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Abstract: Vacuum is an important parameter in cutter suction dredging operations because the
equipment is underwater and can easily fail. It is necessary to analyze other parameters related to the
vacuum to make real-time predictions about it, which can improve the construction efficiency of the
dredger under abnormal working conditions. In this paper, a data-driven method for predicting the
vacuum of the underwater pump of the cutter suction dredger (CSD) is proposed with the help of big
data, machine learning, data mining, and other technologies, and based on the historical data of “Hua
An Long” CSD. The method eliminates anomalous data, standardizes the data set, and then relies
on theory and engineering experience to achieve feature extraction using the Spearman correlation
coefficient. Then, six machine learning methods were employed in this study to train and predict
the data set, namely, lasso regression (lasso), elastic network (Enet), gradient boosting decision tree
(including traditional GBDT, extreme gradient boosting (XGBoost), light gradient boosting machine
(LightGBM)), and stacking. The comparison of the indicators obtained through multiple rounds
of feature number iteration shows that the LightGBM model has high prediction accuracy, a good
running time, and a generalization ability. Therefore, the methodological framework proposed in
this paper can help to improve the efficiency of underwater pumps and issue timely warnings in
abnormal working conditions.

Keywords: cutter suction dredger; vacuum for underwater pump; forecast; machine learning

1. Introduction

Dredging is now of increasing importance in the field of water transportation and
integrated environmental management. CSDs have become the preferred choice for dredg-
ing programs in many ports due to their superior efficiency, simplicity of operation, and
cost-effectiveness. Underwater pumps, as the power equipment for transferring dredged
sediments, are the core equipment in the operation process of a CSD. Therefore, whether
the underwater pump can work normally is related to whether the dredger can continue to
operate, and improving the reliability of an underwater pump with a complex structure is
the key to ensuring uninterrupted and efficient operation. A CSD underwater pump used
in construction is not always within its normal operating range, as the actual underwater
pump vacuum may be higher than the theoretical value. The suction pipe inlet may be
clogged or the pipeline mud concentration may be too high. If the CSD construction
parameters are not adjusted in a timely manner, this may lead to the suction pipe being
blocked, greatly reducing the construction efficiency of the CSD. Therefore, it is one of the
important directions in the research field of dredging to keep the underwater pump in the
normal working interval as reliably as possible, in order to ensure the safe operation of the
equipment and improve the operation efficiency at the same time.
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Due to the fact that a change in the underwater pump’s working state will lead to a
change in its vacuum, vacuum is an important parameter to consider when judging the
working state of an underwater pump. The underwater pump sliding into an abnormal
working area will affect production efficiency and may also damage the equipment and
sensors. It must therefore be ensured that operators master the real-time working state of the
underwater pump to make the corresponding judgment in a timely manner. The operating
environment of the dredger is inherently complex and affected by many factors. In each
construction period, soil quality changes, bench feed, seawater, geotechnical concentration,
the equipment itself, and other factors, including poor working conditions, may lead to the
failure of the vacuum sensor, resulting in an inability to accurately measure the underwater
pump vacuum. Therefore, predicting the vacuum of the underwater pump in real time is
crucial to the safe operation of the dredger.

With the development of artificial intelligence, researchers have applied various tech-
niques and methods to solve the problems of sensor failure, sensor perception enhancement,
and parameter prediction. Wang et al. [1] proposed a data mining method of model stack-
ing generalization to predict the productivity of a suction dredger, which superimposed
five machine learning models, and the results show that the performance of the stacked gen-
eralized model outperformed that of other studied algorithms. Bai et al. [2] used machine
learning algorithms, including XGBoost, to predict the productivity of CSDs with more
than 90% accuracy, outperforming traditional methods. Specifically, the digital twin-driven
virtual sensor approach, which can solve the problem of sudden sensor failure, has recently
become a popular research direction. Digital twins can improve the accuracy and efficiency
of data prediction for complex equipment operating in harsh environments, especially in
prognostics and health management (PHM). Li et al. [3] introduced a digital twin-driven
virtual sensor (DTDVS) that predicts the state of a dredger, diagnoses the construction
behavior, and provides accurate warnings of failure conditions by analyzing the residuals
between the physical and virtual sensors. Han et al. [4] addressed the hysteresis effect in the
design of a CSD and then proposed a method to analyze and predict the mud concentration
utilizing machine learning and a hybrid integration strategy, which is modified to achieve
short-term prediction with the help of other real-time signals. Booyse et al. [5] proposed
a deep digital twin (DDT) to address the problem of over-reliance on historical data in
detecting faults and tracking degradation under different conditions. As dredging has
become smarter, various artificial intelligence techniques, machine learning, and deep
learning methods have been widely used for productivity prediction.

The increasing maturity of big data prediction methods has made it possible to predict
the vacuum level of the underwater pump condition of a CSD using data-driven methods.
In this paper, such a method is proposed and evaluated in comparison with five machine
learning and deep learning methods. The proposed method helps the operator to sense the
failure of the underwater pump in time and return the underwater pump to the operational
state by adjusting the parameters of the associated features.

This paper is organized as follows. Section 2 describes the methodology and work
of data preprocessing. Section 3 proposes a feature term selection method based on a
combination of theoretical reality basis and Spearman correlation analysis. Section 4
describes the training and selection of prediction models based on a comparative evaluation
of multiple computational models. Section 5 discusses the results of the model training
and makes selection judgments based on the evaluation results. Section 6 describes a
generalization ability assessment based on the preferred model and presents the models
and engineering application methods applicable to vacuum prediction. Section 7 presents
the conclusion of the paper.

2. Research Object and Methodology
2.1. Construction Process for CSDs

The research work of this paper is based on existing engineering data, which were
collected by suction dredger as shown in Figure 1. During the work process, the CSD
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uses the underwater pump to collect the mud underwater and the mud is transported
through the pipe to the target location; this work needs more than one pump to be complete,
as shown in Figure 1. During the process, the underwater pump will produce negative
pressure in front of the pump, causing the mud to enter the pipeline through the suction
port. Due to the lifting effect of the 1# pump, the mud will then flow from the bottom
to the water surface, and then the 2# pump will cause the mud to be transported to the
target location.
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Figure 1. “Hua An Long”. Data acquisition and testing platform and its pipeline system.

In the pipeline system, the pump’s output power is matched with the pipeline charac-
teristics, and is mainly affected by the inlet pressure, the flow rate of the slurry, and the
resistance along the pipeline. The resistance is mainly affected by the density of the slurry
itself and other factors. Independently from the pump, the output power, output pressure,
and flow rate are interrelated, and the output pressure includes the vacuum before the
pump and the head pressure behind the pump.

From the perspective of efficiency and relevance, the operator of a suction dredger
in the construction process needs to ensure that the underwater pump works in the high-
efficiency zone. Due to its ability to respond to a wide range of changes in the pumps and
pipelines, the vacuum of the underwater pump is often used as an important parameter
of analysis, in order to monitor and prevent siltation and vapor corrosion. The theoretical
calculation model for vacuum in the underwater suction pipe of the CSD is shown in
Figure 2, and the theoretical calculation formula is as follows:

Vacuum = Patm + ρwg1 − ρmg(hs,pipe − hs,pump)− ρwgHtotloss,sm − ρmV2
s /2 (1)

where Patm represents the atmospheric pressure, the suction mouth depth is hs,pipe, hs,pump
represents the mud pump depth, the suction line friction loss is Htotloss,s, and the flow
velocity is Vs.
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According to the results of the theoretical analysis, it can be said that the vacuum
degree has a strong correlation with the feature terms. After further comprehensive
consideration of the Spearman correlation coefficient, this study selected 56 parameters.
They are the suction seal water pressure of the underwater pump, the suction seal water
pressure of the 1# pump, the suction seal water pressure of the 2# pump, the shaft seal water
pressure of the underwater pump, the shaft seal water pressure of the 1# pump, the shaft
seal water pressure of the 2# pump, the speed of the 1# pump, the speed of the 2# pump, the
speed of the underwater pump, velocity, density, the torque of the underwater pump, the
motor speed of the underwater pump, the pressure of the hydraulic cylinder of the dolly,
the pressure of the hydraulic cylinder of the steel pile, the pressure of the gate valve system,
dolly travel, left traverse speed, right traverse speed, the rotational speed of the reamer, the
discharge pressure of the 1# pump, the discharge pressure of the 2# pump, the discharge
pressure of the underwater pump, Bridge Angle, the x-coordinate of GPS1, the y-coordinate
of GPS1, the speed of GPS1, tide level, water density, trunnion draft, traverse speed, the
x-coordinate of the reamer, the y-coordinate of the reamer, outlet flow rate, left traverse
torque, reamer torque, concentration, volume, right traverse torque, left anchor winch
speed, left anchor winch torque, right anchor winch speed, right anchor winch torque, left
slewing winch torque, right slewing winch speed, right slewing winch torque, left slewing
winch speed, bridge hoisting winch speed, bridge hoisting winch torque, bridge depth,
reamer cutting angle, underwater pump power, sludge pump power, average concentration
in pipeline, the height of the underwater pump, and suction pressure.

2.2. Methodology

The research presented in this paper was based on the existing construction data for a
stranded suction dredger; by analyzing the characteristics of the impact of the underwater
pump in the construction process, we aimed to determine the change rule for the vacuum
degree of the underwater pump. Figure 3 demonstrates the process of the research pre-
sented in this paper. We began with the existing engineering data, and we eliminated the
noise in the data preprocessing stage. Heat map visualization of the feature correlation was
achieved, helping to reduce the dimensionality of the data set. In this study, six different
machine learning models were selected using the characteristics of the construction data,
with the aim of selecting suitable models through several rounds of training and parameter
tuning. Finally, this study carried out a generalization ability assessment on the selected
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models using additional datasets to evaluate the engineering applicability of the models
selected using this method.
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3. Data Preprocessing

Considering the poor quality of the raw data, duplicates, redundancies, and useless
data needed to be removed before data processing. In addressing the problem of possible
missing data in the provided data set and to obtain more accurate data for the feature items,
the missing values needed to be processed. The original data were affected by the working
environment of the equipment and other factors. There may have been distortions, and the
extracted data also needed to be processed to ensure the authenticity and validity of the
feature items. The original data had different scales, and their numerical differences may
have affected the results of correlation analysis. Therefore, they could not be used directly
as the formatting samples for constructing the model; they needed to be normalized in
order to eliminate the influence of scales and value ranges between indicators.

3.1. Data Observation and Extraction

The data studied in this paper are discrete data collected at three-second intervals,
with a total of 63 characteristic parameters recorded, as shown in Table 1. The individual
data are floating-point numbers in time order. The data set contains a number of feature
items that are not related to the gibbet system and delivery piping of the gibbet vessel, and
these extraneous quantities can be eliminated before importing. There are Chinese feature
variable names, variable numbers, and times in the table, so attention should be paid to
the type of data after data importing. The Chinese variable names should be stored as
strings in the program and should be prevented from being garbled so that the features
can be referenced at a later stage. The Spearman correlation coefficient method is based on
random floating-point data feature extraction, and one does not need to pay attention to
the distance between the samples in order to maintain the normal order of the data to meet
the implementation of the correlation coefficient analysis. Therefore, in the preparation of
this program, before importing, the data will be placed in chronological order. Rearranging
the time item in the subsequent modeling process no longer has a role. Therefore, the time
term can be eliminated during the data import process.
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Table 1. Example data set.

Serial
Number Time

Shaft Seal Water
Pressure of the

Underwater
Pump (Bar)

Suction Seal
Water Pressure of
the Underwater

Pump (Bar)

. . .
Height of the
Underwater
Pump (m)

Suction
Pressure (Pa)

Vacuum
(Bar)

1 2022-11-08
06:00:01 4.78 2.17 . . . 4.37 85,526.19 0.1559

2 2022-11-08
06:00:04 4.82 2.18 . . . 4.38 85,410.67 0.1570

3 2022-11-08
06:00:07 4.79 2.17 . . . 4.38 85,410.67 0.1570

4 2022-11-08
06:00:11 4.78 2.18 . . . 4.38 88,443.31 0.1271

. . . . . . . . . . . . . . . . . . . . .

5955 2022-11-08
11:59:54 0.02 0 . . . −6.61 −33,717.80 1.3327

5956 2022-11-08
11:59:57 0.02 0 . . . −6.62 −34,557.10 1.3410

5957 2022-11-08
12:00:00 0.02 0 . . . −6.61 −34,791.47 1.3433

The data analysis must be based on the data generated in the actual production
process of the dredger; that is to say, it is necessary to filter out the abnormal data in
the non-operational stage, which can significantly improve the accuracy of the results.
Establishing the state of the ship’s operation process should be a stable basis for judgment.
Figures 4–6 illustrate part of the key data of the three mud pumps in the ship’s operation
process under three parameter changes. The highlighted part of the data for each parameter
illustrates a sudden change in the situation where the parameter has stabilized in a smaller
value. This shows that the mud pump may be in an idle state, which means that the ship is
very probably in a non-operational state. However, even if the pump is not idling, the data
should be processed in the data cleaning phase to be on the safe side, considering that each
data item has a sudden change and stabilizes at a relatively small value.
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3.2. Handling of Missing Values and Outliers

There may be special reasons why values are missing, such as abnormalities in the data
collection equipment, which may lead to abnormalities in other items of data at the same
moment. Missing values represent a small percentage compared to the large original data
set and have little impact on the problem, so it was decided that the whole group should be
discarded. In this study, missing values were monitored using algorithmic identification,
and then data sets with missing values were discarded using algorithmic tools.

The model is usually an expression of the data structure of the overall sample, which
usually captures its general properties. Some properties behave completely inconsistently
with the overall sample, that is, they exist in a generation mechanism that is completely
inconsistent with the overall sample. This leads to the generation of a model that does
not provide a good representation of the overall sample, and thus the prediction will
be inaccurate. During construction, the reliability of the sensors may cause one or more
parameters to be missing from a single set of data, and such anomalies can have a significant
impact on the results of the data analysis. This is why we chose not to assign values at a later
stage, which would have introduced more randomness. The original data set was recorded
as discrete floating-point data. We chose to convert the data into floating-point numbers
and then delete the data items with null values with the help of the dropna function in the
data module. The box-and-line diagram method arranges the data according to size, and
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then takes the median of each parameter as the core, according to the size of the values on
both sides of the median in the order of the equidistributional of the limit. It then obtains
the limit difference, through the introduction of coefficient terms to control the outlier cutoff
point, which shows that the applicability of a variety of distributional data is good. The
original data set, shown in Figure 7, is analyzed with the help of the box-and-line diagram
method, and a box-and-line diagram, shown in Figure 8, is obtained. However, it can be
seen that there still are some anomalies. In this paper, taking into account the existence of
large data fluctuations and the inability to determine whether this represents anomalous
mutation or not, the data outside the outer limit are excluded. At the same time, the upper
and lower limits of the degree of stringency are appropriately reduced, in order to retain
enough data for model training and testing. This leads to a small amount of features still
outside the outer limit, but the impact of these data is relatively small overall, and thus
they will not be excluded here.
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4. Correlation Analysis and Feature Selection
4.1. Data Normalization

In the process of carrying out the correlation analysis, the characteristic parameter
terms between the different dimensions need to be compared. The original production
data between different parameters are often on a different scale; the difference between the
values may be very large, and not processing the data may affect the results of the data
analysis. In this study, in order to avoid the influence of factors outside of the characteristic
weight, the data need to be normalized before carrying out the correlation analysis of
the preprocessed data for standardized processing [6]. Taking into account the fact that
the numerical changes in the parameter items are not uniform, i.e., they have different
distribution characteristics, we used the maximum and minimum normalization method to
normalize the data, and the conversion formula is as follows [7]:

X∗ =
x − min
max − x

(2)

where max is the maximum value of the sample data, min is the minimum value of the
sample data, and max − min is the extreme deviation.

The data used in this paper were statistically normalized to between 0 and 1, and
some of the results are shown in Figure 9. The normalized data were distorted and were
therefore only used for correlation analysis.
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4.2. Correlation Analysis

The vacuum of underwater pumps is affected by several unknown factors, so it
was decided to adopt a two-dimensional data visualization method, using the pairwise
correlation matrix to present the correlation between each parameter in the form of a heat
map. The color blocks of the heat map can be obtained by mapping the corresponding
data values, and the strength of the correlation can be presented in an intuitive way by
stipulating the mapping rule to vary with the size of the values. In this paper, Spearman’s
correlation coefficient, which can reflect the correlation between the trend, direction, and
the strength of random variables, was chosen for the data correlation analysis of this data
mining process. Spearman’s correlation coefficient places no limitation on the sample
capacity and overall distribution, so it has good applicability.

The object data set showed regional randomness locally, and certain monotonicity in
general, and thus, it was decided to improve Spearman’s correlation coefficient method by
combining it with information theory when analyzing the correlation of the data [8]. In
the calculation based on Spearman’s correlation coefficient method, the order and level



Processes 2024, 12, 812 10 of 24

difference between the eigenvalues were mainly used. Spearman’s correlation formula
is [9]:

ρ =

n
∑

i=1
(xi−x)(yi − y)√

n
∑

i=1
(xi−x)2 +

n
∑

i=1
(yi−y)2

(3)

where n is the sample size, ρ is the correlation coefficient, and x and y are the corresponding
elements in the two variables.

The subtraction of the corresponding elements of the two variables xi and yi observed
here yields a difference, di. The above equation can then be transformed into:

ρ = 1 −
6∑ d2

i
n(n2 − 1)

(4)

The correlation coefficient results are presented in the form of a heat map, and the
results are shown in Figure 10. The values on the intersection position of the two parameter
items represent their correlation coefficients. The larger the value, the redder the color, and
the stronger the correlation is. On the contrary, the lower the value, the bluer the color
of the square, which indicates that the correlation is weaker [10]. Because of the need to
analyze several feature items, all feature items are numbered in the correlation analysis of
this paper. No. 62 represents the underwater pump vacuum to be analyzed in this paper,
and its correlation results with other feature items are expressed in the 62nd line with the
intersection position of the other feature items.
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5. Model Training and Evaluation

This research aimed to predict the vacuum degree of the underwater pump of a
CSD based on the characteristics of the data collected from the CSD. We limited the
use of supervised models and selected a variety of different models to compare their
performance [11–13]. Considering that the feature volume data of this project present a
random distribution within a finite interval, we decided to choose two linear regression
models, three boosting decision tree models, and the stacking model for training and
learning, as well as prediction evaluation, and we finally evaluated the applicability of
each model with the help of various indicators. The purpose of using multiple single-mode
integrated and stacking models for joint testing was to find a suitable technical solution for
the vacuum prediction of a CSD. Considering that the dredging system is affected by many
factors such as water pressure, piping system, and mud, the data distribution may have
more randomness, so we decided to debug the multiple models jointly [14,15]. Considering
the different distribution characteristics of each feature term in the data set, we finally
determined the following models to be analyzed after combining the characteristics of
each model.

5.1. Data Splitting

Before starting to train the model, the data need to be split into a training set and
a test set, to avoid overfitting in the process of model training. In this study, the K-fold
cross-validation method, the principle of which is shown in Figure 11, was chosen to split
the data. The data set D was divided into K equal proportions, with one of the copies as the
test data, and the other K-1 copies as the training data. Then, a different copy was used as
the test set, and the other copies were subjected to relatively independent model training as
the training set. The cross-validation was repeated K times until all individual copies had
been used as the test data. Finally, the results of the K experiments were divided equally.

Processes 2024, 12, x FOR PEER REVIEW 11 of 24 
 

 

5. Model Training and Evaluation 
This research aimed to predict the vacuum degree of the underwater pump of a CSD 

based on the characteristics of the data collected from the CSD. We limited the use of su-
pervised models and selected a variety of different models to compare their performance 
[11–13]. Considering that the feature volume data of this project present a random distri-
bution within a finite interval, we decided to choose two linear regression models, three 
boosting decision tree models, and the stacking model for training and learning, as well 
as prediction evaluation, and we finally evaluated the applicability of each model with the 
help of various indicators. The purpose of using multiple single-mode integrated and 
stacking models for joint testing was to find a suitable technical solution for the vacuum 
prediction of a CSD. Considering that the dredging system is affected by many factors 
such as water pressure, piping system, and mud, the data distribution may have more 
randomness, so we decided to debug the multiple models jointly [14,15]. Considering the 
different distribution characteristics of each feature term in the data set, we finally deter-
mined the following models to be analyzed after combining the characteristics of each 
model. 

5.1. Data Spli ing 
Before starting to train the model, the data need to be split into a training set and a 

test set, to avoid overfi ing in the process of model training. In this study, the K-fold cross-
validation method, the principle of which is shown in Figure 11, was chosen to split the 
data. The data set D was divided into K equal proportions, with one of the copies as the 
test data, and the other K-1 copies as the training data. Then, a different copy was used as 
the test set, and the other copies were subjected to relatively independent model training 
as the training set. The cross-validation was repeated K times until all individual copies 
had been used as the test data. Finally, the results of the K experiments were divided 
equally. 

 
Figure 11. Principles of the cross-validation method of analyzing processes. 

5.2. Lasso Regression 
The lasso method is a compression estimation method that aims at reducing the set 

of variables. It controls the sparsity of the estimated coefficients through the alpha param-
eter. It reduces the regression coefficients to zero by penalizing the regression model with 
a penalty term of L1 regularization after the loss function, which is the sum of the absolute 
coefficients. For lasso estimation, the objective function is: 

Figure 11. Principles of the cross-validation method of analyzing processes.

5.2. Lasso Regression

The lasso method is a compression estimation method that aims at reducing the set of
variables. It controls the sparsity of the estimated coefficients through the alpha parameter.
It reduces the regression coefficients to zero by penalizing the regression model with a
penalty term of L1 regularization after the loss function, which is the sum of the absolute
coefficients. For lasso estimation, the objective function is:

β̂Lasso = argmin
β∈Rd

(∥Y − Xβ∥2 + λ
d

∑
j=1

∣∣∣βj

∣∣∣) (5)
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Figure 12 shows the lasso regression estimation plot. The square area represents
the constraint function area, and the yellow border line is the least squares error function
contour. Because the constraint domain of lasso is square, this will produce points tangential
to the coordinate axis, which causes some of the dimensional features to be weighted at 0.
Therefore, it is easy to produce sparse results, so the lasso method can achieve the effect of
variable selection, and the non-significant variable coefficients will be compressed to 0.
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5.3. Elastic Network

The elastic network regression is a hybrid of lasso regression and ridge regression,
which retains the characteristic of lasso that easily produces sparse solutions, but also
combines some of the regular properties of ridge regression, and controls the size of the
penalty term by two parameters χ and ρ [16]. The cost function is:

Cost(w) =
N

∑
i=1

(yi − wTxi)

2

+ ‘λρ∥w∥1 +
λ(1 − ρ)

2
∥w∥2

2 (6)

When the cost function takes the minimum value,

w = argmin
w

(
N

∑
i=1

(yi − wTxi)
2
+ λρ∥w∥1 +

λ(1 − ρ)

2
∥w∥2

2 (7)

ENet regression is suitable for data where there are multiple non-significant variables
while still maintaining the regularization property. The ENet regression model works
better when multiple variables are correlated with a particular variable. It removes invalid
variables such as lasso regression while maintaining the stability of ridge regression. When
ρ = 0, its cost function is equivalent to that of ridge regression, and when ρ = 1, its cost
function is equivalent to that of lasso regression. As with lasso regression, the cost function
has absolute values and is not always derivable, so there is no way to obtain the analytical
solution of w by direct derivation, but we can still use the coordinate descent method to
solve w.
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5.4. Traditional GBDT

GBDT is a decision tree algorithm based on iterative accumulation, which constructs a
set of weak learner trees and accumulates the results of multiple decision trees as the final
prediction output, adopting the thinking of numerical optimization, and using the fastest
descent method to solve the optimal solution of the loss function, which uses the CART
decision tree to fit the negative gradient. Tree models are also divided into decision trees
and regression trees; decision trees are often used to classify problems, and regression trees
are often used to predict problems. GBDT is a linear combination of a set of weak learners,
and it is initialized with a weak learner of:

f0(x) = argmin
c

=
N

∑
i=1

L(yi, c) (8)

For m = 1,2 . . ., M, the following steps apply.

(1) For each sample (i = 1, 2 . . ., N), the residuals are calculated by:

γim = −
[

∂L(yi, f (xi)

∂ f (xi)

]
f (x)= fm−1()

(9)

(2) The residuals obtained in the previous step are used as the new true values of the
samples, and the data (xi, xim) (i = 1, 2, . . .) are substituted to obtain a new regression
tree, whose corresponding leaf node region is Rjm (j = 1, 2, . . .), where J is the number
of leaf nodes of the regression tree t.

(3) The best fit for the leaf region is calculated as follows:

γjm = argmin
r

= ∑
xi∈Rjm

L(yi, fm−1(xi)) + γ (10)

(4) The Strong Learner is updated as follows:

fm(x) = fm−1(x) +
J

∑
j=8

γjm I (11)

(5) The Final Learner is calculated as follows:

f (x) = fM(x) = f0(x) +
M

∑
m=1

J

∑
j=1

γjm I (12)

Each weak prediction model generation of GBDT depends on the gradient direction of
the loss function, and its main advantages are that (1) it can flexibly deal with various types
of data, including continuous and discrete values; (2) it can use a number of loss functions
which are very robust to outliers; and (3) it has a high accuracy rate with a relatively small
number of tuning parameters.

5.5. Extreme Gradient Boosting

XGBoost is a model that uses stepwise forward additivity, which belongs to the
boosting framework algorithm in integrated learning, with the advantage that there is no
need to recalculate after generating weak learners in each iteration [17]. When a model
does not perform well, one continues to train the second model according to the part of
the original model that does not perform well, and so on. The underlying idea is the same
as GBDT: through the construction of multiple base learners using an additive model, the
deviation between the results of the previous base learners and the real value is learned;
through the learning of multiple learners, the difference between the model value and
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the actual value is constantly reduced, and the final model prediction is the sum of the
prediction results from all base learners [18].

The XGBoost algorithm optimizes the loss function structure by adding regular terms
to the loss function, which can reduce the risk of overfitting to achieve the generation of
weak learners. In addition, the XGBoost algorithm determines the structure of the tree and
the score of all strong learners by directly using the first-order derivative and second-order
derivative values of the loss function, and it greatly improves the performance of the
algorithm through techniques such as pre-sorting, weighted quartiles, etc., which means
that XGBoost is distinguished by the fact that it does not obtain the structure of the tree by
fitting the residuals [19].

5.6. Light Gradient Boosting Machine

LightGBM is further optimized compared to XGBoost [20], mainly in the following
aspects:

(1) Introduction of the histogram algorithm. Continuous floating-point eigenvalues will
be discretized into K integers, and at the same time, a histogram of width K will be
constructed. When traversing the data, the discretized values will be used as indexes
to accumulate statistics in the histogram. After traversing the data once, the histogram
will be able to accumulate the required statistics, and then it will be traversed to find
the optimal segmentation point according to the discrete values of the histogram [21].

(2) Accelerated tree construction with the help of histogram difference. The histogram of
a leaf can be obtained by the difference between the histogram of its father node and
the histogram of its brother, which makes LightGBM twice as quick as other methods.

(3) Leaf-wise leaf growth strategy with depth limitation. Most GBDT tools use the
inefficient level-wise decision tree growth strategy to treat leaves in the same layer
indiscriminately, which brings a lot of unnecessary overhead. In fact, many leaves
have low splitting gain, and there is no need to search and split them, while LightGBM
uses a depth-constrained grow-by-leaf algorithm.

(4) One-sided gradient sampling algorithm. LightGBM is an algorithm that can better
balance the amount of data and accuracy, from the point of view of reducing samples,
excluding most of the small gradient samples, and using only the remaining samples
to calculate the information gain.

(5) Mutually exclusive feature bundling algorithm. LightGBM reduces the feature dimen-
sions by means of feature bundling to improve computational efficiency. Usually, the
bundled features are mutually exclusive, so that two bundled features will not lose
information [22].

5.7. Stacking Model

The purpose of integrated learning is to obtain a strong model by combining many
weak models, as shown in Figure 13, where y1, y2, and y3 represent three base models, and
x and y represent the target term and the set of feature parameters. The model first learns
the original data through the base learners, and models the stack of the original fitted data.
Then, all these base learners output the original data, and the outputs of these models are
stacked in columns to form (m, p)-dimensional new data, with m representing the number
of samples and p representing the number of base learners. Finally, the new sample data
are given to the second layer model for fitting [23–25].



Processes 2024, 12, 812 15 of 24Processes 2024, 12, x FOR PEER REVIEW 15 of 24 
 

 

 
Figure 13. Stacking principle schematic. 

Here is an example of the training process for stacked models. For the first model 
(model 1) to be integrated, if we use k fold cross-validation, we will have to train k times 
for the same type of model 1. Under the cross-validation split, the training set and test set 
are different each time, so the output produced by each training iteration is also different. 
Therefore, after we complete the training based on model 1, we will obtain an output of 
the same size as the feature items, and we will add them together to obtain the mean of 
the prediction results of model 1 on the original data. Repeating this for each base model 
gives us the second layer of the data set.  

6. Analysis of Results of Model Training 
6.1. Model Parameter Optimization 

To propose a new vacuum prediction method for underwater pumps, 56 feature 
terms were selected as input variables affecting the vacuum level to participate in the 
training and testing of the six models described above. These parameters were partitioned 
into five crosses for training algorithms and model testing by the cross-validation method 
[26]. The main parameter choices in the six models will be explained in this section. Table 
2 shows a summary of the main parameters of each model [27].  

Table 2. Parameters of several selected models. 

Model Parameters  
Lasso α = 0.1; max_iter = 50 
Enet α = 0.01; L1_ratio = 0.003; random_state = 3 
GBDT rate = 0.05; max_depth = 4; n_estimators = 3000 
XGBoost rate = 0.05; max_depth = 3; n_estimators = 2200 
LightGBM rate = 0.05; n_estimators = 720; max_bin = 55; num_leaves = 5 

Figure 13. Stacking principle schematic.

Here is an example of the training process for stacked models. For the first model
(model 1) to be integrated, if we use k fold cross-validation, we will have to train k times
for the same type of model 1. Under the cross-validation split, the training set and test set
are different each time, so the output produced by each training iteration is also different.
Therefore, after we complete the training based on model 1, we will obtain an output of the
same size as the feature items, and we will add them together to obtain the mean of the
prediction results of model 1 on the original data. Repeating this for each base model gives
us the second layer of the data set.

6. Analysis of Results of Model Training
6.1. Model Parameter Optimization

To propose a new vacuum prediction method for underwater pumps, 56 feature terms
were selected as input variables affecting the vacuum level to participate in the training
and testing of the six models described above. These parameters were partitioned into
five crosses for training algorithms and model testing by the cross-validation method [26].
The main parameter choices in the six models will be explained in this section. Table 2
shows a summary of the main parameters of each model [27].

Table 2. Parameters of several selected models.

Model Parameters

Lasso α = 0.1; max_iter = 50
Enet α = 0.01; L1_ratio = 0.003; random_state = 3
GBDT rate = 0.05; max_depth = 4; n_estimators = 3000
XGBoost rate = 0.05; max_depth = 3; n_estimators = 2200
LightGBM rate = 0.05; n_estimators = 720; max_bin = 55; num_leaves = 5
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Analyzing these parameters is beneficial for understanding the characteristics of each
model, and thus choosing a more appropriate scheme. The settings of lasso regression
include parameters such as the L1 regular term coefficient, the maximum number of
iterations, and whether or not to normalize the data by the L2 paradigm. The elastic
network includes the penalty term coefficient, regular term coefficient and alpha value, etc.,
in which the L1_ratio determines the penalty term of the elastic network. LGBM and GBDT
contain important parameters such as the maximum tree depth, the minimum number of
samples, the maximum number of nodes, the learning rate, and the L1 and L2 regular term
coefficients in XGBoost and LGBM. The fitting effect and convergence speed during model
training can be controlled by adjusting the above parameters, which can help us find a
suitable prediction model.

6.2. Model Evaluation

In this paper, the route of selecting the final prediction model is based on the com-
parative evaluation of multiple models. Therefore, in order to show the performance of
each model intuitively, so as to have a more objective basis of judgment in the comparative
analysis, this paper uses the three indexes of Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), and degree of fitting (R2) for the comprehensive evaluation of each
model algorithm. RMSE mainly measures the deviation between the predicted value and
the real value: the smaller the RMSE value is, the higher the prediction accuracy is. MAE
represents the average of the absolute error between the predicted value and the real value,
which can reflect the real situation of the prediction error, and the bigger the prediction
error is, the bigger the value is. The above two evaluation indexes can only be used for
the results of the same outline, and it is difficult to make an evaluation when the outline is
different. However, R2 can effectively reflect the differences between different models, and
the closer R2 is to 1, the better the fit of the model to the data is [28]. In the examination of
vacuum prediction methods, obtaining accurate model prediction results is the foundation
of the research work, while the fitting speed of the model will affect the speed of real-time
data updating in engineering. In this study, the running time of the code in the evaluation
process was also an indicator of concern.

The performance of the trained model in relation to the test data is shown in Table 3.
It can be noted that the lasso model still has a negative R2 value of 0.1. At this time, the
model fits the data very poorly, the error of the fitting function is larger than that of the
mean function, and the fitting results have lost their practical reference significance. The
value of the χ range is 0~1. In this study, we tested the fit of χ less than 0.1 and predicted
that the fit of the model would gradually improve as the value of χ decreased, but it only
showed better accuracy close to 0, which shows that the lasso regression model using the
regularized penalty term is not applicable to the data mining of this data set.

Table 3. Performances of different algorithms.

Modal R2 MAE RMSE Time

Lasso −0.000791 0.128561 0.160684 0.00099
ENET 0.997402 0.006231 0.008186 0.0360
GBDT 0.995463 0.008021 0.010819 12.7307
XGBoost 0.987243 0.012969 0.018142 0.4404
LightGBM 0.995764 0.008163 0.010454 0.1225
Stacking 0.997833 0.128561 0.007478 11.8235

GBDT and stacking achieve a better fit, but both of them take more than 10 s, much
longer than the other models. The ENET model and LightGBM model show a better
timeliness and fitting effect in the prediction process; both of them lose part of the accu-
racy, but greatly accelerate the speed of convergence of the model. In particular, ENET
achieves faster convergence with better fitting data and higher accuracy. Therefore, it
is recommended to use the ENET model and LightGBM model to carry out underwater
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pump vacuum prediction, which can help to reduce the hardware requirements, obtain
a high frequency of acquisition and prediction, and reduce the data delay; engineering
applicability is also better [29,30].

In this paper, to visualize the difference in the prediction accuracy of each algorithmic
model, we have drawn a curve diagram comparing the test set of the corresponding
algorithmic model with the prediction data, as shown in Figure 14, where the red line
represents the test data, and the green line corresponds to the prediction data of the
corresponding model. It can be seen from this diagram that the difference in the prediction
accuracy of the models is not large. The best performance of the stacking model and the
second-best performance of the ENET model are due to the fact that both models have a
better fitting performance in the mutation points with large deviations, or in the regions
with a more concentrated distribution of the data. However, the overfitting phenomenon
in the mutation points of the stacking model and the ENET model cannot be excluded in
light of the abnormal mutations in the original data. In terms of performance, GBDT and
LightGBM are close to each other, and both of them achieve poorer fitting performance in
the mutation points. Finally, XGBoost has the worst performance, and its prediction value
is different from that of the test set, showing discrepancies at multiple points.

In order to study the importance of each data item for the prediction of underwa-
ter pump vacuum, this project used the LightGBM algorithm to calculate the impor-
tance of 56 parameters other than the vacuum in the model prediction process. Of these,
38 features show obvious influence in the process of model training, as shown in Figure 15,
where the values are dimensionless quantities, and the difference in the size of the relative
influence corresponds to the magnitude of the performance. From this, it can be seen
that in the prediction of underwater pump vacuum, density and 2# pump power are very
important. In addition, the outlet flow rate, compass angle, underwater pump power,
and 1# mud pump power are also important, while the importance of the volume, bridge
depth, and underwater pump speed cannot be ignored. The above seven features show a
strong influence in the process of underwater pump vacuum prediction, while from the
previous correlation analysis, we know that there is a strong correlation between vacuum
and volume, density, underwater pump speed, bridge depth, outlet flow rate, concentration,
flow rate, underwater pump power, 1# pump power, and 2# pump power. It has been
stated that the size of the correlation coefficient in the actual prediction stage is the basic
criterion for the initial feature screening, and here, the results of the correlation analysis
are combined with the prediction results to show that density, volume, outlet flow rate,
concentration, flow rate, underwater pump power, 1# pump power, and 2# pump power
have a greater impact on the prediction effect of the underwater pump vacuum degree.
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7. Model Generalization Capability Assessment and Application Methods 
In the process of vacuum prediction using trained models, the models that have been 

learned in the training data will be based on real data to carry out the prediction, which 
requires knowing whether the models that have completed the training are able to perform 
adequately using the brand-new data. In this section, we will derive and assess the general-
ization ability of the proposed model based on two well-performing training models. 

7.1. Assessment of Generalization Capacity 
In the previous section on model training evaluation, it was mentioned that stacking 

and ENET had a be er fit, but there might be overfi ing, and the GBDT and the LightGBM 
had be er accuracy. Considering that the convergence speed of GBDT and the stacking 
model is too slow, it was decided to use ENET and LightGBM as the models for generali-
zation ability evaluation. We chose to export ENET and LightGBM in the PKL file format, 
and further carried out generalization tests on them [31]. 

The generalization test is based on another data set, where the data will be used to 
predict the vacuum level based on the rules of the models obtained from machine learn-
ing, and the results will be compared with the theoretically calculated values. For this 
generalization test, two splits of the data were chosen to assess the stability of the model, 
which also facilitates the determination of the influence of random variables. Figures 16 
and 17 plot the theoretical values against the predicted data of the ENET and LightGBM 
models, respectively, where the blue line represents the real data and the red line repre-
sents the predicted data for the corresponding model. 
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7. Model Generalization Capability Assessment and Application Methods

In the process of vacuum prediction using trained models, the models that have
been learned in the training data will be based on real data to carry out the prediction,
which requires knowing whether the models that have completed the training are able
to perform adequately using the brand-new data. In this section, we will derive and
assess the generalization ability of the proposed model based on two well-performing
training models.

7.1. Assessment of Generalization Capacity

In the previous section on model training evaluation, it was mentioned that stacking
and ENET had a better fit, but there might be overfitting, and the GBDT and the LightGBM
had better accuracy. Considering that the convergence speed of GBDT and the stacking
model is too slow, it was decided to use ENET and LightGBM as the models for generaliza-
tion ability evaluation. We chose to export ENET and LightGBM in the PKL file format,
and further carried out generalization tests on them [31].

The generalization test is based on another data set, where the data will be used
to predict the vacuum level based on the rules of the models obtained from machine
learning, and the results will be compared with the theoretically calculated values. For
this generalization test, two splits of the data were chosen to assess the stability of the
model, which also facilitates the determination of the influence of random variables.
Figures 16 and 17 plot the theoretical values against the predicted data of the ENET
and LightGBM models, respectively, where the blue line represents the real data and the
red line represents the predicted data for the corresponding model.

What can be seen from the prediction comparison graph is that LightGBM shows
a better fit between the predicted values and the true values, which proves that it has a
better generalization ability. On the other hand, ENET shows a large deviation, which
corresponds to a large discrepancy with the results of the model training process. This
proves that the ENET model has been overfitted during the model training process and
thus has a poor generalization ability. We also assessed the statistics for the corresponding
evaluation indexes, and the results are shown in Table 4.

Table 4. Performance of the chosen model in generalization tests.

Model R2 MAE RMSE MSE

ENET
0.45282 0.09224 0.12548 0.01574
0.46916 0.09191 0.12522 0.01568

LightGBM 0.82507 0.05839 0.07095 0.005034
0.82427 0.05991 0.07204 0.005190
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7. Model Generalization Capability Assessment and Application Methods 
In the process of vacuum prediction using trained models, the models that have been 

learned in the training data will be based on real data to carry out the prediction, which 
requires knowing whether the models that have completed the training are able to perform 
adequately using the brand-new data. In this section, we will derive and assess the general-
ization ability of the proposed model based on two well-performing training models. 

7.1. Assessment of Generalization Capacity 
In the previous section on model training evaluation, it was mentioned that stacking 

and ENET had a be er fit, but there might be overfi ing, and the GBDT and the LightGBM 
had be er accuracy. Considering that the convergence speed of GBDT and the stacking 
model is too slow, it was decided to use ENET and LightGBM as the models for generali-
zation ability evaluation. We chose to export ENET and LightGBM in the PKL file format, 
and further carried out generalization tests on them [31]. 

The generalization test is based on another data set, where the data will be used to 
predict the vacuum level based on the rules of the models obtained from machine learn-
ing, and the results will be compared with the theoretically calculated values. For this 
generalization test, two splits of the data were chosen to assess the stability of the model, 
which also facilitates the determination of the influence of random variables. Figures 16 
and 17 plot the theoretical values against the predicted data of the ENET and LightGBM 
models, respectively, where the blue line represents the real data and the red line repre-
sents the predicted data for the corresponding model. 
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Figure 16. Two rounds of generalization test results for ENet. (a) Prediction result of Enet based on
one dataset. (b) Predictions of Enet based on the other dataset.

Based on the evaluation metrics, it can be seen that LightGBM shows better accuracy
compared to ENET, and its better fitting indicates a better generalization ability.

7.2. Engineering Methods

Considering the complexity of the actual engineering environment, as well as the
pressure of model training on the equipment environment, in this study, we decided
to evaluate the training and prediction of a variety of machine models. At the same
time, the model training and vacuum prediction were designed as relatively independent
work modules, and the predictive model was stored in a file between model training and
validation use. By separating the model training and learning from the engineering use, the
method has the flexibility required for the engineering application, but it also places higher
requirements on the imported data. As shown in Figure 18, the method proposed in this
paper takes model training as the work content of the shore operation, the offshore module
is the module with the prediction function, and the model is overwritten by importing the
model file, which can be realized through a variety of file transfer methods. The technical
approach provided in this paper requires that the feature items imported by the shipboard
prediction program be consistent with the feature items of the data set used for model
training, which includes the format, number, and content of the feature item indexes, since
differences in the feature items may lead to compatibility problems with the model.
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8. Conclusions

For the CSD, the vacuum degree of the underwater pump is often closely related
to the operational efficiency. The operational efficiency can be improved by controlling
the vacuum degree within a range, and the vacuum degree has good reference value for
providing early warnings of pipeline blockages. This study used existing engineering
construction data to train a variety of machine learning models and correspondingly
evaluate their performance, and multiple rounds of data were used to train and test the
machine learning models selected in this paper. To verify the technical stability of the
method proposed in this paper, we provide a technical solution that can help to realize the
prediction of the vacuum of an underwater pump.

It should be explained that this study was carried out using engineering data for a lim-
ited capacity. The data set used may not fully reflect the various operating conditions that
CSDs will encounter in the project, which may affect the models derived from them. The
impact still needs to be studied. The research presented in this paper explored real vacuum
prediction under limited calibration feature parameter items, and this work depended on
the use of a large number of data sets to repeat training; therefore, the method proposed
in this paper is not clearly defined in terms of the characteristic items and data volume. If
there are insufficient data, the effects demonstrated in this study cannot be achieved.

The main work and conclusions of this study are as follows:

(1) In this paper, theoretical engineering experience and Spearman’s correlation coefficient
were jointly introduced into the feature selection process to reduce the dimensionality
of the data;

(2) This research included several rounds of training and testing similar to the work
mentioned in this paper using several different datasets, and in the evaluation phase,
we found that the results were similar to the experimental results presented in this
paper, which supports the use of the model selection scheme we propose;

(3) The results of the analysis in this study show that the main factors influencing the
change in the vacuum level of the underwater pump of the CSD are the density,
the flow rate, the bridge depth, the 1# pump power, the 2# pump power, the un-
derwater pump power, the speed of the underwater pump and the height of the
underwater pump;

(4) In this paper, we propose evaluating the generalization ability based on the preferred
model. We compared the generalization ability of the models with better performance
in model training, and verified that LightGBM is suitable for predicting the vacuum
level of the underwater pump of a CSD, as well as verifying the engineering feasibility
of the method;

(5) This paper proposes an engineering method for predicting the vacuum level of the un-
derwater pump of a suction dredger based on the analyzed data, and also accordingly
proposes a feasible engineering application scheme.
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