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Abstract: Carbonic anhydrase (CA)-based biological CO2 capture is emerging as a prominent carbon
capture and storage (CCS) technology. We developed a tagged CA–Ferritin chimera, resulting
in a high-purity, high-activity, micrometer-sized CA aggregate, SazF, with a yield of 576.6 mg/L
(protein/medium). SazF has an optimum temperature of 50 ◦C and demonstrates thermal stability
between 40 and 60 ◦C. It operates efficiently in Tris–HCl buffer (pH = 8–9), making it compatible
with ship exhaust conditions. For enhanced stability and reusability, SazF was encapsulated in SiO2

and integrated into an epoxy resin to produce a corrosion-active coating. This coating, applied to
foam metal fillers, showed less than 3% protein leakage after ten days and retained over 70% activity
after a month at 60 ◦C. This simple preparation method and the cost-effective production of these
biomaterials that can continuously and efficiently absorb CO2 in high-temperature environments
are suitable for most CO2 capture devices. They have a broad application prospect in the field of
industrial carbon capture.

Keywords: carbonic anhydrase; carbon capture; immobilization; stability

1. Introduction

With the growth of the global shipping industry, carbon emissions from global ship-
ping are increasing annually. Capturing carbon dioxide (CO2) from ship exhaust is crucial
for reducing CO2 emissions and complying with strict emission regulations. Carbon cap-
ture and storage (CCS) technology is considered an effective method for reducing CO2
emissions. Currently, carbon capture on ships commonly utilizes organic amine chemical
absorption, which is divided into four parts: absorption, regeneration, compression, and
liquefaction. This process has a large footprint and involves high energy consumption for
solvent regeneration [1]. For instance, the regeneration of ethanolamine (MEA) solution
constitutes approximately 60% of the total process energy consumption [2]. Therefore, it
is necessary to find a green and low-energy CCS strategy that can replace the chemical
absorption of organic amines.

Biological CO2 capture technology, represented by carbonic anhydrase (CA, EC 4.2.1.1),
has gradually become a research hotspot in CCS technology. CA, a stable, safe, and
environmentally friendly biocatalyst, catalyzes the CO2 hydration reaction, converting
CO2 into HCO3

− or CO3
2− to efficiently capture flue gas CO2 [3]. Several studies have

been conducted to validate the feasibility of biologically based CO2 capture technology.
Leimbrink et al. [4] developed a biocatalyst delivery system (BDS) using immobilized CA
active particulate material. This material was created by embedding CA in an organosilicon-
based polymer matrix. Subsequently, the BDS system was tested in a small demonstration-
scale CO2 uptake performance in a countercurrent packed column. The results indicated
that the total molar flux of CO2 uptake increased by a factor of six in the presence of BDS
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compared to the blank N-Methyldiethanolamine (MDEA) solvent. Gladis et al. [5] found
that adding CA to the MDEA solvent had a positive impact on the CO2 capture efficiency
in uptake tests conducted on a pilot-packed column. Increasing the amount of enzyme
added could enhance the capture efficiency. A 30% MDEA solvent can capture 18% to 23%
of CO2, and with the CA concentration increased to 3.5 g/L, the capture efficiency rises to
48% to 83% within the same range of liquid/gas ratio. The mass transfer performance of
enzyme-enhanced solvents is approximately 80% of that of a 30 wt% MEA solvent solution.

In light of the facilitating impact of immobilization techniques on enzyme activity,
stability, and reusability [6], it is crucial to identify a convenient and efficient immobi-
lization technique to enable the industrial application of CA for CO2 capture. Traditional
immobilization methods include adsorption, cross-linking, covalent binding, encapsulation,
entrapment, and cross-linked enzyme aggregates (CLEA) [7]. The first five methods rely on
some form of interaction between the enzyme molecule and the carrier material to restrict
the enzyme. In contrast, CLEA is a method of enzyme immobilization without using a
carrier material [8].

Nanomaterials have been widely used for the immobilization of enzymes [9]. Nanosil-
ica is a commonly used carrier for various catalysts because of its adjustable physico-
chemical properties, large specific surface area, high surface adsorption, and mechanical
strength. It has been reported that CA was immobilized on silica particles. Hsieh et al. [10]
demonstrated a 91% recovery of enzyme activity in the silylated form (R5-SazCA-SP) by
fusing SazCA with an R5 peptide and biomineralizing it. R5-SazCA-SP exhibited twice as
much residual activity as the free form after incubation for 35 days at 25 ◦C. Furthermore,
R5-SazCA-SP retained 86% of its activity after 10 repetitions.

Meanwhile, the formation of oligomers of the target enzyme through the introduction
of oligomerized peptides also contributes to enhancing the catalytic performance and stabil-
ity of the recombinant enzyme [11,12]. Ferritin, a highly symmetric nanocage consisting of
24 subunits that can be spontaneously assembled [13–15], is a class of iron storage proteins
that are widely found in plants and animals. Indeed, ferritin has special properties such as
resistance to dilute acids (pH = 2.0), resistance to dilute bases (pH = 12.0), and resistance
to higher temperatures (70–75 ◦C). Most of the ferritin nanocages remained resistant to
incubation at 80 ◦C for 10 min. For example, the Tm value of human ferritin is about
82 ◦C [16,17]. Therefore, the structural and biochemical properties of ferritin could resist a
high temperature and alkaline environment during CO2 trapping.

In a previous study, we connected α-type CAs (SazCA) identified from the ther-
mophilic bacterium Sulfurihydrogenibium azorense using a rigid linker to the oligomeric
functional tag-ferritin and named the resulting complex SazCA-Ferritin (SazF). This ap-
proach enabled a cost-effective and efficient production of self-immobilized SazCA [18].
However, the challenge of separating the self-immobilized SazF powder from the absorbent
solution may hinder the widespread application of carbonic anhydrases on a large scale.
Therefore, in this study, to simplify the separation process, enhance enzyme stability, and
enable the reuse of SazF, we incorporated SazF into chemically synthesized silica nanopar-
ticles (SazF@SiO2) using the sol–gel method. Additionally, we dispersed SazF@SiO2 in
epoxy resin coating to produce CA-active epoxy coatings. Furthermore, we characterized
both the SazF@SiO2 and the CA-containing coating. The SazF@SiO2 and CA coatings were
also characterized, and the stability and protein leakage rate of the coatings were tested.

2. Materials and Methods
2.1. Construction of Target Gene

The N-terminal of SazF is SazCA [19] (PBD ID: 4X5S), and the C-terminal is ferritin [20]
(PDB ID: 2FHA); both are connected by a rigid linker, and the gene sequence of SazF was
synthesized by GENEWIZ (GENEWIZ Biotechnology Co. Ltd., Suzhou, China). The target
gene sequence was ligated to pET-22b(+) by double enzymatic cleavage and then introduced
into the Escherichia coli BL21 (DE3) cell after being tested for accuracy by sequencing.
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2.2. Expression and Purification of Recombinant Proteins

The 1% bacterial glycerol stock was cultured in Luria–Bertani (LB) medium containing
one thousandth of ampicillin resistance at 37 ◦C, 200 r/min for 10 h, then inoculated into
Terrific Broth (TB) medium according to the same bacterial ratio and cultured at 37 ◦C,
180 r/min, for 4 h of expanded culture; and we then added 1mL 0.1 mol/L IPTG solution
to make the final concentration of 0.5 mmol/L, 18 ◦C, 180 r/min, inducing culture for 20 h.

The precipitate obtained by centrifugation after culture was suspended in Tris–HCl
buffer (25 mM, pH = 8.0). The cell suspension was ultrasonicated in an ice bath for 30 min
(crushing power = 300 w) and then centrifuged at 4 ◦C, 3500× g at low speed for 10 min,
and the target protein is insoluble precipitate.

The target protein is purified by low-speed centrifugation. The insoluble protein is
re-suspended in Tris–HCl buffer, followed by centrifugation for 10 min at 3500× g, 4 ◦C;
this is one round of purification, and 2 to 3 rounds of purification will result in a high
purity of the target SazF. The purified SazF precipitate was frozen at −20 ◦C overnight
(pre-frozen) and then put into a freeze dryer for 8 h to get SazF lyophilised powder.

2.3. Preparation of SazF@SiO2 Particles

Tetramethoxysilane (TMOS) and hydroxyl-capped polydimethylsiloxane (PDMS-OH)
in a molar ratio of 7.5:1 were added to the beaker. Subsequently, 0.5–1.0 g of 18-crown-6 was
added, and the mixture was sonicated until it was completely dissolved. After that, 1.6 mL
of Tris-HCl buffer (pH = 8.0) and 0.3–0.6 g of SazF freeze-dried powder were incorporated
into the solution. To ensure uniform distribution, the mixture was stirred vigorously and
then 80–100 µL of 1 M NH4F solution was added to initiate the sol–gel reaction. Once
a highly viscous gel material appeared at the bottom of the beaker, stirring was ceased.
The resulting gel was subjected to drying overnight in an oven (55 ◦C) and subsequent
freeze-drying 1 day, ultimately yielding SazF@SiO2 particles embedded with CA.

2.4. Characterization of SazF@SiO2 Particles

SEM test: Apreo 2C (Thermo Scientific, Waltham, MA, USA), energy spectrum Oxford
ULTIM Max65 (Oxford Instruments, Abingdon, UK); TEM test: Thermo Fisher Scientific
Talos F200S, Super X, 200 kV; BET test: Micromeritics ASAP 2460, sample degassing. Tem-
perature: 120 degrees; XPS test conducted using the Thermo Fisher K-ALPHA instrument
in the USA. The analysis chamber was under a vacuum of 8 × 10−10 Pa, with an excitation
source of Al Kα ray (hv = 1486.6 eV), operating at a voltage of 12.5 kV, filament current of
16 mA, and signal accumulation over 10 cycles.

2.5. Preparation of CA-Containing Coatings

A sample of 0.3–0.6 g of SazF@SiO2 powder was accurately weighed and dispersed
in Tris–HCl buffer (pH 8.0, 25 mmol/L) using ultrasonication. Subsequently, 2–5 mL of
epoxy resin coating was added to the solution and stirred vigorously. The curing agent was
then added while stirring, following a ratio of epoxy resin to curing agent of 4:1 by volume.
After curing for 10 min, the resulting coating was uniformly applied to the pre-treated
nickel foam filler (immersed in anhydrous ethanol and acetone for 30 min each). The nickel
foam was then suspended in an oven at 55 ◦C for drying, ultimately resulting in the desired
coating containing CA.

2.6. Esterase Activity

The reaction was set up by adding 100 mmol/L of acetonitrile-solubilized 4-Nitrophthalic
acid (4-NPA) substrate to 1.8 mL of Tris–HCl buffer (25 mmol/L, pH = 8.0). Subsequently,
200 µL of a carbonic anhydrase solution at a certain concentration (the blank control included
the addition of 200 µL of buffer) was added to the mixture. The absorbance at 348 nm was
then measured after the reaction had occurred for 3 min at a specific temperature. For the
immobilized carbonic anhydrase, a certain amount of SazF@SiO2 was added to the solution,
and the absorbance at 348 nm was again measured after the same reaction conditions. One



Processes 2024, 12, 810 4 of 13

enzyme activity unit (IU) was defined as the amount of enzyme required to produce 1 µmol
of p-nitrophenol (p-NP, p-Nitrophenol) per minute, and the specific activity was defined as
the enzyme activity unit per mg of enzyme (IU/mg).

2.7. Optimum Temperature

The esterase activity of the recombinant protein was tested at various temperatures
(30, 40, 50, 60, 70, 80, 90 ◦C) following the test method outlined in Section 2.5, with a
recombinant protein amount of 0.425 mg. The highest activity was set at 100% to calculate
the relative activity at other temperatures.

2.8. Thermal Stability

The recombinant protein or immobilized enzyme was incubated in a water bath at
either 40, 50, or 60 ◦C. A portion of the enzyme solution or CA coating was taken for
esterase activity testing every 2 h, following the procedures detailed in Section 2.6. The
highest activity was set at 100%, and the remaining activities at different incubation times
were calculated.

2.9. pH Stability

The recombinant protein solution was stored in Tris–HCl buffer at pH = 8.0 and 9.0
(pH = 8.0, 25 mmol/L), and a certain amount of the enzyme solution was taken at regular
intervals for esterase activity testing; and the esterase activity testing method was the
same as 2.5. The highest activity was set as 100%, and the remaining activities at different
incubation times were calculated.

2.10. CO2 Capture Capacity of SazF

The absorption of CO2 by SazF at room temperature was evaluated through a bubbling
experiment. A three-necked flask was charged with 10 mL of Tris–HCl buffer (pH = 9.0,
50 mM). SazF was then added to achieve a final concentration of 0.165 mg/mL. High-purity
(99.9%) carbon dioxide was introduced into the flask at a rate of 0.8 L/min. The pH of
the solution was periodically monitored, and the data were recorded until the solution
stabilized. The control condition involved the use of Tris–HCl buffer without SazF.

2.11. Stability and Protein Leakage of CA-Containing Coatings

For the stability of the coatings containing CA, they were immersed in Tris–HCl buffer
(pH = 8.0, 25 mmol/L) and incubated in a water bath at 60 ◦C for 30 days. The esterase
activity was tested at intervals. The highest activity was set at 100%, and the remaining
activities at different incubation times were calculated.

For the protein leakage assessment of the cellulose acetate (CA)-containing coatings,
CA coatings were immersed in Tris–HCl buffer (pH = 8.0, 25 mmol/L) and stored at room
temperature for 10 days. The protein content of the buffer was then tested at regular
intervals. The protein content of the buffer was measured using the absorbance value at
OD280. The highest activity was on day 0, set at 100%. The protein leakage at different
incubation times was calculated.

3. Results and Discussion
3.1. Expression and Purification of SazF

The composition and structure of SazF are shown schematically in Figure 1A,B. SazF
was purified through three rounds of low-speed centrifugation. The results of SDS-PAGE
electrophoresis are presented in Figure 1C, showing a distinct band near the molecular
weight of 50 kDa, which closely matched the theoretically calculated value of 51 kDa for
SazF. In addition, recombinant SazF can be purified through low-speed centrifugation
without the need for complex and costly chromatographic purification. Histidine-tag
purification methods are complex, expensive, and challenging to scale up. It was previously
reported that the typical yield of protein product purified using His-tag without tag removal
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and pMAL fusion with tag removal was 74 mg/L and 40 mg/L, respectively. In contrast, the
yield of SazF in this paper was 576.6 mg/L, which was approximately 7.79 and 14.42 times
higher than that of the first two methods [21]. This lays the foundation for the large-scale
preparation of carbonic anhydrase. Indeed, the total cost per kilogram of protein product
purified using the first two methods was $838,124.73 and $9,664,682.82, respectively, while
the cost with the ferritin tag was $52,810, which accounted for only 6.30% and 0.55% of the
cost of the first two methods. What is more, the cost of preparing SazF accounts for only
1.89% of the selling price of commercial carbonic anhydrase (e.g., $3806 for commercial
carbonic anhydrase per gram). The above results indicate that the target protein SazF
was successfully expressed and purified with a high yield of the target protein at a low
purification cost, making it suitable for large-scale preparation and industrial applications.
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Figure 1. Recombinant protein of SazF. (A) Schematic representation of the recombinant expression
plasmid pET-SazCA-Ferritin; (B) Schematic diagram of the structure of SazCA+ linker + Ferritin;
(C) SDS-PAGE analysis of SazF protein—Lane M: Marker; Lane 1: Purified SazF.

Indeed, we also discovered a very interesting phenomenon: the insoluble form of
SazF can spontaneously dissolve into a smaller, soluble form at room temperature. SazF
is an active protein precipitate that is similar in nature to active inclusion bodies. Unlike
inclusion bodies, which require high concentrations of urea for re-solubilization, SazF
forms aggregates of nanoscale particles that partially dissolve in buffer. This process
ultimately leads to an equilibrium between micrometer- and nanoscale SazF in the buffer.
The transmission electron microscopy (TEM) testing showed that its size had transformed
from the micrometer to nanometer scale. As shown in Figure 2A, the TEM results indicate
that the insoluble SazF has an ellipsoidal morphology with an average particle size of
approximately 1.0 µm, whereas the soluble SazF assumes a spherical morphology with a
size of approximately 10 nm. It is worth emphasizing that this study primarily focuses on
the insoluble form of SazF.
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3.2. Optimum Temperature of Recombinant Proteins

As shown in Figure 3, the relative specific activity of SazF exhibited an overall trend
of increasing and then decreasing with the rise in temperature, reaching its peak at 50 ◦C,
which is the optimal temperature for SazF. In addition, the increase in temperature did
not have a particularly large effect on the specific activity. The specific activity of SazF at
60 ◦C was 91.2% of that at the optimal temperature. At 70 ◦C, the specific activity of SazF
was 83.9% of the optimal temperature. It is noteworthy that even when the temperature
reached 90 ◦C, the specific activity of SazF was still able to reach 60.9% of the optimal
temperature. It should be emphasized that when the temperature reached 90 ◦C, the
specific activity of SazF still reached 60.9% of the optimal temperature. This indicates that
SazF can tolerate high temperatures for a short period of time. Other researchers have also
tested the optimal temperature of carbonic anhydrase and achieved desirable results. For
example, Ki et al. [22] cloned a novel Hahella chejuensis α-CA (HC-aCA) with an optimal
temperature of 50 ◦C. Jun et al. [23] cloned a novel CA from the Gram-negative marine
bacterium Alivibrio salmonicida, subjected it to codon optimization, and excised the signal
peptide. The obtained mASCA can be stable in the range of 10–60 ◦C, with its optimum
temperature being 40 ◦C.
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3.3. Temperature and pH Stability of Recombinant Proteins

Since the temperature of ship exhaust after cooling ranges between 40 and 60 ◦C [24],
and since the absorbent tends to be an alkaline solution [25], we conducted tests to assess
the thermal stability of the recombinant protein at 40, 50, and 60 ◦C, as well as its stability
at pH levels of 8 and 9. The temperature stability is shown in Figure 4A. The recombinant
protein exhibits the highest activity at 60 ◦C, followed by 50 ◦C and 40 ◦C. The activity
trend at this temperature is correct because the optimum temperature for free SazCA is
80 ◦C [26]. The recombinant protein is thermally stable at 40–60 ◦C, and the relative ac-
tivity values after incubation for 12 h all increased compared to the initial activity values.
This increase may be attributed to the insoluble recombinant protein partially converting
to soluble nano-enzymes during the incubation process, thereby enhancing the activity.
Other researchers have also found excellent thermal stability in some carbonic anhydrase
enzymes. For instance, Byung et al. [27] discovered that TaCA from Thermovibrio am-
monificans exhibited thermal stability with a half-life of 77 days at 60 ◦C. Additionally,
Ricardo et al. [28] obtained the N140G carbonic anhydrase mutant through rational design,
which had a half-life of 271 days.
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The pH stability is illustrated in Figure 4B. The relative activity values initially in-
creased and then decreased. The increase in activity values was attributed to the partial
solubilization of insoluble recombinant proteins. After 2 days of incubation, the relative
activity values began to decrease. However, after 10 days of incubation, the relative ac-
tivity values were 101.7% and 96.8% at pH 8 and pH 9, respectively. This indicates its
ability to withstand alkaline conditions. This finding is consistent with the research by
Heuer et al. [29] and aligns with the characteristic of CA being more active in alkaline
environments [30]. Other researchers have also found excellent pH stability of some car-
bonic anhydrase enzymes. For instance, Faridi et al. [31] isolated a dimeric α-CA from the
alkaliphilic, moderately thermophilic, and halotolerant Bacillus halodurans TSLV1, naming
it BhCA. This enzyme can maintain stability within the pH range of 6.0–11.0.

3.4. CO2 Capture Capacity of SazF

The pH changes during CO2 absorption in the Tris–HCl buffer (pH = 9.0, 50 mM) at
room temperature, both in the presence and absence of SazF, are displayed in Figure 5.
In the blank control (absence of SazF), the initial pH was 9.17, which decreased to 6.4
after 6 min of reaction. Furthermore, the pH of the buffer containing SazF, initially at
9.24, dropped to 6.33 after the reaction. While the pH differences (∆pH) between the
two conditions were similar, the presence of SazF significantly accelerated the rate of pH
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change. At 60 s, the pH of the blank control had decreased to 8.0, whereas the pH of
the experimental group had already dropped to 6.59. These findings suggest that SazF
effectively enhances CO2 absorption by the buffer.
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3.5. Characterization of SazF@SiO2 Particles

The SEM and TEM tests conducted on the SazF@SiO2 particles, as displayed in
Figure 6A,B, revealed the formation of micron-sized aggregates with rough surfaces due
to the aggregation of numerous nanostructures. The aggregates measured approximately
5–15 µm in size. Furthermore, the EDS analysis, as shown in Figure 6B, indicated the
presence of N, O, Si, and Zn elements in the gel particles. The XPS results, presented in
Figure 6C,D, further supported the presence of these elements within the particles. Given
that carbonic anhydrase is a Zn-containing metalloenzyme, these characterization outcomes
confirmed the synthesis of SiO2 and the successful encapsulation of carbonic anhydrase
within the SazF@SiO2 particles.

The BET results of SazF@SiO2 particles are shown in Table 1. The specific surface
area of the material is 0.2032 m2/g; the pore volume is 0.003246 cm3/g; and the pore size
is 63.8903 nm. What is more, the CA loading in the particles is 8.3%, and the specific
viability of the particles was 1.22 U/mg. The pore size of the particles is closely related to
the amount of carbonic anhydrase immobilized. The larger the pore size, the better the
pore penetration, resulting in higher immobilized particle activity. Moreover, the larger the
specific surface area of nanomaterials, the more active sites per unit mass of catalysts are
exposed, and the more favorable for catalytic activity, the greater the contact between the
particles and the substrate, which is more conducive to the particles’ carbon capture. For
example, Shao et al. [32] immobilized CA on different silica-based mesoporous molecular
sieves, and the average pore sizes of the particles with carbonic anhydrase immobilized
on SBA-15/CA, KIT-6/CA, and MCM-41/CA were 9.6, 4.9, and 2.8 nm, while the specific
surface areas were 420, 545, and 854 m2/g, respectively. The enzyme loadings on KIT-6,
SBA-15, and MCM-41 were about 4.7, 6.1, and 5.2%, respectively. The relative activities
were 36%, 78%, and 82% for each material, respectively. The particles prepared in this study
had a low specific surface area and were macroporous. Therefore, further optimization
processes are needed to improve the catalytic activity in future studies.



Processes 2024, 12, 810 9 of 13
Processes 2024, 12, 810 9 of 13 
 

 

  

(A) (B) 

  
(C) (D) 

Figure 6. SazF@SiO2 particle characterization results. (A) SEM results; (B) TEM and EDS results (the 

different colors represent the different elements present in the gel particles: yellow for nitrogen, 

green for oxygen, blue-violet for silicon, and red for zinc); (C,D) XPS analysis. 

Table 1. BET characterization data of SazF@SiO2 particles. 

BET Surface Area Pore Volume Pore Size 

0.2032 m2/g 0.003246 cm3/g 63.8903 nm 

3.6. Characterization of CA-Containing Coatings 

SEM characterization of the coatings containing CA was performed. As depicted in 

Figure 7A, the left side displays nickel foam metal coated with gel particles, while the 

right side shows nickel foam metal without coating (control). Figure 7B illustrates nickel 

foam metal without carbonic anhydrase coating, presenting a smooth surface. In contrast, 

Figure 7C exhibits nickel foam metal with carbonic anhydrase coating, showcasing a 

rough surface, indicating the successful coating of CA on the foam metal. In addition, the 

esterase activity of the CA-containing coating was 16.02 U. 

  

Figure 6. SazF@SiO2 particle characterization results. (A) SEM results; (B) TEM and EDS results (the
different colors represent the different elements present in the gel particles: yellow for nitrogen, green
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Table 1. BET characterization data of SazF@SiO2 particles.

BET Surface Area Pore Volume Pore Size

0.2032 m2/g 0.003246 cm3/g 63.8903 nm

3.6. Characterization of CA-Containing Coatings

SEM characterization of the coatings containing CA was performed. As depicted in
Figure 7A, the left side displays nickel foam metal coated with gel particles, while the
right side shows nickel foam metal without coating (control). Figure 7B illustrates nickel
foam metal without carbonic anhydrase coating, presenting a smooth surface. In contrast,
Figure 7C exhibits nickel foam metal with carbonic anhydrase coating, showcasing a rough
surface, indicating the successful coating of CA on the foam metal. In addition, the esterase
activity of the CA-containing coating was 16.02 U.
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the uncoated foam metal filler, and (C) the foam metal filler after coating.

3.7. Thermal Stability and Protein Leakage Rate of CA-Containing Coatings

To evaluate the carbon trapping performance of the CA-containing coating, the stability
of the coating at 60 ◦C and the protein leakage rate of the coating at room temperature
for 10 days were tested. The results are shown in Figure 8A, indicating that the thermal
stability of the coating was good. The residual activity was about 90% of the initial activity
after 10 days of incubation at 60 ◦C. After 30 days of incubation, the residual activity was
about 70% of the initial activity. Other researchers have also found that immobilization
improves the thermal stability of carbonic anhydrase. For example, Ying et al. [33] prepared
a core–shell magnetic ZIF-8@Fe3O4-carbonic anhydrase biocatalyst and tested its thermal
stability at 40 ◦C, which showed that the residual activity of the immobilized enzyme was
about 30% higher than that of the free enzyme after 9 days of incubation. In addition, as
shown in Figure 8B, the coating showed less than 3% protein leakage after 10 days at room
temperature, suggesting that the coating was able to firmly encapsulate the SazF@SiO2
particles. Cristhian et al. [34] immobilized the carbonic anhydrase enzyme in a poly-
particulate liquid, and the immobilized enzyme showed good stability during storage, with
no loss of activity detected after 1 month. The above results indicate that the coating is
stable and can consistently and efficiently capture CO2 over an extended period.
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4. Conclusions

In order to prepare biocatalysts suitable for carbon capture on ships, we constructed
SazCA and ferritin chimeras (SazF). The preparation cost of SazF was approximately 1.89%
of that of the commercial enzyme, significantly reducing the overall preparation cost of
the biocatalysts. The incorporation of ferritin made SazF thermally stable and resistant to
alkaline conditions within the range of 40–60 ◦C. Furthermore, SazF effectively enhances
CO2 absorption by the buffer. To facilitate the reuse of SazF, it is embedded in SiO2 particles
(SazF@SiO2), with the CA loading in the particles being 8.3%. In order to reduce the
separation cost, SazF@SiO2 was integrated into an epoxy resin to produce a CA-active
coating, which was stable at 60 ◦C and had good storage stability. This research aims to
facilitate the application of biocatalysts for carbon capture on ships. Follow-up studies
will further investigate the influencing factors of the fixation and coating processes, the
effects of the type of absorbent used for SazF, the composition of ship exhaust, and the
process parameters of the experimental bench absorption process on the absorption of CO2
by carbonic anhydrase. Additionally, we aim to explore the operational stability of SazF in
bench experiments and evaluate the effectiveness of the absorption on the bench as well as
the cost of the process.
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4-NPA 4-Nitrophthalic acid
BDS biocatalyst delivery system
MEA ethanolamine
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