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Abstract: Hyperparameter tuning requires trial and error, which is time consuming. This study
employed a one-dimensional convolutional neural network (1D CNN) and Design of Experiments
(DOE) using the Taguchi method for optimal parameter selection, in order to improve the accuracy
of a fault-diagnosis system for a permanent-magnet synchronous motor (PMSM). An orthogonal
array was used for the DOE. One control factor with two levels and six control factors with three
levels were proposed as the parameter architecture of the 1D CNN. The identification accuracy and
loss function were set to evaluate the fault-diagnosis system in the optimization design. Analysis
of variance (ANOVA) was conducted to design multi-objective optimization and resolve conflicts.
Motor fault signals measured by a vibration spectrum analyzer were used for fault diagnosis. The
results show that the identification accuracy of the proposed optimization method reached 99.91%,
which is higher than the identification accuracy of 96.75% of the original design parameters before
optimization. With the proposed method, the parameters can be optimized with a good DOE and
the minimum number of experiments. Besides reducing time and the use of resources, the proposed
method can speed up the construction of a motor fault-diagnosis system with excellent recognition.

Keywords: one-dimensional convolutional neural network (1D CNN); Taguchi method; analysis of
variance (ANOVA); permanent-magnet synchronous motor (PMSM); motor fault diagnosis

1. Introduction

The combination of a PMSM and drivers can reduce the motor size and cost while
increasing efficiency. PMSMs have gradually replaced traditional permanent-magnet
DC-brushed and induction motors, and are widely used in national defense technology,
aerospace, machine tooling, plant power, industrial automatic control, medical machinery,
household appliances, electric vehicles, electric motorcycles, and electric bicycles [1,2].
However, there remains a problem with motor fault diagnosis, which relies on instrument
testing through professional analyses. However, the outcomes may vary due to the differ-
ences in operators’ knowledge, experience, and analytical methods. The traditional testing
method may lead to misjudgment and an unnecessary waste of labor and time costs [3,4].

In recent years, neural networks have been widely used. Ref. [5] used motor vibration
signals as analytic data and an extension neural network (ENN) to diagnose induction
motor faults. Convolutional neural networks (CNNs) have been extensively used due
to their outstanding characteristics and strong ability to extract features from complex
information, such as face recognition [6], target tracking [7], target diagnosis [8], and time–
frequency analysis [9]. Ref. [10] proposed a multi-head 1D CNN, using two accelerometers
measuring in different directions to detect and diagnose a normal motor and six fault types
in electric motors. The results showed that the proposed architecture was accurate for
multi-sensor fault detection using vibration time series. Ref. [11] introduced a 1D CNN
architecture aimed at advancing rotor system fault diagnosis. Similarly, Ref. [12] proposed
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an approach based on 1D CNN coupled with multi-sensor fusion for the online fault
diagnosis of bearings. Noteworthy contributions to fault diagnosis leveraging 1D CNN
architecture encompass the examination of low-speed bearings [13], the investigation into
the multiple-fault diagnosis of marine turbine bearings [14], and the exploration of bearing
fault diagnosis through the integration of 1D CNN with transfer learning techniques [15].

The Taguchi method, developed by Dr. Taguchi, is a low-cost and high-efficiency
quality engineering method. It can obtain the most favorable experimental results with
minimum experiments [16]. Refs. [17,18] used the Taguchi method to study the parameters
in the actual operation of computer numerical control (CNC) machining and obtained the
optimum results. Ref. [19] combined the Taguchi method with fuzzy neural networks to
monitor physiological data during sleep and classify the sleep stages. Ref. [20] applied
the Taguchi method to evaluate output quality characteristics to predict the optimum
parameters. This study aims to use a vibration spectrum analyzer to capture motor vibration
signals as features, build a motor fault-diagnosis and -identification system with 1D CNN
as the architecture, and optimize the parameters of the fault-diagnosis and -identification
system with the Taguchi method. Unlike traditional methods, the proposed method can
save on the costs of purchasing various types of expensive test equipment. It is also
conducive to promoting the application of convenient, fast, and optimized test methods at
front-line operation sites.

This paper is divided into five sections. Section 1 mainly discusses the research
background and motivation and a literature review related to fault diagnoses. Section 2
introduces the experimental methods—including the Taguchi method, ANOVA, and CNN
architecture—and presents the experimental platform and experimental data. Further,
Section 3 presents the experimental results, which are divided into single-objective op-
timization and multi-objective optimization. Section 4 compares the optimizations and
the prototype, as well as the use of a confusion matrix as the analytical method. Lastly,
Section 5 presents the conclusions of this paper.

2. Materials and Methods

Figure 1 shows the framework of the 1D CNN using Taguchi parameter optimization
to improve the proposed PMSM fault-diagnosis system. The three main steps in the
proposed diagnosis system are as follows: (1) evaluate the optimal parameter combination
of the 1D-CNN model using the Taguchi method; (2) collect the motor vibration signals
captured by the vibration spectrum analyzer and import the image into the 1D CNN model;
(3) train the optimization parameter model of the 1D CNN. Figure 2 shows the vibration
record of the normal PMSM captured by the vibration spectrum analyzer, where the X-axis
is the measurement time, which is fixed at 32.4 s for each experiment; the Y-axis is the
measurement of the vibration at each time unit; and the vibration unit is (G).

2.1. Taguchi Method

The Taguchi method can improve the product quality by designing control factors and
levels and using the DOE of an orthogonal array, thereby obtaining useful information with
the minimum experimental combinations [21]. After the orthogonal array experiment, the
results are converted into signal-to-noise ratios and used to determine the optimal control
factors for improving the system stability. Finally, the trend can be determined with other
analytical methods, and the results are classified to optimize the process parameters [22–25].

This study applied the Taguchi method to solve the parameter problems in neural
networks. According to prior research experience, the features extracted by the convolution
layer significantly impact the classification results [26]. Thus, these parameters in the
convolution layer are used as control factors in this study. The common pooling methods
are max pooling and average pooling, which are also control factors. This study utilized
Pooling (A), Conv1_filters (B), Conv1_kernel_size (C), Conv1_strides (D), Conv2_filters (E),
Conv2_kernel_size (F), and Conv2_strides (G) as experimental control factors.
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Figure 2. Vibration measurement signal diagram of normal PMSM.

The 1D CNN parameter design adopted in this study has seven control factors, one
of which has two levels, and six control factors have three levels, as shown in Table 1. To
reduce the number of experiments and improve the reliability of the experiments, according
to the control factors, the number of levels, and the orthogonal array rules of the Taguchi
method, L18(21,36) was selected for DOE, and the arrangement is shown in Table 2.

Table 1. Levels of control factors.

No. Control Factors Level 1 Level 2 Level 3

A Pooling function Max Average
B Conv1_filters 50 100 150
C Conv1_kernel size 10 20 30
D Conv1_strides 4 6 8
E Conv2_ filters 10 20 30
F Conv2_ kernel size 15 20 25
G Conv2_strides 1 2 3
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Table 2. L18(21,36) orthogonal array.

Exp. No. A B C D E F G

1 Max 50 10 4 10 15 1
2 Max 50 20 6 20 20 2
3 Max 50 30 8 30 25 3
4 Max 100 10 4 20 20 3
5 Max 100 20 6 30 25 1
6 Max 100 30 8 10 15 2
7 Max 150 10 6 10 25 2
8 Max 150 20 8 20 15 3
9 Max 150 30 4 30 20 1

10 Average 50 10 8 30 20 2
11 Average 50 20 4 10 25 3
12 Average 50 30 6 20 15 1
13 Average 100 10 6 30 15 3
14 Average 100 20 8 10 20 1
15 Average 100 30 4 20 25 2
16 Average 150 10 8 20 25 1
17 Average 150 20 4 30 15 2
18 Average 150 30 6 10 20 3

Finally, the signal-to-noise ratio (S/N ratio) output quality can be quantified based on
the experimental results. The S/N ratio is defined as the log of the signal-to-noise ratio,
and the unit is db. The quality characteristics of the design objectives can be divided into
the Smaller the Better (STB), the Larger the Better (LTB), and Nominal the Best (NTB) [27].
In terms of the calculation method of the S/N ratio, the first design objective of this paper
is the recognition accuracy, which is LTB. The second design objective is the loss function,
which is STB.

The S/N ratio of LTB quality characteristic is calculated as follows:

The Larger the Best = S/N= −10 × log

(
1
n

n

∑
i=1

1
yi

2

)
db, (1)

The S/N ratio of the STB quality characteristic is calculated as follows:

The Smaller the Best = S/N = −10 × log

(
1
n

n

∑
i=1

yi
2

)
db, (2)

where n is the number of experiments, yi is the accuracy obtained by the i-th 1D CNN
experiment, S/N is the S/N ratio, and the unit is db. The S/N ratio of each objective can
thus be calculated.

2.1.1. Analysis of Average Value

After the experimental data of S/N ratio are obtained through the orthogonal array,
the average value is analyzed to determine the control factor’s influence on the objective
functions at various levels. The extents of influence is compared to find the optimal combi-
nation of various control factors. The average value calculation is expressed as Equation (3),
namely the total average value of objectives and control factors at various levels:

mall =
1
n
×

n

∑
i=1

FT(i), (3)

where n is the number of experiments, FT (i) represents the experimental data in the order
of i, and mall is the total average value of control factors at various levels.



Processes 2024, 12, 860 5 of 14

Equation (4) shows an example of parameters using the first level of control factor A
in 18 experiments in the orthogonal array:

mA1(y1) =
1
9
[y1(1) + y1(2) + y1(3) + y1(4) + y1(5) + y1(6) + y1(7) + y1(8) + y1(9)], (4)

where mA1(y1) is the overall average value of control factor A under Level 1, and y1(1)
is the experimental result (identification accuracy) of the first design objective of the first
experiment in the orthogonal array. All other levels and experimental factors are calculated
according to the above equation.

2.1.2. Analysis of Variance

In this paper, we perform an ANOVA on the experimental data of the Taguchi method
to determine the significance and measurements of the process parameters that influence
extraction in statistics [28]. ANOVA, developed by the statistician Ronald Fisher, is the
first basic method used for statistical analyses in the DOE to verify whether significant
differences are identified in the average of three or more parent populations. Researchers
often use the DOE to collect data, determine the changes caused by various factors and
errors, and provide a more definite data analysis of the influence of various factors on
the system output variance [29]. As ANOVA is based on the concept of SS, differences
inevitably occur in the analysis of the collected data under certain conditions. This paper
uses ANOVA to test the error of the group average. The overall average value of the group
optimizations is calculated using Equation (3), and the total sum of squares of the factor
levels is obtained using Equation (5), which is the total variance. It is compared with the
sum of the total variance of the factor levels in a ratio to determine the factors with greater
influence and identify the difference. The equation is as follows:

Sum of Squares = SS = L
L

∑
i=1

(mi − mall)
2, (5)

where L is the number of levels, mi is the average value of the levels, and mall is the overall
average value of the control factors at various levels.

2.2. Materials

In the manufacturing process of motors, multiple parts are integrated. Motor failure
may occur at any stage and in any part. Labor and the cost of troubleshooting can be
reduced if a fault diagnosis and identification system can clearly distinguish the types of
parts or processes at fault. This paper proposes 11 common motor fault types, which are
grouped into four main classes: rotor fault, stator fault, bearing fault, and assembly fault.
A normal motor and the 11 common motor fault types are classified as follows: normal
motor (Class 0), poor dynamic balance of rotor (Class 1), shaft bending (Class 2), magnet
demagnetization (Class 3), uneven air gap (Class 4), rotor misalignment (Class 5), stator
coil three-phase imbalance (Class 6), stator coil layer short-circuit (Class 7), poor bearing
lubrication (Class 8), bearing inner ring damage (Class 9), bearing ball damage (Class 10),
and poor assembly (Class 11). There are 12 classes in total.

This study employed the HJ-4250S vibration spectrum analyzer produced by G-TECH
Instruments as the main testing equipment. We built a motor-testing platform, as shown
in Figure 3. This platform includes a dynamic signal FFT analyzer, an optical tachometer,
a high-sensitivity force gauge, a vibration balancer, a vibration sensor, a motor-driving
inverter, and a PMSM to be tested. The relevant technical parameters of the equipment in
Figure 3 are listed in Table 3.
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Table 3. Parameter table of the motor and spectrum vibration analyzer in the experimental system.

Item Specification

Motor type PMSM
Poles/slots 4 poles/24 slots

Rated voltage 311 VDC
Rated rpm 2500 rpm

Rated power 600 W
Phase Three-phase

Construction of winding Single-layer concentric winding
Connection Y-connection
Bandwidth 1578.5 Hz

Lines of resolution 51,200
Capture time 32.4 s

The vibration spectrum analyzer converts the physical quantities of machine vibration,
such as displacement, speed, and acceleration, into voltage, charge, and current signals
through a sensor. Next, these signals are amplified, and FFT analyzes the spectra.

The motor vibration signals of various fault types captured by the vibration spectrum
analyzer are shown in Figure 4. The x-axis is the time, and the y-axis is the vibration unit.
The measurement bandwidth is 1578.5 Hz. The lines of resolution (LOR) are the number of
messages captured by the vibration spectrum analyzer, representing the detailed degree of
the collected data set at 51,200. Each data capture time is 32.4 s. Figure 4 (Class 0) represents
a diagram of the normal PMSM’s vibration measurement signal. Figure 4 (Class 1) to
(Class 11) represent the vibration measurement signals of 11 PMSM fault types. Each type
of motor signal has its features. Finally, the signal data obtained by testing are classified
by a neural network using supervised learning. The parameters of the neural network are
optimized using the Taguchi method.



Processes 2024, 12, 860 7 of 14Processes 2024, 12, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 4. Vibration measurement signal diagram of normal PMSM (Class 0) and 11 types of PMSM 
faults (Class 1–Class 11). 

2.3. One-Dimensional CNN 
CNNs are a type of supervised learning with wide applications in signal processing 

[30] and image classification [31] in recent years. The model design of CNNs varies with 
the characteristic structure of the data and their composition architecture. The structure 
consists of several convolution, pooling, and fully connected layers, and an appropriate 
activation function is provided. The 1D CNN architecture proposed in this paper is shown 
in Figure 5. The measured signals go through an input layer, two convolution layers with 
a 𝑇𝑎𝑛ℎ  activation function, a pooling layer, and a fully connected layer for fault type 
classification. 

 
Figure 5. One-dimensional CNN architecture diagram. 

2.3.1. Convolution Layer 
The main task of the convolution layer in a CNN is feature extraction. The convolu-

tion operation is performed through convolution kernels and filters of different sizes. Im-
age feature extraction or feature enhancement is performed using spatial filtering, and the 
output feature map from the convolution layer is controlled by padding and stride [32]. 
The filter is the number of output channels after convolution, and the convolution kernel 
is the filter size used to perform convolution on the image. Its size affects the feature de-
tection performance. The identification performance is poor if the convolution kernel is 

Figure 4. Vibration measurement signal diagram of normal PMSM (Class 0) and 11 types of PMSM
faults (Class 1–Class 11).

2.3. One-Dimensional CNN

CNNs are a type of supervised learning with wide applications in signal process-
ing [30] and image classification [31] in recent years. The model design of CNNs varies
with the characteristic structure of the data and their composition architecture. The struc-
ture consists of several convolution, pooling, and fully connected layers, and an appropriate
activation function is provided. The 1D CNN architecture proposed in this paper is shown
in Figure 5. The measured signals go through an input layer, two convolution layers
with a Tanh activation function, a pooling layer, and a fully connected layer for fault type
classification.
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2.3.1. Convolution Layer

The main task of the convolution layer in a CNN is feature extraction. The convolution
operation is performed through convolution kernels and filters of different sizes. Image
feature extraction or feature enhancement is performed using spatial filtering, and the
output feature map from the convolution layer is controlled by padding and stride [32].
The filter is the number of output channels after convolution, and the convolution kernel is
the filter size used to perform convolution on the image. Its size affects the feature detection
performance. The identification performance is poor if the convolution kernel is too small;
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however, if the convolution kernel is too large, the calculation time and resource cost will
increase. The stride reduces the computation. For example, if the stride is set at 2, the
output number will be 1/2 of the input number; the rest can be deduced by analogy.

The main function of the activation layer is to enhance neural networks to solve non-
linear separability problems. Currently, the common activation functions include Sigmoid,
hyperbolic tangent function (Tanh), ReLu, and Leaky ReLU functions [33]. This paper
uses Tanh as an activation function in the one-dimensional convolution layer, expressed
as Equation (6). x is the value of the input data. The natural logarithm of x is taken and
substituted into the Tanh function. y is the output value calculated by the Tanh function,
and the output of the Tanh function is zero-centered, and the actual value is taken and
compressed into the range of −1 to 1.

y = f (x) = Tanh(x) =
ex − e−x

ex + e−x =
1 − e−2x

1 + e−2x ∈ (−1, 1) (6)

2.3.2. Pooling Layer

An extracted feature image is obtained after the data pass through the convolution
layer. This convolution process reduces the size of the feature parameters and maintains the
feature invariance. A pooling layer is created after the features are extracted by convolution
to reduce the operational complexity of the network and maintain the features consistent
with the image. The common pooling layer methods are max pooling and average pooling.
As shown in Equation (7), R is the pooling filter, and R(ixj) is the specification size of the
pooling filter, and it is a matrix with i columns and j rows. k denotes the k-th feature map,
p, q denote the p-th column and the q-th row in the matrix. X denotes the feature extracted
from the feature map by the pooling filter. Xk(p,q) denotes the feature of the p-th column
and the q-th row extracted from the k-th feature map by the pooling filter. yk(ixj) is the
output value obtained by the selected operation method.

The max pooling operation method can be expressed as Equation (7):

yk(ixj) = max
(p,q)∈R(ixj)

Xk(p,q) (7)

The average pooling operation method can be expressed as Equation (8):

yk(ixj) =
1∣∣∣R(ixj)

∣∣∣ ∑
(p,q)∈R(ixj)

Xk(p,q) (8)

2.3.3. Fully Connected Layer

The fully connected layer includes a flattened layer and an output layer. It is placed at
the end of the CNN with the main function of converting the feature matrix exported from
the convolution and pooling layers into a one-dimensional vector through the flattened
layer. It then adjusts the weight through the activation function and the error between the
input and output through backpropagation before classification. The results are displayed
in the output layer [28,34].

The So f tmax activation function is used in this paper. So f tmax is an activation func-
tion for multi-class classification problems. If there are N classes to be predicted, So f tmax
forces the sum of all N output values in the neural network to be 1. Therefore, the output
value represents the probability of the occurrence of each class. As shown in Equation (9),
N denotes that there are N classes to be classified, yi is the output value of the i-th class,
∑N

j=1 eyj is the sum of N output values, and the total value is 1. So f tmax(y)i denotes the
probability distribution of converting the output value of the i-th class into 0 to 1.

So f tmax(y)i =
eyi

∑N
j=1 eyj

∈ [0, 1] (9)
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3. Experimental Results
3.1. Taguchi Method

This study used a vibration spectrum analyzer to capture the vibration signals of
various motors, and employed the data augmentation method. There are 49,068 pieces of
vibration data, including 34,347 randomly drawn as training samples, and 14,721 as test
samples. The ratio of training data to test data is 7:3. The arranged data were imported into
the neural network model to identify the fault types. The model-building environment was
Python 3.7.16, the Jupyter Notebook version was 6.5.5, and the TensorFlow version was
TensorFlow-gpu2.3. The test environment comprised an Intel(R) Core™ i7-8750H CPU @
2.20 GHz processor, an Nvidia GeForce RTX 2060 display adapter, and a Windows 10 64-bit
operating system.

Based on the orthogonal array rules of Table 2 and the experimental results of import-
ing the parameters of the control factors at different levels into the 1D CNN architecture,
this study employed the Minitab® software 2021 as an auxiliary calculation tool to obtain
the recognition accuracy and the lost S/N ratio, as shown in Table 4. A means analysis was
conducted to obtain the average influence degree of the control factors. The design of the
single-objective optimization was then completed.

Table 4. S/N ratio of L18(21,36) orthogonal array.

Exp. No. A B C D E F G Acc.
(%) Loss ACC.

S/N
Loss
S/N

1 Max 50 10 4 10 15 1 98.68 0.0019 39.885 54.425
2 Max 50 20 6 20 20 2 99.84 0.00026 39.986 71.701
3 Max 50 30 8 30 25 3 98.94 0.0014 39.907 57.077
4 Max 100 10 4 20 20 3 99.71 0.00049 39.975 66.196
5 Max 100 20 6 30 25 1 99.71 0.00038 39.975 68.404
6 Max 100 30 8 10 15 2 98.98 0.0015 39.911 56.478
7 Max 150 10 6 10 25 2 97.63 0.0032 39.792 49.897
8 Max 150 20 8 20 15 3 99.29 0.00099 39.938 60.087
9 Max 150 30 4 30 20 1 99.43 0.00074 39.950 62.615

10 Average 50 10 8 30 20 2 99.04 0.0017 39.916 55.391
11 Average 50 20 4 10 25 3 95.08 0.0073 39.562 42.734
12 Average 50 30 6 20 15 1 98.28 0.0026 39.849 51.701
13 Average 100 10 6 30 15 3 99.40 0.001 39.948 60.000
14 Average 100 20 8 10 20 1 96.96 0.0046 39.732 46.745
15 Average 100 30 4 20 25 2 99.67 0.00062 39.971 64.152
16 Average 150 10 8 20 25 1 98.93 0.0016 39.907 55.918
17 Average 150 20 4 30 15 2 99.48 0.00074 39.955 62.615
18 Average 150 30 6 10 20 3 91.12 0.0119 39.192 38.489

3.2. Design of Taguchi Single-Objective Optimization
3.2.1. Average Value Analysis of Recognition Accuracy

The paper used the S/N ratio of the experimental results in Table 4 and the average
calculation of Equations (3) and (4) for analysis. The S/N ratio response table of recognition
accuracy in Table 5 was obtained. Columns 1 to 3 are the control factors, and Column 4
shows the standard deviations of the S/N ratios of the control factors at various levels.
The Rank refers to the ranking of the influence of control factors on the design objective,
indicating their importance. The optimal parameter combination, as shown in Table 5, was
obtained by comparing the S/N ratios of the control factors in Table 4 at various levels.
The obtained hyperparameters are as follows: Pooling is MaxPooling, Conv1_filters is 100,
Conv1_kernel_size is 10, Conv1_strides is 8, Conv2_filters is 30, Conv2_kernel_size is 15,
and Conv2_strides is 2.
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Table 5. Accuracy rate S/N ratio response table.

Level A B C D E F G

1 39.92 39.85 39.9 39.88 39.679 39.91 39.88
2 39.78 39.92 39.86 39.79 39.938 39.79 39.92

39.79 39.8 39.89 39.942 39.85 39.75
Delta 0.14 0.13 0.11 0.09 0.263 0.12 0.17
Rank 3 4 6 7 1 5 2
Best

parameter
Max

Pooling 100 10 8 30 15 2

3.2.2. Average Value Analysis of Loss Function

Based on the S/N ratio of the experimental results in Table 4 and the average calcula-
tion of Equations (3) and (4), the S/N ratio response table of the loss function is shown in
Table 6. Columns 1 to 3 are the S/N ratios of the control factors at different levels. Column
4 shows the standard deviations of the S/N ratios of the control factors at various levels.
The number of Rank refers to the ranking of the influence of control factors on the design
objective, indicating their importance. The optimal parameter combination was obtained
by comparing the S/N ratios of control factors in Table 6 at various levels, as shown in the
last column.

Table 6. Loss S/N ratio response table.

Level A B C D E F G

1 60.76 55.5 56.97 58.79 48.13 57.55 56.63
2 53.08 60.33 58.71 56.7 61.63 56.86 60.04
3 54.94 55.09 55.28 61.02 56.36 54.1

Delta 7.68 5.39 3.63 3.51 13.5 1.19 5.94
Rank 2 4 5 6 1 7 3
Best

parameter
Max

Pooling 100 20 4 20 15 2

3.2.3. Analysis of Taguchi Single-Objective Optimization Results

Table 7 is a parameter optimization comparison table for two design objectives. How-
ever, the two combinations of optimization parameters are at different levels in the three
control factors of Conv1_kernel_size (C), Conv1_strides (D), and Conv2_filters (E). The
experimental results of importing the two sets of parameters into the 1D CNN architecture
have same recognition accuracy and similar loss functions. Therefore, the parameters of the
final 1D CNN architecture cannot be determined. Therefore, the results of the two single-
objective optimization designs must be integrated using the multi-objective optimization
design method.

Table 7. Single-objective optimization comparison table for two design objectives.

Object A B C D E F G Acc.
(%) Loss

Acc. Max 100 10 8 30 15 2 99.86 0.00027
Loss Max 100 20 4 20 15 2 99.86 0.00024

3.3. The Multi-Objective Optimization Design

The multi-objective optimization design used the S/N ratio of the experimental results
in Table 3 and Equation (3) to calculate the overall average S/N ratio of the design objectives.
Then, the total variation in the design objectives was obtained by Equation (5). The optimal
structure of each design objective was determined by weight. The results are shown in
Table 8.
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Table 8. ANOVA table.

Factors Accuracy Loss

Degree of
Freedom

Sum of
Squares Effect (%) Degree of

Freedom
Sum of
Squares Effect (%)

A 1 0.09202 14.13 1 265.55 20.37
B 2 0.05043 7.74 2 105.35 8.08
C 2 0.03436 5.27 2 39.53 3.03
D 2 0.03517 5.40 2 37.35 2.86
E 2 0.27239 41.82 2 697.39 53.48
F 2 0.04488 6.89 2 4.27 0.33
G 2 0.09296 14.27 2 106.67 8.18

Error 4 0.0292 4.48 4 47.83 3.67
Sum 17 0.6514 100% 17 1303.94 100%

According to Table 9, the control factor Conv1_kernel_size greatly impacts the recog-
nition accuracy. After comparison, Conv1_kernel_size selects level 1; Conv1_strides
greatly impacts the recognition accuracy. After comparison, Conv1_strides selects level 3;
Conv2_filters greatly impacts the loss function. After comparison, Conv2_filters selects
level 2. The optimal parameter combination of Taguchi–ANOVA is shown in Table 9. Finally,
the 1D CNN model performs fault identification and diagnosis on the optimal parameter
combination of Taguchi–ANOVA. Its accuracy is 99.91%, and the loss is 0.00011. Compared
with the single-objective optimization analysis method, the accuracy is improved, and the
loss is halved.

Table 9. Prototype parameter settings and Taguchi–ANOVA optimal structure parameters.

Object A B C D E F G Acc.
(%) Loss

Taguchi+
ANOVA Max 100 10 8 20 15 2 99.91 0.00011

Original Max 50 20 4 10 25 3 96.75 0.0045

4. Discussion

This section compares and summarizes the experimental results of Taguchi–ANOVA,
single-objective optimization, and the prototype design parameters. As shown in Table 10,
the results of the DOE are better than the prototype design. Moreover, even if the parameters
of the two single-objective optimizations are contradictory, ANOVA can still be used as
an auxiliary method to calculate the influence of each design parameter on the design
objectives. This method is employed based on the analysis of the weights of each design
parameter to further determine the final optimization parameters.

Table 10. Experimental results comparison table.

Epoch Accuracy Rate (%) Loss Rank

1D CNN with Taguchi and ANOVA 50 99.91 0.00011 1
1D CNN with Taguchi (Loss) 50 99.86 0.00024 2

1D CNN with Taguchi (Accuracy rate) 50 99.86 0.00027 3
Original 1D CNN 50 96.75 0.0045 4

2D CNN 50 96.1 0.0075 5

This paper presents the motor fault recognition results in a confusion matrix. As
shown in Figure 6, the x-axis is the predicted fault type, and the y-axis is the actual fault
type. The white and red grids in the confusion matrix represent the number of accurate
recognitions and misrecognitions. Taking Class 5 in Figure 6a as an example, the proposed
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method correctly predicted 1097 instances as Class 5 and misidentified 70. The accuracy
for Class 5 reached 94%. Similarly, the proposed method misidentified only three data in
Class 5, as shown in Figure 6b, with a recognition accuracy of 99.7%. Figure 6a shows the
confusion matrix of the original parameter setting. Figure 6b shows the confusion matrix
of the optimal parameters obtained by Taguchi–ANOVA. It is positively determined from
the two figures that the optimization results in Figure 6b are effective.
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5. Conclusions

This study optimized a PMSM fault-diagnosis system, successfully combined the
characteristics of 1D-CNN and the Taguchi method, and incorporated ANOVA into the
multi-objective optimization design. The optimal design parameters obtained from the
analysis and the prototype parameters were substituted into the motor fault-diagnosis
system for classification and identification. The final identification results were compared
using a confusion matrix. The experimental results show that the identification accuracy
of the proposed optimization results is 99.91%, which is better than the identification
accuracy of 96.75% with the original parameters. The orthogonal array DOE of the Taguchi
method effectively reduced the number of experiments, and optimized manpower, material
resources, and times. Even if there are conflicting relationships between the two single-
objective optimization parameters, the effects of various design parameters and design
objectives can be subdivided through the weight relationship of ANOVA, so as to facilitate
making optimal choices. Eleven types of motor faults are considered in this paper. In
addition to the various motor fault diagnoses identified from the literature, rarer types of
faults—such as magnet demagnetization, assembly abnormalities, and other abnormalities—
are also added. In addition, we included faults caused by the stator part, the rotor part,
and the bearings, as well as human factors. This investigation should be able to cover
the majority of fault types. Faulty motors that are not included in the diagnosis system
and cannot be categorized in any of the fault categories will be added to the training
database after the true cause of the faults are identified to improve the fault-diagnosis
system. The proposed optimization method can be extended to fault-diagnosis systems in
other motor-related fields, such as servo motors, generators, and electric vehicle motors.
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