
Citation: Zhu, L.; Luo, J.; Huang, C.;

Zhou, L.; Li, L.; Li, Y.; Wang, Z.

Erosion Resistance of Casing with

Resin and Metallic Coatings in

Liquid–Solid Two-Phase Flow.

Processes 2024, 12, 790. https://

doi.org/10.3390/pr12040790

Academic Editor: Hyun Wook Jung

Received: 4 March 2024

Revised: 4 April 2024

Accepted: 11 April 2024

Published: 14 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Erosion Resistance of Casing with Resin and Metallic Coatings
in Liquid–Solid Two-Phase Flow
Lixia Zhu 1,*, Jinheng Luo 1, Chencheng Huang 2, Lang Zhou 3, Lifeng Li 1, Yibo Li 4,5 and Zhiguo Wang 4,5,*

1 CNPC Tubular Goods Research Institute, Xi’an 710077, China; luojh@cnpc.com.cn (J.L.);
lilifeng004@cnpc.com.cn (L.L.)

2 Sichuan Shale Gas Exploration and Development Co., Ltd., Chengdu 610051, China; phforjobs@163.com
3 Engineering Technology Research Institute, PetroChina Southwest Oil and Gas Field Branch,

Chengdu 610017, China; zl09@petrochina.com.cn
4 College of New Energy, Xi’an Shiyou University, Xi’an 710065, China; liyb1103@163.com
5 Engineering Research Center of Smart Energy and Carbon Neutral in Oil & Gas Field, Xi’an 710065, China
* Correspondence: zhulx@cnpc.com.cn (L.Z.); zhgwang@xsyu.edu.cn (Z.W.)

Abstract: Protective coatings are typically applied to enhance their resistance to corrosion. There is
considerable research on the corrosion resistance of coated casings. However, few research studies
have focused on the erosion resistance on coated casings. In this work, the erosion resistance of resin-
and metallic-coated casings in liquid–solid two-phase fluids were investigated using a self-made
erosion facility. The results show that the resin coating tends to peel off the material base in the
form of brittle spalling or coating bulge in the high-speed sand-carrying liquid. Both resin and
metallic coatings were broken through within 20 min in a liquid–solid two-phase flow environment.
Compared to resin coatings, metallic coatings exhibit weaker erosion resistance in similar liquid–solid
flow. Through the analysis of experimental results and fitted curves, empirical constants for materials
and sand content influencing factors were determined using non-dimensional processing. The erosion
prediction model of metallic coatings and resin coatings was established based on the ECRC/Zhang
model with the change in flow rate, angle, and sand content. This research contributes to a better
understanding of the erosion resistance performance of casings used in oil and gas fields, thereby
contributing to potential improvements in their production.

Keywords: resin coating; metallic coating; liquid–solid two-phase flow; erosion model

1. Introduction

Erosion, corrosion, and wear are the primary factors leading to equipment failure in
the petroleum and marine industries [1–4]. Factors such as erosion angle [5,6], erosion
velocity [7], sand concentration [8,9], particle size [10,11], and sand type [12] are critical
influencers of material erosion and wear. The combination of solid particles and fluid forms
a liquid–solid two-phase flow, which impacts the surface of components, resulting in local
damage. This damage reduces operational efficiency, increases operating costs, accelerates
premature component failure, and poses potential safety hazards [13–15].

The erosion performance of materials is significantly affected by their surface proper-
ties, including factors such as hardness, plasticity, and toughness. Regarding the impact
of hardness on erosion rate, it is widely believed that when the hardness ratio of eroding
particles to the target material surface exceeds 1.2, the target material experiences a higher
erosion rate. Conversely, when the hardness ratio is below 1.2, the erosion rate decreases
as the hardness ratio of the particles to the material surface diminishes [16]. At lower
erosion angles, the erosion rate of brittle materials is lower than that of ductile materials.
Conversely, at higher erosion angles, the erosion rate of brittle materials exceeds that of
ductile materials.
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In recent years, several research institutions have conducted studies on erosion-
resistant coatings to meet various engineering requirements, focusing on performance
optimization, mechanism investigation, and test standards. Zhang et al. [17] summarized
the impact of particle angle, elbow direction, and elbow angle on the erosion resistance
of materials by calculating the spatial distribution of particle collision with the bend pipe.
The Air Force Equipment Research Institute and the Beijing Institute of Aeronautical Ma-
terials [18] have conducted extensive research on sand and dust environments based on
practical applications of equipment. They have proposed that specific test parameters and
procedures should be selected according to the actual application environment and techni-
cal conditions. This aims to provide a basis for the independent development of military
sand and dust environment test equipment in China, thereby enhancing the adaptability
and reliability of our military weapons and equipment to environmental conditions.

In the fundamental aspects of preparing and testing erosion-resistant coatings, re-
searchers have investigated the erosion behavior of single-layer, multi-layer, gradient,
and composite-treated surface coatings [19]. The ZrN coating, prepared using vacuum
cathode arc technology by the Beijing Institute of Aeronautical Materials, demonstrates
good erosion resistance at a 45◦ attack angle [18]. Liu Daoxin et al. [20] utilized ion-assisted
arc deposition technology to prepare a ZrN coating and studied its solid particle erosion
performance. The results indicated that to achieve good erosion resistance at a 90◦ erosion
angle, it is necessary to increase the rational ratio of bonding strength and toughness in
the coating, ensuring excellent resistance to impact fatigue and plastic flow properties.
Additionally, both excessively thin and thick coatings are detrimental to erosion resistance,
emphasizing the importance of controlling thickness within a reasonable range.

Currently, internal-coated casings have garnered attention due to their outstanding
insulation, impermeability, and impact resistance. This paper focuses on conducting erosion
tests on coated casings and 125 V materials under the mixed fluid of liquid–solid and gas–
solid flow, respectively. Since metallic and resin coating impacts are plastic and brittle
materials, respectively, and both materials have relatively good properties, the question
of the mechanism of coating spalling can be revealed. The objective is to investigate their
erosion rates, select appropriate erosion prediction models, and subsequently predict the
erosion rates of coated casings under different conditions. This research holds significant
importance for the study of erosion in coated casings.

2. Experimental Process of Liquid–Solid Two-Phase Flow Erosion
2.1. Test Material

In this study, resin and metallic coatings were selected as the test materials. The main
chemical components are shown in Tables 1 and 2.

Table 1. Chemical composition mass fraction of resin coating (Wt. %).

C Si O Ba Cr

81.5 11.7 5.8 0.5 0.4

Table 2. Chemical composition mass fraction of metallic coating (Wt. %).

C Cu Ni O Fe W

36.4 27.7 23.2 5.8 5.2 1.3

The erosion test was conducted on a coated casing sample, the original surface of
which is shown in Figure 1. The abrasive particles consisted of 80–120 mesh quartz sand
particles with a diameter of 0.125–0.18 mm and a density of 2650 kg/m3. Figure 2 illustrates
a scanning electron microscope image of the quartz sand particles prior to erosion, which
shows the sharp edges of the particles. Typical abrasives have sharpness coefficients
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ranging from 0.2 to 1.0 (full circle to sharp) and sphericity ranging from 0.5 to 1.0 (highly
non-spherical equidistant particles to spherical particles) [21].
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Figure 2. Scanning electron microscopy of SiO2 particles.

2.2. Test Scheme

The erosion test was carried out in a sand-carrying liquid mixed with water and quartz
sand. In the experiment, it was assumed that the velocity of sand particles and clear water
was equal, that is, the followability of particles and fluid was good. The parameters selected
for the experiment are shown in Table 3.

Table 3. Test parameters.

Material Three Kinds of Casing Samples

scouring time (h) 0.3 (Resin, metallic coating), 1.5 (125 V)
scouring velocity (m/s) 15
scouring angle (◦) 90
sand type 120 mesh natural quartz sand
sand concentration (kg/m3) 45

2.3. Test Steps
2.3.1. Specimen Preparation

To prepare the erosion sample, the coated casing was first processed into a rectangular
body with a size of 30 mm × 30 mm × 10 mm, and then 360#, 600#, 800#, and 1200# water
abrasive paper was used to grind the surface of the sample step by step until the surface
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was smooth and bright, reaching the standard of the erosion test [22]. Finally, the polished
sample was rinsed with anhydrous alcohol, dried, and placed in a drying vessel below
50 ◦C for over 12 h.

2.3.2. Test Process

The erosion test device utilized a self-made apparatus, with its system structure
illustrated in Figure 3. The liquid–solid two-phase flow of quartz sand was prepared by
mixing quartz sand particles with distilled water (1:9 ratio). The configured liquid–solid
two-phase fluid was poured into the stirred tank, and the sample was installed on the
gripper. The distance between the sample and the nozzle was 10.5 mm, and the gripper was
immersed in the prepared liquid–solid two-phase fluid. After that, the stirrer was started,
and the centrifugal pump was started once the liquid–solid two-phase fluid was evenly
stirred. The fluid was then ejected from the nozzle to impact the surface of the sample. The
test began once the flow rate stabilized, with the flow rate set at 15 m/s. The total erosion
time was 90 min, and the sample was taken out every 10 min to dry and measure its weight.
Following this, the sample was reinstalled on the gripper to undergo further erosion until
the test concluded after 90 min.
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2.4. Test Method

After the completion of the test, the jet velocity v was calculated using the continuity
equation:

V =
Q
ρ
· A

In the above formula, Q is slurry flow rate, kg/s; ρ is slurry density, kg/m3; A is the
nozzle outlet area, m2. The sand carrying rate W is the ratio of the abrasive carried by the
slurry to the total added abrasive:

W =

(
mp

mabrasive

)
× 100%

In the above formula, mp is the mass of abrasive particles carried out with the slurry,
kg; mabrasive is the total mass of abrasive particles added, kg.

ER =
m1 − m2

Aspc·t

In the above formula, ER is erosion rate, g/(m2·s); m0 is the mass of the sample before
erosion, g; m1 is the mass of the sample after erosion, g; m2 is the mass of the sample after
erosion, g; Aspc is the erosion area of the sample, m2; t is the erosion time, s.
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3. Test Results and Analysis

After 10 min of erosion, the samples were taken out and observed. Both coatings
showed no signs of erosion. However, after 20 min of testing, it was observed that both the
metallic coating and the resin coating had peeled off. This indicates that the thinner metallic
coating exhibits poor erosion resistance in the liquid–solid two-phase flow environment,
emphasizing the need to control the coating thickness within a certain range. The resin
coating tended to peel off in the form of plastic deformation and bulge, indicating that
improving the bonding strength between the coating and the substrate material is the key
process to improve the erosion resistance of the coated casing material.

3.1. Material Hardness Analysis

It can be seen from Table 4 that under the load of 50 gf (0.49 N) and 500 gf (4.9 N), the
surface microhardness was measured at five different positions on the top of the surface of
125 V carbon steel, resin coating, and metallic coating, and the average value was recorded.
As can be seen from Table 4, the Vickers hardness of the 125 V, resin coating, and metallic
coating is about 320–330, 20–25, and 290–300. The hardness of the 125 V material is the
highest, and the hardness of the resin coating material is the lowest. Because the coating
material is a plastic material, elastic deformation will occur after the diamond is pressed.
Therefore, the hardness value of the coating material is only analyzed as a reference value.

Table 4. Material hardness analysis.

Testing Material Hardness

125 V HV = 325
Resin coating HV = 23.5
Metallic coating HV = 294

3.2. Macro-Topography

Figure 4 depicts the macroscopic topography of 125 V erosion in liquid–solid two-
phase flow over 90 min, as well as the erosion of the resin and metallic coatings in liquid–
solid two-phase flow over 20 min. From the figure, it is evident that both the metallic and
resin coatings have completely peeled off, indicating that the particles impact the metallic
and resin coating target walls at a high angle, nearly 90◦, resulting in significant plastic
deformation. In the jet erosion stagnation zone I, the sand-carrying fluid shoots the impact
material from zone I. Particles collide with zone I due to inertia, and the fluid velocity in
zone I is low. Consequently, the erosion of the material surface is minimal under the impact
of a low flow rate and a high impact angle.

From the figure, it is evident that under the impact of the sand-carrying fluid, the
depth of the pit in zone II is the deepest, indicating more severe erosion compared to zone
I. This is due to the influence of high-speed turbulence, causing particles to diffuse from
zone I to zone II and accumulate. Zone II experiences a strong ploughing effect as particles
in this zone impact the material surface at higher speeds. In addition, due to the high
turbulence in this zone, more particles target the material surface at a higher flow rate,
reaching their maximum concentration in this zone. Consequently, particles in this zone
repetitively and extensively impact the material surface, resulting in significant plastic or
brittle deformation. This leads to the maximum depth of the pit and erosion rate in this
zone. As the radial position increases, the impact angle of the particles gradually decreases.
Therefore, the erosion in zone II is mainly caused by material deformation and ploughing
that are caused by the high flow rate and low angle [23,24].

Zone III is situated at the periphery of the jet, where the fluid generates minimal slip,
and a large number of particles are concentrated in zone II. Particles impacting zone II
randomly enter zone III along the fluid streamlines, where they interact with each other,
resulting in minimal micro-cutting. The normal component force of the particles in zone
III is very small, and the tangential component force is nearly parallel to the material
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surface of the material for sliding and rolling, which do not significantly contribute to
material erosion. Consequently, the erosion amount in zone III is very small and can be
considered negligible.
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3.3. Contour Topography

Figure 5 shows the erosion profile scanned by the profile scanner. The ordinate in
Figure 5 shows the depth of the eroded specimen, and the horizontal axis is the distance
along with the eroded specimen. From the Figure 6, it can be observed that the pit depths of
the resin-coated casing and the metallic-coated casing after 20 min are 435 µm and 650 µm,
respectively. The erosion time of 125 V is 120 min, and the pit depth can be calculated
to be 40 µm within 20 min. Comparing the pit depth of the material at the same time of
the liquid–solid erosion test, it can be noted that the hardness of the material has a linear
function relationship with the pit depth. The greater the hardness of the material, the
smaller the pit depth, and the stronger the erosion resistance. Liu Daoxin’s [14] research
has indicated that the erosion resistance of metallic coatings that are either too thick or too
thin is not ideal. It is necessary to control the thickness of the coating within a reasonable
range to achieve the best erosion resistance. Because the metallic coating is too thin, its
erosion resistance decreases. Moreover, the resin coating material does not exhibit signs of
peeling at 10 min but completely detaches at 20 min, suggesting that both coatings fall off
from the substrate after 20 min.

The analysis of Figure 6 reveals that the single resin coating exhibits weak erosion
resistance in the complex liquid–solid two-phase flow. After 10 min of erosion, the coating
remains intact and connected with the substrate material. However, after 20 min of testing,
both the coating and the substrate material have peeled off. This indicates that improving
the bonding strength between the coating and the substrate material is the key process
for enhancing the erosion resistance of the coated casing material. Secondly, because
the metallic coating is too thin, this results in the poor erosion resistance of the material.
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Therefore, it is essential to control the coating thickness within a certain range to achieve
optimal erosion resistance.
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3.4. Erosion Test Results and Analysis

In the liquid–solid erosion test, the nozzle diameter is 7 mm, and the distance between
the nozzle and the sample is 10.5 mm. The erosion time of the antibacterial casing and the
125 V sample was set to 1.5 h, and the erosion time of the resin- and metallic-coated casing
was 20 min. The average flow rate of the nozzle was 15 m/s, and the sampling test shows
that the average sand content of the nozzle was 0.4954%. The erosion test results of the
three materials are shown in Figure 7. The erosion rates of 125 V, resin-coated casing, and
metallic-coated casing are 0.002564, 0.002511, and 0.007179 g/(m2·s), respectively.

For the resin-coated casing, there is no change observed within the initial 10 min as the
coating remains adhered to the metal surface. However, by the 20 min mark, the coating is
completely detached, exposing the metal to erosion. It can be inferred that after 20 min of
erosion, the expansion and adhesion of the coating diminish, which leads to the coating
coming off. Comparing the two coating casing tests, the mass loss of the metallic coating
is 1.5 times that of the non-metallic coating casing within 20 min, indicating the weak
erosion resistance of the metallic coating under short-term erosion conditions. Because the
material is entirely covered with a metallic coating, it can be concluded that the erosion
resistance of a single-coated casing is generally low at a 90◦ angle. In contour scanning, the
thickness of the metallic coating is roughly 40 µm, which is thin. Thinner coatings, when
subjected to high-speed flows of sand-carrying liquid, typically experience brittle spalling
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or swelling of the plastic coating, resulting in a thin metallic coating with low hardness
that is extremely susceptible to being washed away. Therefore, the erosion resistance of the
coating is extremely poor when the thin coating is subjected to sand-carrying erosion in a
liquid–solid environment.
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In order to better understand the failure mechanism of the Si resin coating material, the
coating material was photographed and recorded at an interval of every 5 min, as shown
in Figure 8, which shows the erosion images of the Si resin coating in the liquid–solid
two-phase flow environment. Between 0 and 10 min, the circular pit on the surface of the
Si resin coating was slightly darkened but not broken, and the material was reduced from
the initial mass of 110.1867 g to 110.1827 g; therefore, the erosion rate was relatively low.
Between 10 and 25 min, the coating dropped from partially to completely eroded, and the
mass decreased from 110.1827 g to 110.1724 g. The erosion rate of the material increased
sharply after breakage. In particular, between 15 and 20 min, the loss of material mass was
large, and it can be inferred from the figure that after the breakage of the Si resin coating,
part of the surface will expand, resulting in a decrease in the viscosity of the material, and
then a large area of the coating material will be peeled off from the substrate material in a
relatively short period of time.
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The peeling mechanism of the resin layer is shown in Figure 9. When the particles
collide with the metallic coating material, lateral and radial cracks will occur on the surface
of the target. As shown in Figure 9a, when the particles are easy to deform and the impact
load is low, the surface of the target is prone to short cracks in the circumferential direction.
As the impact load increases, the cracks will continue to form and grow, as shown in
Figure 9b. If the contact load exceeds the hardness of the target, the particles will invade
the target and break violently. When the particles bounce off the target, a plane crack is
generated. As shown in Figure 9c, the surface target near the collision point is divided into
many fragments by the horizontal and vertical cracks, which are taken away by subsequent
particle collisions.
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The damage to the resin-coated material is mainly caused by the impact of the particles.
When the material is impacted by particles, plastic deformation will occur, which makes
the elastic deformation energy of the coating itself increase sharply. When the elastic
deformation of the coating material reaches a certain extent, the stress of the resin coating
exceeds the fracture limit and cutting will occur. If the stress is lower than the fracture limit
and higher than the plastic limit, the material will undergo plastic deformation, and finally
cracks will cause the material to be damaged.

4. Erosion Numerical Simulation Method
4.1. Establishment of Casing Erosion Prediction Model

Common erosion models include the Oka model, E/CRC Zhang model, DNV model,
and so on. It is important to find a new model that is more appropriate to the experimental
values for comparison. These models are mostly used to explore the influence of parameters
on particles (shape, density, velocity, particle size) and samples (hardness, density). The
ECR/C Zhang model is widely used as a simple and more accurate empirical prediction
model of erosion rate. Based on the E/CRC Zhang model, a sand content correction
function f (w) is added to propose an empirical model of erosion rate for coated casings in
the oil and gas field fracturing and production process. Its expression is:

ER = C(BH)−0.59FsV2.41
P F(θ)F(w)

F(θ) = 5.4θ − 10.11θ2 + 10.93θ3 − 6.33θ4 + 1.42θ5

F(ω) = A + B ∗ω+ C ∗ ω2 + D ∗ ω4

In the above formula, ER is the erosion rate, kg/kg, which represents the mass of the
sample washed off per kilogram of sand; BH is the Brinell hardness of the target; Fs is
the particle shape coefficient, in which the corner sand Fs = 1.0, hemispherical particles
Fs = 0.53, spherical particles Fs = 0.2; vp is the particle velocity, m/s; θ is the impact angle of
abrasive particles; C is an empirical constant; and w is the mass percentage of sand content,
%. The hardness BH values of the four casings of this project are shown in Table 5. The
coefficients in the sand content correction function are fitted by the least square method
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according to the numerical simulation results. The values are shown in Table 6, and Table 7
provides the values of the empirical constant C.

Table 5. Material hardness.

Material Vickers Hardness (HV) Brinell Hardness (BH)

125 V 325 316
Resin-coated casing 23.5 19
Metallic- casing 294 286

Table 6. Values of various coefficients of sand content correction coefficient f (w).

Four Materials A B C D

Numerical value 9.84 × 10−1 7.93 × 10−4 3.52 × 10−4 −5.70 × 10−5

Table 7. Material empirical constants.

Material C Value

125 V 4.6248 × 10−7

Resin-coated casing 1.7278 × 10−6

Metallic-coated casing 8.928 × 10−7

4.2. Model Error Analysis

On the basis of the ECR/C Zhang model, the correction factor of the sand content is
considered. The latest fitting formula using the least squares method is used to compre-
hensively consider the influence of the material hardness, impact angle, and fluid velocity
(which can be considered as particle velocity) on sand content. The erosion rate plots for
both models are shown in Figure 10, and the error can be calculated using Equation (7).
The average error between the predicted erosion rate and the experimental results is 4.6%,
which is lower than the average error of 8.40% of the Oka model. This demonstrates that
the modified ECR/C Zhang model can more accurately predict the erosion rate of the four
casing materials. Furthermore, the model’s input parameters are relatively simple and thus
more suitable for practical application in oil field engineering. Table 8 shows the results of
four kinds of material error analysis.

inaccuracies =
Modeled erosion rate − Experimental erosion rate

Experimental erosion rate
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Table 8. Table of four kinds of material error analysis.

Material Prediction Error of Oka
Model (%)

Model Predictions for This Project
Error (%)

125 V 7.92 3.86
Resin-coated casing 8.55 5.47
Metallic-coated casing 7.47 7.25
Average error 8.40 4.68

5. Conclusions

(1) The erosion resistance of the two coated casings, as determined by the experimental
study, is low. According to the results of the jet erosion test, 125 V exhibits strong
resistance to erosion in both the liquid–solid and gas–solid erosion environments.
However, the erosion rate of the coated casings in the liquid–solid environment is
high, indicating weak erosion resistance. In comparison with non-metallic coatings,
metallic coatings are easier to peel off in a short time under the liquid–solid two-phase
flow environment.

(2) In addition to the characteristics of solid particles, flow rate, sand content, and target
hardness are the primary controlling factors affecting erosion. As the flow velocity
increases, the erosion rate of all three casing materials sharply increases. Similarly, as
the sand content increases, the erosion rate of all three casing materials also increases.
However, this increasing trend is less significant compared to the influence of flow rate.
When comparing the three materials, an increase in hardness results in a decreasing
trend in erosion rate.

(3) Based on the relatively simple ECRC Zhang model, a sand content correction is added.
Therefore, an erosion prediction model which is more suitable for oil and gas field
fracturing and production engineering is proposed. The model prediction results are
closer to the test values than those of the Oka model.
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