IGD) [75], Coverage (C) [68]. Table 10 synthesizes the comparison among the framework
according to the previously mentioned quality indicators.

https://github.com/BIMK/PlatEMO
https://github.com/anyoptimization/pymoo
https://github.com/jMetal/jMetal
https://github.com/horia-calborean/fadse
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00488
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00488
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Table 10. Quality indicator comparison of the selected 5 frameworks.

Quality Indicator PlatEMO PyMOO jMetal Evolver FADSE

HV ✓ ✓ ✓ ✓ ✓

TSHD ✗ ✗ ✗ ✗ ✓

EP ✗ ✗ ✓ ✓ ✓

SP ✓ ✗ ✓ ✓ ✓

GS ✗ ✗ ✓ ✓ ✓

NPS ✗ ✗ ✗ ✗ ✗

MID ✗ ✗ ✗ ✗ ✗

GD ✓ ✓ ✓ ✓ ✓

IGD ✓ ✓ ✓ ✓ ✓

C ✓ ✗ ✓ ✓ ✓

5. Discussions

We do not aim to criticize at all the work of the authors we presented, but just to make
a review from a researcher’s perspective of all these tools, in order to extract general useful
and handy features.. Therefore, the paragraphs in this section will not make any choice
among these frameworks, but they will point out the essential features we consider as the
most important ones.

5.1. Constraints and Limitations

Some common limitations we found are the lack of checkpointing, reusability mecha-
nisms, and the parallelization of evaluations.

Checkpointing is very useful, especially in the case of long and complex optimization
problems. If the process fails for some reason, it could be crucial to have a saved trace of
the last successfully executed generation or individuals that could lead the researcher to
the cause of failure. The electric power outage can be a problem as well for simulations
that run for several hours or days.

Individual reusability can prove to be essential when the probability of generating
similar individuals during a run is high. If a newly generated individual and its evaluated
results are already stored in a database, it does not have to be evaluated again, therefore,
gaining some time. If the retrieval percentage is too low, it will end up losing time because
of the periodically pointless interrogations.

Parallelization is another key factor that should be considered. The evolutionary
algorithms are embarrassingly parallel, because the individual could be run on different
threads, cores, machines, etc., independently.

One typical constraint we identified, for example in PlatEMO, is the impossibility
to change the range of the design variables or constraints before a simulation. They are
hard-coded and should be changed inside the implementation. The same thing happens
with algorithm parameters, like crossover, mutation, etc. By building the application in this
closed manner, the user is constrained to run the algorithm and problems with mojstly the
same parameters every time.

Another aspect worth considering is the interaction between the user (researcher) and
the application. The usability of the frameworks differs between those equipped with a
GUI and those lacking this feature. PlatEMO and Evolver provide a user-friendly interface,
allowing researchers from various fields to fully take advantage of their capabilities, while
requiring little-to-no programming expertise. This can support and accelerate research
progress in a variety of domains by enabling researchers to focus on problem formulation
and experimentation without the need for extensive programming assistance.

In contrast, running simulations and viewing results with the other frameworks that
were discussed can only be achieved by writing new code. It is worth mentioning that
frameworks like PyMOO and jMetal are designed as libraries that can be imported and
used in software applications, rather than being standalone optimization tools. This is
a constraint that limits their accessibility to users who are proficient in the particular
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programming language in which the framework was developed, even if users just want to
run some simulations, without further extending the library.

On the other hand, although FADSE does not yet have a GUI interface, it should
be mentioned that it offers parallelism and the possibility of running on HPC systems
and local distributed computer networks (LAN). One of the future developments aims to
introduce the GUI in FADSE.

5.2. Other Specialized Optimization Existing Platforms

Although it was not our goal from the beginning, we consider it important for re-
searchers to understand that advances in processing techniques have led to exponential
growth in data, and especially in the field of biology and bioinformatics there is a big
demanding in the development of large-scale bioinformatics experiments.

In the work presented in [76] the authors introduce Seq, an optimization framework
for genomics freely available at https://seq-lang.org (accessed on 12 March 2024). Seq
is a high-performance, domain-specific programming language for bioinformatics and
computational genomics that bridges the ease of use and clarity of high-level languages
such as Python or MATLAB with the performance of low-level languages such as C or
C++. Seq has the syntax and semantics of the widely used high-level Python language,
on top of which it adds genomics-specific but user-invisible language constructs, types,
and optimizations. The creators of Seq claim that their framework is to bioinformatics
what MATLAB is to many engineering problems—an accessible portal to the world of
high-performance data science.

Another high-performance framework that uses scientific workflow technologies
coupled with provenance data analytics for managing and analyzing bioinformatics ex-
periments entitled BioWorkbench was presented in the work presented in [77]. Through a
web interface it aims to support users in the process of specifying an experiment, determin-
ing the resources of a High-Performance Computing systems needed for the experiment,
managing the data consumed and produced, and analyzing the results.

Although both source codes of the Seq and BioWorkbench are available on GitHub, the
main difference between them and the 5 frameworks analyzed in this work, summarized
in Table 7, is that both Seq and BioWorkbench are dedicated just to bioinformatics. FADSE
and the other frameworks could be applied also to almost any type of problem, from
different domains like: Aircraft Design, Routing in Communications Networks, Tracking
Windshear, Game Playing, Medicine, Engineering application, Air Traffic Control, Au-
tomatic Design Space Exploration, Scheduling and logistics, Machine Learning, Expert
system, VLSI Circuit Layout, Strike Force Allocation. Much closer to jMetal and FADSE
is the MO-Phylogenetics framework [78], a software tool based on jMetalCPP and BIO++
with applications in bioinformatics, which is a phylogenetic inference software tool with
multi-objective evolutionary metaheuristics, whose software developer is Antonio Nebro,
who contributed to the jMetal framework.

A simple web search on the keywords “framework” and “health” generally provides
articles on either the human performance optimization framework from a military or
social perspective, or the simulation-based optimization frameworks to support logistics
in the management of the healthcare sector and to avoid risks in critical response issues
in emergencies. A novel general multi-level simulation-based optimization framework
has been proposed in the work presented in [79], with the aim of supporting managerial
decisions in the transition from standard forms of healthcare services to IoT-enabled systems
targeting elderly care home assistance. The main idea is to use simulation to mimic system
organization, rules, and behavior, whereas optimization is used to search for the allocation
of both personnel and equipment to pursue optimality concerning resource availability.
The framework is limited through the heuristics involved, and the authors mention local
optimization techniques like Simulated Annealing. In the work presented in [80], some
limitations are avoided by implementing Genetic Algorithms. However, the lack of multi-

https://seq-lang.org
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objective optimization, the difficult implementation, and the lack of availability are some
limitations of the framework.

In the work presented in [81], the authors used Genetic Algorithms and MATLAB
software to develop a simulation-optimization framework that incorporates cash flow
modelling and uncertainties in macroeconomic and microeconomic parameters in a supply
chain planning problem while measuring the profitability. One of the limitations of this is
that the authors do not apply multi-objective optimization in their study.

5.3. Future Developments

We presented some of the most complex tools available on the market by providing
pros and cons, gathered from our working experience with them. As mentioned earlier,
it is not possible to create a tool which satisfies all the needs for the research community.
Nevertheless, we aim for the future, to build a tool that might include all the features we
presented and we consider to be relevant for our needs. Our goal is to upgrade the existing
FADSE [7], which was originally developed within our research group.

The main simulation flow of FADSE, including the data-base connection, problems
wrappers, and the interface connection between modules is presented in Figure 5. Some of
the ongoing or recently added developments are marked with red in the picture.
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The main extension of FADSE consists of replacing jMetal 0.8 with jMetal 6.2. More-
over, we are continuously extending jMetal with recently introduced algorithms such as:
RDA, Gray-Wolf, Hyena, etc. More engineering problems will be added: design space
exploration of multi- and many-core architectures or hardware accelerators, wine fermen-
tation process optimization, energy production and consumption prediction, highway
building process, suspension system optimization. A benchmarked implementation of
CAFZGA [44], which uses the Apparent Front Ranking (AFR) approach instead of classic
Pareto-based algorithms, will be included in FADSE. Additionally, the existing problems
will be tested once more using the CAFZGA algorithm for more than two objectives.
New variants of CAFZGA will be proposed, since the template function might change
dynamically or it could be constructed on the fly, without prior knowledge of it. From
the parallelization point of view, we aim to apply a load balancing mechanism to make
FADSE distribute the simulations/individuals among the cores/machines across local area
networks and high-performance computing in a very efficient way by introducing a job
scheduling mechanism. One of the future developments aims to provide a graphical user
interface into the FADSE framework to increase its accessibility degree. A feature to be
introduced in FADSE will try to distinguish between optimization problems (with one or
more objectives) according to their establishment before starting the optimization process
and to suggest potential algorithms.

The main extended architecture of jMetal included in FADSE is presented in Figure 6,
and we have already started to implement the mentioned features with red.
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6. Concluding Remarks

A comprehensive comparison of multi-objective optimization frameworks is presented,
covering 5 of the most cited or promising platforms. Obviously, none of the tools are
accepted as perfect by the entire research community. Some researchers might find that one
of the tools presents better for their needs than the others, or they might prefer a tool that
has not even been mentioned in this review.

However, features such as flexibility, easy extensibility, parallelization, checkpointing,
a good variety of metrics, efficient energy consumption and a reduced carbon footprint
can be generally viewed as necessary and relevant in these kinds of platforms. Addition-
ally, prioritizing usability by implementing a GUI that facilitates intuitive configuration,
execution and result interpretation could also bring great benefits. Adherence to design
principles such as clarity, consistency, and accessibility ensures an optimal user experience
and increases efficiency in optimization research across different domains. The comparison
of essential features allows for a good overview of the existing frameworks, as well as
being a basis for evaluating the extent to which other existing (or future) tools contain these
useful features. Although we highlighted important platforms available for working with
Multi-Objective Optimization Evolutionary Algorithms, our analysis is not exhaustive in
finding other important domains where such frameworks exist (bioinformatics, health,
finance, etc.). From a software perspective, it is not always easy to extend and maintain
these tools due to new software versions that appear, but also due to the new types of
complex problems that need to be solved.
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