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Abstract: In order to improve the erosion resistance of steel PDC (Polycrystalline Diamond Com-
pact) bit under high-speed fluid flow conditions underground, it is necessary to develop a high-
performance erosion-resistant coating. In this paper, laser cladding was used to prepare the new
coating by modifying tungsten carbide with graphene. And the effects of tungsten carbide content
and graphene content on the coating performance have been thoroughly studied and analyzed to
obtain the optimal covering layer. The research results indicate that, for new coatings, 60% tungsten
carbide and 0.3% graphene are the optimal ratios. After adding tungsten carbide, the hardness has
significantly improved. However, when the tungsten carbide content further increases more than
30%, the increase in hardness is limited. In addition, when the content of graphene is more than 0.3%,
the branched structure becomes thicker. In detail, this is a phenomenon where the segregation of
Cr, Si, and W becomes very obvious again, and the segregation of Fe occurs at the Ni enrichment
site. The research results contribute to the development and optimization of high-quality erosion-
resistant coatings under the high-speed flow conditions in wellbore. These are of great significance
for improving the efficiency of oil and gas exploration and development.

Keywords: PDC drill bit; coating; optimization; tungsten carbide; graphene

1. Introduction

Energy security plays a decisive role in the stable operation and high-quality devel-
opment of society [1,2]. In the process of oil and gas development and production, when
the flow rate in the wellbore is large, the underground materials will be eroded, causing
the operation to be unable to proceed smoothly and reducing the efficiency of oil and gas
production. In order to improve the erosion resistance of steel PDC drill bits under high-
speed fluid flow conditions underground, it is necessary to develop a high-performance
erosion-resistant coating. It can greatly improve operational efficiency [3–5].

Under long-term operation or complex working conditions (such as composite wear [6]
and mud erosion [7–9]), steel PDC bit may experience erosion and mud inclusion on the
blade, especially in the main cutting section of the blade crown, which is prone to erosion.
The impact force on the erosion area is relatively large, and the protective capacity of this
area is relatively insufficient, greatly limiting the use of steel PDC bit. Laser cladding
technology is commonly used for developing high-performance and high-quality coatings.
Nickel-based alloy coatings are widely used in laser cladding processes because they are
economical and have good self-lubricating performance and corrosion resistance [10,11].
Tungsten carbide has the characteristics of high hardness, high melting point, strong
wear resistance, and corrosion resistance, and is usually used in a wide range of coating

Processes 2024, 12, 714. https://doi.org/10.3390/pr12040714 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr12040714
https://doi.org/10.3390/pr12040714
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0009-0009-0178-3581
https://orcid.org/0000-0002-4456-1534
https://doi.org/10.3390/pr12040714
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr12040714?type=check_update&version=1


Processes 2024, 12, 714 2 of 15

materials [12–16]. Graphene has outstanding mechanical and thermal properties and two-
dimensional sheet structure, which can also be used as coating material for laser cladding
process [17,18]. It is necessary to use tungsten carbide and graphene as coating materials
to prepare new coatings with good wear resistance and erosion resistance. For example,
Zhan et al. [19] studied the basic properties of multi-layer graphene and its application
in the industrial field. This is a very important aspect to utilize graphene to improve the
performance of materials at high temperatures. Jagannadham [20] developed a tungsten–
graphene-layered film by the deposition of tungsten film by magnetron sputtering on the
graphene-covered copper foils. This product has high performance and high temperature
resistance. Then, Chen et al. [21] developed graphene nanoplatelet-supported tungsten
carbide nitride nanocomposites that were prepared via an in situ solid-state approach. This
nanocomposite catalyzes the hydrogen evolution reaction with very low overpotential
and is stable operating for at least 300 h in harsh acidic conditions. Recently, Xuan and
Wang [22] developed a new type of high hardness coating for improving drill bit stability
in unconventional oil and gas development. Moreover, the hardness of coatings under
different cladding processes has been studied and explained.

Although scholars have already completed some studies, research on the development
and optimization of modified tungsten carbide coatings is very limited. This is a coating
that can greatly improve the erosion resistance of PDC drill bits. Therefore, in this paper,
laser cladding was used to prepare the new coating by modifying tungsten carbide with
graphene. And the effects of tungsten carbide content and graphene content on the coating
performance have been thoroughly studied and analyzed to obtain the optimal covering
layer. The research results contribute to the development and optimization of high-quality
erosion-resistant coatings under the high-speed flow conditions in wellbore.

2. Experimental Materials, Equipment, and Methods
2.1. Experimental Materials

The experimental materials of this laser cladding project mainly include base plate
and powder. The base plate is made of Q235 steel (Figure 1), and the powder includes
Ni60A powder, tungsten carbide (WC) powder, and single-layer graphene.
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Table 1. Q235 chemical composition table.

Element Fe C Si Mn Cr Ni Cu

Component (wt.%) Bal. 0.16 0.26 0.15 0.02 0.025 0.024

Ni60A powder composition is shown in Table 2.

Table 2. Chemical composition of Ni60A powder.

Element Ni Cr Fe Si B C O

Component (wt.%) Bal. 16.58 4.63 4.11 3.02 0.76 0.03

The micrographs of Ni60A powder, tungsten carbide powder, and graphene powder
under SEM are as shown in Figure 2.
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Figure 2. The SEM of the powder of (a) Ni60A, (b) WC, and (c) graphene.

From the powder SEM micrographs, it can be seen that Ni60A powder particles form
a uniform, spherical powder, having good mobility, with less satellite powder around the
powder; graphene powder has a typical lamellar form.

2.2. Experimental Equipment

Powder laser cladding equipment was used in the experiment. It can be seen in
Figure 3.
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The powder-spreading laser cladding equipment consists of four parts. Part I is a
chiller. Part II is a voltage stabilizer. Part III is a laser device. Part IV is a cladding machine.

2.3. Experimental Methods

In summary, the process of preparing a new coating using laser cladding technology
is shown in Figure 4.
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Figure 4. The process of using laser cladding technology to prepare a new coating.

The following important steps need to be completed before preparing the laser
cladding coating.

Firstly, it is necessary to use graphene to modify tungsten carbide and form a mixed
powder. In this process, it is necessary to add 5–10% dispersant, whose main component
is sodium dodecylbenzene sulfonate. It can help to evenly mix various components and
strengthen the organizational structure of the coating.

Then, 60 grit sandpaper is used to polish the Q235 steel substrate to remove surface
oxide film and increase surface roughness. It is beneficial for improving the adhesion
between the substrate and the powder during melting.

Finally, the mixed powder sample should be placed in a vacuum drying oven for 2 h.
Figure 5 shows the experimental sample after powder spreading.

Processes 2024, 12, x FOR PEER REVIEW 4 of 16 
 

 

The powder-spreading laser cladding equipment consists of four parts. Part I is a 
chiller. Part II is a voltage stabilizer. Part III is a laser device. Part IV is a cladding machine. 

2.3. Experimental Methods 
In summary, the process of preparing a new coating using laser cladding technology 

is shown in Figure 4. 

 
Figure 4. The process of using laser cladding technology to prepare a new coating. 

The following important steps need to be completed before preparing the laser clad-
ding coating. 

Firstly, it is necessary to use graphene to modify tungsten carbide and form a mixed 
powder. In this process, it is necessary to add 5–10% dispersant, whose main component 
is sodium dodecylbenzene sulfonate. It can help to evenly mix various components and 
strengthen the organizational structure of the coating. 

Then, 60 grit sandpaper is used to polish the Q235 steel substrate to remove surface 
oxide film and increase surface roughness. It is beneficial for improving the adhesion be-
tween the substrate and the powder during melting. 

Finally, the mixed powder sample should be placed in a vacuum drying oven for 2 
h. Figure 5 shows the experimental sample after powder spreading. 

 
Figure 5. The experimental sample after powder spreading. Figure 5. The experimental sample after powder spreading.



Processes 2024, 12, 714 5 of 15

After powder spreading, laser cladding machine is used to melt different areas. Then,
the sample is cut into standard specimens for experimental testing by wire cutting. At the
same time, the surface of the sample needs to be polished. Figure 6 shows the experimental
sample after polishing.
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Next, the following three types of tests need to be conducted on the standard samples.
Through these three tests, hardness data and surface morphology under different conditions
can be obtained, which are directly related to the erosion resistance of the coating.

(1) Hardness test
The reference standard is GB/T 230.1-2018 [23]. The hardness tester is used to test

the microhardness of the coating section. The four-point-measurement method is used to
measure the hardness. Due to the subjectivity of hardness measurement, in order to ensure
the accuracy of the average hardness results obtained, 10 points are randomly selected
from each of the two planes parallel and perpendicular to the laser walkway on the same
sample for testing. All 20 points are sorted from high to low, and the average and standard
deviation are calculated after removing the maximum and minimum values.

(2) XRD Test
The reference standard is YB/T 5336-2006 [24]. The sample was tested by X-ray

diffractometer goniometer. Then, the Jade6.5 software was used to analyze the test results.
(3) Microstructure observation
The reference standard is ISO17639-2003 [25]. Scanning electron microscopy was used

to observe the microstructure. Then, EDS testing was used to determine the composition
and distribution of the coating elements.

3. Experiment Results and Discussion on the Influence of Tungsten Carbide Content on
Coating Performance

This project conducted pre-experiments to determine the experimental parameters
and plan before work. Parameters are shown in Table 3. According to the relevant literature,
WC (tungsten carbide) content often has a significant impact on the hardness of the coating
at a high level, and trace amounts of graphene can demonstrate its role. Therefore, in
the pre-experimental stage, it was decided to use Ni60A + 30% WC + 0.1% graphene
mixed powder to prepare the coating layer under different parameters, as the hardness of
the coating layer can be used to preliminarily determine the material’s resistance to mud
erosion. Therefore, parameter selection is based on hardness. Specifically, the laser power
is selected as 800 W, 1200 W, 1600 W, and 2000 W, as shown in the Table 4.

The obtained hardness result is as follows:
According to the hardness test results, it can be seen that the average hardness values

of the coatings obtained at 800 W and 1200 W are not significantly different. However, as
the power increases, the hardness of the coatings obtained at 1200 W, 1600 W, and 2000 W
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decreases significantly. Based on the above results, the cladding parameters determined
in this pre-experiment are as follows: laser spot of 4 mm, laser power of 1200 W, speed of
0.35 m/min, overlap rate of 50%, and protective gas at 15 L/min.

For this project, the research on the matching cladding process of the new tungsten
carbide coating is as follows: the cladding parameters determined in the previous section
first melted the pure Ni60A powder coating, and then prepared the coating with WC/Ni60A
mixed powder with WC mass fractions of 10%, 20%, 30%, 40%, 50%, and 60%.

The hardness test results of WC/Ni60A coatings with different WC contents are shown
in Table 5. It can be seen from the table that, when WC is not added, the average hardness of
Ni60A coatings is only 753.3 HV. However, after adding WC, the hardness has significantly
improved, especially when the WC content is 10% and 20%, the average hardness has
increased by 13.3% and 32.6%, respectively. As the WC content continues to increase, the
average hardness also increases, but the increase is smaller than the first 20%.

Table 3. Pre-experimental parameters.

Powder Speed
(m/min)

Light Spot
(mm)

Overlapping
Ratio

Shielding Gas
(L/min)

Ni60A + 30%
WC

+0.1% graphene
0.35 4 50% 15

Table 4. Ni60A + 30% WC + 0.1% graphene hardness resultsat different power levels.

Laser power (W) 800 1200 1600 2000

Average hardness (HV) 1063.3 1086.2 732.6 526.8

Table 5. Hardness of coatings with different tungsten carbide contents.

WC content (wt.%) 0% 10% 20% 30% 40% 50% 60%

Average hardness (HV) 753.3 853.3 998.5 1000.3 1019.2 1022.1 1075.9
Standard deviation 78.3 58.2 70.5 72.3 112.6 79.6 52.0

The hardness distribution of the cross-section of the cladding layer is shown in Figure 7.
The hardness distribution area can be divided into the cladding layer zone, fusion zone, and
heat-affected zone. The cladding layer zone has the highest hardness, and the fusion zone
belongs to the transition zone, where the hardness begins to decrease. It can be seen that
the hardness value of the cladding layer zone does not change much, while the hardness of
the fusion zone rapidly decreases, indicating that the fusion zone is relatively narrow.

Figure 8 shows the SEM image of the Ni60A coating, which shows a relatively uniform
distribution of Fe and Si, while Cr exhibits significant segregation and aggregation in blocks
or strips. Ni is widely distributed throughout the coating due to its highest content in
Ni60A powder.

The EDS data obtained from point A and point B at the Cr enrichment site are shown in
Table 6. It can be observed that there is a significant difference in the mass fractions of Cr and
Ni between the two sites, while the composition of Si and Fe is not significantly different. It
can be seen that the content of Ni is the highest among the two points, which is because the
proportion of Ni in Ni60A powder is the highest. According to the combination of XRD
analysis results and EDS analysis results, it can be concluded that the main components of
Cr enrichment are Cr3C2 and M23C6, while the remaining areas are mainly solid solutions
of 7-Ni, Ni3Fe, M23C6, and Fe3C.



Processes 2024, 12, 714 7 of 15Processes 2024, 12, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 7. Microhardness of Ni60A coating with different mass fractions of tungsten carbide. 

Figure 8 shows the SEM image of the Ni60A coating, which shows a relatively uni-
form distribution of Fe and Si, while Cr exhibits significant segregation and aggregation 
in blocks or strips. Ni is widely distributed throughout the coating due to its highest con-
tent in Ni60A powder. 

 
Figure 8. Microstructure and morphology of Ni60A coating. 

The EDS data obtained from point A and point B at the Cr enrichment site are shown 
in Table 6. It can be observed that there is a significant difference in the mass fractions of 
Cr and Ni between the two sites, while the composition of Si and Fe is not significantly 
different. It can be seen that the content of Ni is the highest among the two points, which 
is because the proportion of Ni in Ni60A powder is the highest. According to the combi-
nation of XRD analysis results and EDS analysis results, it can be concluded that the main 

Figure 7. Microhardness of Ni60A coating with different mass fractions of tungsten carbide.

Processes 2024, 12, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 7. Microhardness of Ni60A coating with different mass fractions of tungsten carbide. 

Figure 8 shows the SEM image of the Ni60A coating, which shows a relatively uni-
form distribution of Fe and Si, while Cr exhibits significant segregation and aggregation 
in blocks or strips. Ni is widely distributed throughout the coating due to its highest con-
tent in Ni60A powder. 

 
Figure 8. Microstructure and morphology of Ni60A coating. 

The EDS data obtained from point A and point B at the Cr enrichment site are shown 
in Table 6. It can be observed that there is a significant difference in the mass fractions of 
Cr and Ni between the two sites, while the composition of Si and Fe is not significantly 
different. It can be seen that the content of Ni is the highest among the two points, which 
is because the proportion of Ni in Ni60A powder is the highest. According to the combi-
nation of XRD analysis results and EDS analysis results, it can be concluded that the main 
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Table 6. Microstructure and composition of Ni60A coating at different positions (mass fraction, %).

Position Ni Cr Fe Si

A 55.19 35.70 4.89 4.22
B 82.12 8.73 5.11 4.04

Figure 9 shows the SEM image of Ni60A + 20% WC coating. Comparing with Figure 8,
it can be seen that, after the addition of WC, obvious snowflake-like and branch-like struc-
tures are formed at the Cr segregation area, resulting in significant Si element segregation
in the obtained coating. From the EDS results at points C and D in Table 7, it can be seen
that Si and W exhibit significant segregation in snowflake-like dendrites. As shown in
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Figure 10, compared to the Ni60A coating, the Ni60A + 20% WC coating increases WC,
W2C, WSi2, W, and C. Due to the melting point of WC being 2870 ◦C, the melting points
of Ni, Fe, and Cr are 1453 ◦C, 1538 ◦C, and 1907 ◦C, respectively. For low-speed laser
cladding, excessive heat input can cause a certain amount of WC particles to decompose
into carbides, resulting in a decrease in WC particles. On the other hand, it can increase the
convection and stirring time of the molten pool, resulting in uneven distribution of WC
particles. Based on the XRD detection results, it can be seen that, during the melting process,
WC partially decomposes into W and C due to heating, and some W will form WSi2 with Si
at high temperatures, resulting in significant segregation of Si. At the same time, due to the
decarburization phenomenon of WC at high temperatures, some WC will be converted into
W2C. According to the theory of metal crystallization, due to the relatively high melting
point of W and its compounds, the precipitated phase will first solidify during the cladding
process, increasing the probability of non-uniform nucleation forming around it. Due to
the much higher melting point of Cr than Ni, Cr and its compounds will first adhere to
W and its compounds during the cladding process, which is manifested in SEM images
as the segregation of Cr, Si, and W, forming snowflake-like and branch-like structures. At
the same time, due to the randomness of the precipitation of W and its compounds, the
distribution of W does not exhibit obvious segregation characteristics like Cr, but rather
forms a feature of widespread distribution and partial segregation.

Processes 2024, 12, x FOR PEER REVIEW 8 of 16 
 

 

components of Cr enrichment are Cr3C2 and M23C6, while the remaining areas are mainly 
solid solutions of ɤ-Ni, Ni3Fe, M23C6, and Fe3C. 

Table 6. Microstructure and composition of Ni60A coating at different positions (mass fraction, %). 

Position Ni Cr Fe Si 
A 55.19 35.70 4.89 4.22 
B 82.12 8.73 5.11 4.04 

Figure 9 shows the SEM image of Ni60A+20% WC coating. Comparing with Figure 
8, it can be seen that, after the addition of WC, obvious snowflake-like and branch-like 
structures are formed at the Cr segregation area, resulting in significant Si element segre-
gation in the obtained coating. From the EDS results at points C and D in Table 7, it can 
be seen that Si and W exhibit significant segregation in snowflake-like dendrites. As 
shown in Figure 10, compared to the Ni60A coating, the Ni60A+20% WC coating increases 
WC, W2C, WSi2, W, and C. Due to the melting point of WC being 2870 °C, the melting 
points of Ni, Fe, and Cr are 1453 °C, 1538 °C, and 1907 °C, respectively. For low-speed 
laser cladding, excessive heat input can cause a certain amount of WC particles to decom-
pose into carbides, resulting in a decrease in WC particles. On the other hand, it can in-
crease the convection and stirring time of the molten pool, resulting in uneven distribution 
of WC particles. Based on the XRD detection results, it can be seen that, during the melting 
process, WC partially decomposes into W and C due to heating, and some W will form 
WSi2 with Si at high temperatures, resulting in significant segregation of Si. At the same 
time, due to the decarburization phenomenon of WC at high temperatures, some WC will 
be converted into W2C. According to the theory of metal crystallization, due to the rela-
tively high melting point of W and its compounds, the precipitated phase will first solidify 
during the cladding process, increasing the probability of non-uniform nucleation form-
ing around it. Due to the much higher melting point of Cr than Ni, Cr and its compounds 
will first adhere to W and its compounds during the cladding process, which is manifested 
in SEM images as the segregation of Cr, Si, and W, forming snowflake-like and branch-
like structures. At the same time, due to the randomness of the precipitation of W and its 
compounds, the distribution of W does not exhibit obvious segregation characteristics like 
Cr, but rather forms a feature of widespread distribution and partial segregation. 

 
Figure 9. Microstructure of coating of Ni60A+20% tungsten carbide. Figure 9. Microstructure of coating of Ni60A + 20% tungsten carbide.

Table 7. Microstructure and composition of coating of Ni60A + 20% tungsten carbide at different
positions (mass fraction, %).

Position Ni Cr Fe Si W

C 22.11 28.56 3.50 7.07 38.76
D 70.95 7.36 4.53 2.74 14.42

Figure 10 shows the SEM image of the Ni60A + 60% WC coating. Unlike the snowflake-
like tissue of the Ni60A + 20% WC coating, needle-like interlaced tissue is formed in the
majority of the areas at this time, while cluster-like tissue is formed in a small portion of
the areas. Comparing with Figure 9, it can be seen that, as the mass fraction of WC in the
powder increases, the segregation phenomenon of W and Si becomes more obvious, but
the distribution of Cr appears more uniform. According to the EDS scanning results at
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different positions of the Ni60A + 60% WC coating in Table 8, it can be seen that, when
the proportion of WC in the powder is 60%, W is distributed throughout the coating, but
segregation can still be clearly observed. The content difference of Si in different positions
is very obvious, almost all of it exists in needle-like tissues. Therefore, it can be further
determined that the main compound formed by Si in the coating is WSi2. According to
the above, due to the attachment of Cr and its compounds to the growth of W and its
compounds, the distribution of Cr elements will be more uniform as W content increases.
Due to the fact that the proportion of Ni element in this mixed powder is less than W,
the Ni distribution area under the microscopic morphology is cut into polygonal areas
one-by-one. This can be seen in Figure 11. As the WC content in the powder increases, the
peaks of Cr3C2 and W2C in the Ni60A + 60% WC coating are enhanced compared to the
Ni60A + 20% WC coating, while the peaks of M23C6 and WSi2 are relatively reduced. This
is because more WC decomposes to produce C, resulting in an increase in the proportion of
C in the formed C compound. Therefore, Cr3C2 and W2C increase, while M23C6 and WSi2
are limited by the content of Fe and Si; thus, the proportion of WC in the powder increases.
Its relative peak in XRD decreases.
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Table 8. Microstructure and composition of coating of Ni60A + 60% tungsten carbide at different
positions (mass fraction, %).

Position Ni Cr Fe Si W

E 3.99 2.47 1.78 10.94 80.82
F 7.64 11.19 2.03 6.69 72.45
G 56.99 7.47 2.49 0.73 37.27

4. Experiment Results and Discussion on the Influence of Graphene Content on
Coating Performance

According to the research results in the previous section, Ni60A + 20% WC coating was
selected to study the content of graphene, and the specific configuration of Ni60A + 20%
WC + X% graphene (x = 0, 0.1, 0.3, 0.5) mixed powder was used for cladding experiment.

The experimental hardness test results are shown in Table 9, and the section hardness
distribution is shown in Figure 12. It can be seen that, after adding graphene, the hardness
of the coating is improved, and the measured hardness standard deviation is significantly
reduced, indicating that, after adding graphene, the hardness difference between different
areas of the coating becomes smaller. However, with the increase in graphene content,
when the graphene content increases to 0.5%, compared to 0.3%, the average hardness
decreases, and the hardness standard deviation increases, indicating that the hardness
difference between different areas of the coating increases at this time. This is because
the addition of excessive graphene will produce a aggregation phenomenon, resulting in
uneven grain size and distribution in the microstructure, and the uniformity of coating
hardness will be reduced.

Table 9. Average hardness of coatings with different graphene contents.

Graphene content (wt.%) 0% 0.1% 0.3% 0.5%

Average hardness 998.5 1021.7 1076.9 1036.1
Standard deviation 70.5 48.8 50.2 59.4
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Figure 13 shows the microstructure of the coating with different graphene contents. As
mentioned earlier, when graphene is not added, it presents snowflake-like and branch-like
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structures. With the increase in graphene content, the structure is refined first and then
coarsened. When the content of graphene is 0.1%, the snowflake-like structure is dispersed
into a smaller dot-like structure, while the branch-like structure becomes slenderer. And
the part of the branch-like structure is dispersed and composed of a finer needle-like
structure. According to the scanning results of the coating layer containing 0.1% graphene
in Figure 14, it can be found that, although Cr, Si, and W are still segregated, compared
to Figure 9, the segregation region is more evenly distributed in the whole coating layer.
When the graphene content is 0.3%, according to the surface scan results in Figure 15, it
can be found that the segregation of Cr, Si, and W is no longer obvious, especially the
distribution of W and Cr in the whole region is relatively uniform. According to the analysis
in Tables 10 and 11, the element composition comparison of different positions obtained
from the coating containing 0.1% graphene and the coating containing 0.3% graphene
shows that the element segregation has been significantly improved with the graphene
content increasing to 0.3%. At the same time, with the increase in graphene, the coarse
dendrites are replaced by fine dendrites [9], which makes the microstructure of the coating
more fine, effectively reducing the porosity of the coating, and this coating has stronger
erosion resistance. However, when the content of graphene was further increased to 0.5%,
it can be observed from Figure 12 that the structure was not further refined but turned into
a coarse strip structure. According to the scanning results of the coating layer containing
0.1% graphene in Figure 16, it can be found that not only did the segregation of Cr, Si, and
W become very obvious again but also the segregation of Fe in Ni enrichment. Comparing
the EDS results in Tables 6 and 12, it is found that, when 0.5% graphene is added to the
coating, the element segregation phenomenon is more serious than that of the coating
without graphene.
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Figure 14. Analysis of scanning composition of coating Ni60A + 20% tungsten carbide + 0.1%
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Figure 15. Analysis of scanning composition of coating Ni60A + 20% tungsten carbide + 0.3%
graphene.

Table 10. Composition of coating Ni60A + 20% tungsten carbide + 0.1% graphene at different
positions (mass fraction, %).

Position Ni Cr Fe Si W

1 30.15 26.64 3.65 5.89 33.67
2 63.19 13.24 4.36 2.86 16.35

Table 11. Composition of coating Ni60A + 20% tungsten carbide + 0.3% graphene at different
positions (mass fraction, %).

Position Ni Cr Fe Si W

3 40.26 23.92 4.02 4.17 27.63
4 63.84 10.31 3.98 3.65 18.22
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Figure 16. Analysis of scanning composition of coating Ni60A + 20% tungsten carbide + 0.5%
graphene.

Table 12. Composition of coating Ni60A + 20% tungsten carbide + 0.5% graphene at different
positions (mass fraction, %).

Position Ni Cr Fe Si W

5 8.33 32.08 1.95 9.32 48.32
6 85.48 3.20 5.95 0.55 4.82

Figure 17 shows the X-ray diffraction patterns of WC/Ni60A composite coatings with
different graphene contents. According to the XRD results, the addition of graphene has
no obvious effect on the phase composition. With the addition of graphene, the content
of different phases changes, which is specifically reflected in the change in peak intensity
of different phases. After the addition of graphene, the peak intensity corresponding to
Cr3C2, WSi2, and W2C increases compared to other phases. The above phases are hard
phases, and the increase in their content helps to improve the hardness of the coating.
When the content of graphene increases to 0.3%, it can be seen that the peak value of the
generated phase in the XRD test results is relatively uniform. Combined with the above
microscopic morphology analysis, a small amount of graphene can make the structure
distribution more uniform and the grains more refined, so the hardness of the coating will
be increased, and the hardness difference at different positions will be reduced. However,
when the content of graphene increased to 0.5, it can be seen that the peak intensities of
Cr3C2 and C in the XRD test increased significantly, but the peak intensities of W and its
compounds and M23C6 decreased. It can be seen from Figure 16 that element segregation
is intense at 0.5% graphene, which will lead to the uneven hardness distribution of the
coating. The above analysis is consistent with the hardness test results in Table 9. Because
graphene can increase the thermal conductivity of the coating, when there is a small amount
of graphene in the coating, the thermal energy input by the laser can be dispersed to a
certain extent, making the generated phase distribution uniform and reducing element
segregation. However, due to the agglomeration characteristics of graphene, with the
increase in graphene content, combined with its excellent thermal conductivity, the laser
energy will accumulate during the cladding process, leading to the enrichment of the
generated phase during precipitation.
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5. Conclusions

The conclusions obtained in this paper are as follows:

(1) For the new coatings, the hardness distribution area can be divided into the cladding
layer zone, fusion zone, and heat-affected zone. The cladding layer zone has the
highest hardness, and the fusion zone belongs to the transition zone, where the
hardness begins to decrease.

(2) For the new coatings, 60% tungsten carbide and 0.3% graphene are the optimal ratios.
It can improve the erosion resistance of steel PDC drill bits under high-speed fluid
flow conditions underground.

(3) After adding WC, the hardness has significantly improved. However, when the WC
content further increases to more than 30%, the increase in hardness is limited.

(4) In addition, when the content of graphene is more than 0.3%, the branched structure
becomes thicker. In detail, this is a phenomenon where the segregation of Cr, Si,
and W becomes very obvious again, and the segregation of Fe occurs at the Ni
enrichment site.
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