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Abstract: The production of tight gas wells decreases rapidly, and the traditional method is difficult
to accurately predict the production of tight gas wells. At present, intelligent algorithms based on big
data have been applied in oil and gas well production prediction, but there are still some technical
problems. For example, the traditional error back propagation neural network (BP) still has the
problem of finding the local optimal value, resulting in low prediction accuracy. In order to solve
this problem, this paper establishes the output prediction method of BP neural network optimized
with the sparrow search algorithm (SSA), and optimizes the hyperparameters of BP network such
as activation function, training function, hidden layer, and node number based on examples, and
constructs a high-precision SSA-BP neural network model. Data from 20 tight gas wells, the SSA-BP
neural network model, Hongyuan model, and Arps model are predicted and compared. The results
indicate that when the proportion of the predicted data is 20%, the SSA-BP model predicts an average
absolute mean percentage error of 20.16%. When the proportion of forecast data is 10% of the total
data, the SSA-BP algorithm has high accuracy and high stability. When the proportion of predicted
data is 10%, the mean absolute average percentage error is 3.97%, which provides a new method for
tight gas well productivity prediction.

Keywords: sparrow search algorithm; BP neural network; yield prediction; dense gas wells

1. Introduction

Oil and gas well production prediction is one of the important contents of oil and gas
reservoir development scheme design. Predecessors have carried out a lot of research on
oil and gas well production prediction, and put forward various production prediction
methods. They can be roughly divided into three categories: mechanism model production
prediction method, decline curve production prediction method, and intelligent algorithm
production prediction method based on big data. A conventional oil reservoir is one that
has a stable geological structure, high rock porosity and permeability, and can typically be
explored and produced using conventional seismic exploration and drilling technology.
An unconventional reservoir, on the other hand, is one that has a complex geological
structure and low rock porosity and permeability. This includes shale gas, tight oil, and oil
sand, among others. Oil and gas reservoirs frequently necessitate the use of unconventional
techniques, such as horizontal wells and fracturing, which are more costly than conven-
tional reservoirs but also have greater potential reserves. In the field of unconventional oil
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and gas well production prediction, mechanical production prediction models are mostly
established based on the double medium theory put forward by Warren and Root [1] in
1963. The dual medium theory assumes that fractured reservoirs are composed of uniformly
distributed matrix systems and natural fracture systems. On this basis, many scholars
have established the prediction model of tight oil and gas production. The representative
scholars comprise Guo et al. [2], Horne et al. [3], Lian et al. [4], Larsen et al. [5], Raghavan
et al. [6], Chen et al. [7], Ozkan et al. [8], Yao et al. [9], Su et al. [10], Ren et al. [11,12],
Tang [13], and Bai et al. [14]. In 1945, Arps [15] established an exponential decline, hyper-
bolic decline, and harmonic decline model for predicting oil and gas well production based
on the law of oil well decline.

However, most of these models are suitable for the development of conventional
oil and gas reservoirs. In order to solve the percolation problem of unconventional oil
and gas reservoirs, domestic and foreign scholars have established many production
prediction models of decline curve, such as Ilk et al. [16], Valk ó P.P. [17], Duong [18], and
Hong [19]. The prediction of production and reserves of tight oil and gas reservoir is an
important part of reservoir engineering, and also a key index to evaluate the development
effect of oil and gas field. Multi-stage fractured horizontal well technology is used to
develop unconventional oil and gas reservoirs. The complexity of fluids near reservoirs
and production wells makes conventional production decline method, such as the Arps
production decline method, not applicable in many cases. At present, most of the models
used to predict production and reserves of production wells are analytical, numerical, or
empirical models. In contrast, the empirical model (production decline method) is still
the most widely used method in the oil and gas industry to predict future production
and reserves based on dynamic production trends. It is simple, easy to operate, has good
time-to-production, and allows us to easily predict production and life cycles. The actual
application shows the following: (1) The longer the production time and more data used in
forecasting, the smaller the relative error, but when the data of the first year are included, it
is easy to underestimate the output. (2) SEPD, YM-SEPD, and Duong are more suitable for
early decline, while hyperbolism is suitable for late decline. The production data predicted
by the late SEPD model are often low, while the value predicted by the Duong model is
high. Therefore, the combination model is recommended for the analysis of tight oil and
gas production decline. (3) Select wells with a long production history and analyze the
time for a single well to reach the boundary control flow. When the production time is less
than this time, the comprehensive use of YM-SEPD method and Duong method can obtain
conservative and reliable results; after the boundary effect appears, the hyperbolic decline
method is more convenient to predict than other methods.

However, the above two kinds of methods are established on the basis of certain
assumptions and cannot 100% reflect the law of real formation seepage. In order to
solve the defects of traditional prediction methods, scholars introduce machine learning
technology into the field of oil and gas exploration and production. The random forest
algorithm, support vector machine, artificial neural network, and other technologies are
applied in the field of productivity prediction. Scholars have established the production
prediction model of oil and gas wells based on artificial neural networks. In 2008, Ni [20]
and others used artificial neural network to predict productivity and establish a three-layer
BP neural network model, but the network will have the problem of slow convergence
and low accuracy. In order to improve the convergence speed, in 2011, Li [21] adopted the
Lmure M (Levenberg–Marquardt) algorithm to optimize the loss function on the basis of
BP neural network to accelerate convergence, but the problem of low convergence accuracy
still appeared without optimizing the weights and thresholds of the network. In 2015,
Ma [22] used genetic algorithm to optimize the BP neural network to optimize the network
weight, but the neural network will still converge slowly and fall into local optimization
in the highly volatile data. However, the above two kinds of methods are established on
the basis of certain assumptions and cannot fully (100%) reflect the law of real formation
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seepage. In order to solve the defects of traditional prediction methods, scholars introduce
machine learning technology into the field of oil and gas exploration and production.

In order to solve the problems of slow convergence and susceptibility to local optima
the BP neural network, this paper optimizes the activation function and loss function of
the BP neural network, and then uses the sparrow search algorithm to optimize the weight
and threshold of the BP network. On this basis, the SSA-BP neural network’s productivity
prediction model is established, which provides a good prediction tool for calculating the
production of tight gas wells.

2. Principle of Sparrow Search Algorithm

The sparrow search algorithm (SSA) was proposed by Xue [23] in 2020. The SSA
mainly imitates the foraging behavior and anti-predation behavior of sparrows. The whole
process is a mechanism in which the participant follows the discoverer and superimposes
vigilant at the same time. Discoverers often have a better adaptation value, can find a
better foraging location, and explore a wide range. In order to improve their fitness, the
participants always look for food around the discoverers, while the participators may
constantly monitor the discoverers and compete for food sources in order to increase their
predation rate. At the same time, the sparrow population will randomly appear a certain
proportion of vigilant; when the danger is found, the alarm will be issued by the discoverer
to decide whether to anti-feeding. With each iteration, the discoverer location is updated,
as follows:

Xt+1
i,j =

{
Xi,j. exp

(
− i

α.itermax

)
, i f R2 < ST

Xi,j + Q.L, i f R2 ≥ ST
(1)

where t represents the current number of iterations, itermax 1 and 2, 3, . . ., d. intermax is a
constant that represents the maximum number of iterations. Xij represents the location
information of the Ist sparrow in dimension j. α ∈ (0, 1] is a random number; R2(R2 ∈ [0, 1])
and ST(ST ∈ [0.5, 1]) denote early warning value and safety value, respectively. Q is a
random number with a normal distribution. L denotes a 1 × d matrix, where each element
in the matrix is 1.

When R2 < ST , this means that there are no predators around the foraging environ-
ment, and the discoverer can perform a wide range of search operations. If R2 ≥ ST , it
means that some sparrows in the population have found predators and have alerted other
sparrows in the population, and all sparrows need to fly quickly to other safe places to look
for food.

The location of the participant for each iteration is updated as follows:

Xt+1
i,j =

 Q. exp
(

Xworst−Xt
i,j

i2

)
, i f i > n

2

Xt+1
P +

∣∣∣Xi,j − Xt+1
P

∣∣∣ · A+ · L, otherwise
(2)

Among them, Xp is the best position occupied by the discoverer at present, and Xworst
represents the worst position in the whole world. A represents a 1 × d matrix, where each
element is randomly assigned to 1 or −1, and A+ = AT(AAT)−1. When i > n/2, this
shows that the i participant with lower fitness value has no food and is very hungry, so it
needs to fly to other places to find food in order to get more energy.

The positions of the vigilantes are as follows:

Xt+1
i,j =


Xt

best + β.
∣∣∣Xt

i,j − Xt
best

∣∣∣, i f fi > fg

Xt
i,j + K.

( ∣∣∣Xt
i,j−Xt

worst

∣∣∣
( fi− fw)+ε

)
, i f fi = fg

(3)

where is the current global optimal location. As a step size control parameter, β is a random
number with a normal distribution with a mean of 0 and a variance of 1. K ∈ [−1, 1] is
a random number, and fi is the fitness value of the current sparrow. fg and fw are the
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current global best and worst adaptation values, respectively. The constant of ε to avoid
zero denominator. For simplicity, when fi > fg indicates that the sparrow is on the edge
of the population, it is extremely vulnerable to predators. Xbest says the sparrows in this
position are the best and are safe in the population. When fi = fg, this indicates that
sparrows in the middle of the population are aware of the danger and need to be close to
their sparrows to minimize their risk of predation. K indicates that the direction in which
the sparrow moves is also a step size control parameter.

3. Sparrow Search Algorithm to Optimize BP Neural Network

According to the calculation logic of a traditional BP neural network, it is evident that
the subject has a strong self-learning ability and non-linear mapping ability, which are very
consistent with oil field production prediction. However, when the objective function is
very complex, because the loss function in BP algorithm is optimized by gradient descent,
it may fall into the trap of local optimization. Moreover, the uncertainty of the network
also increases because of the random initialization of weights and thresholds, that is, the
weights and thresholds of the network depend on the quality of sample data, which reduces
the accuracy of BP neural network in oil field production prediction.

The global search ability of the sparrow search algorithm can better search the weights
and thresholds of the BP neural network, so that the neural network can reach a stable state
more quickly and obtain the optimal prediction result. The sparrow search algorithm is
used to optimize the BP neural network and also to fully utilize their respective strengths,
achieving mutual complementarity and improving the accuracy of the model.

The process of optimizing the BP network via the sparrow search algorithm mainly
consists of two parts: sparrow search algorithm optimization and neural network predic-
tion. In order to optimize the sparrow search algorithm, we first determine the sparrow
population. Because the weight and threshold are m × n-dimensional matrix, respectively,
the vector exists in the BP neural network structure (net). In order to optimize each element,
we first take out the elements, and then put them into the vector according to the order to
complete the composition of the sparrow population. The length of each sparrow in the
population is the sum of all connection weights and threshold lengths of the neural network.
There are n neurons in the hidden layer, h neurons in the output layer, w is the weight
between the input layer and the hidden layer, lw is the weight between the output layer
and the hidden layer, b is the threshold of the hidden layer, and o is the threshold of the
output layer. When the input layer is i, the length of the sparrow is I × n + n + n × h + h.
The optimization process represented with a flow chart added via the sparrow search
algorithm to optimize the BP neural network is shown in Figure 1.

The individual fitness value of the sparrow was calculated. The initial weight and
threshold are used for network training, and the overall mean square error (MSE) of the
training set and the test set is taken as the fitness function. The smaller the fitness function
value is, the more accurate the training is. The sparrow position is gradually updated
and iterated to find the global optimal solution, that is, the optimal sparrow individual.
The optimal individual position of the output is used as the weight and threshold of the
neural network for training and prediction.
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4. Case Prediction
4.1. Model Evaluation Criteria

The root mean square error (RMSE), mean absolute error (MAE), and mean absolute
percentage error (MAPE) are selected as the evaluation index of the model. The first
performance index is the root mean square error (RMSE), which is used to measure the
deviation between the predicted value and the actual value. The smaller the root mean
square error, the higher the prediction accuracy. The second performance index is the mean
absolute error (MAE), which is the average of the absolute error between the predicted
value and the actual value, which can directly reflect the actual situation of the predicted
error. The closer the value is to 0, the more accurate the prediction. The third performance
indicator is the mean absolute percentage error (MAPE), which refers to the ratio of the
absolute value of all predicted errors to the actual value. The closer the value is to 0, the
more accurate the prediction.

4.2. Neural Network Hyperparameter Optimization

Taking a well (Well-1) in the Ordos Basin as an example, this paper introduces the
super-parameter optimization process of activation function, training function, and hidden
layers in a BP neural network, and then constructs the SSA-BP network model. Among
them, the data of more than 600 days since the production of Well-1 are taken as a sample,
and the predicted data accounts for 10%. The four nodes in the input layer of the neural
network are cumulative production time, daily production time of the gas well, oil pressure,
and casing pressure.

(1) Optimization of activation function

The predicted values of the BP neural network under different activation functions are
shown in Table 1. It can be seen that the hyperbolic tangent S-type transfer function (tansig)
is the best for the input layer activation function, so the activation function is tansig.
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Table 1. Forecast error table under different activation functions.

Activation Function Logsid Tansig Purelin

Mean absolute error (MAE) 1.2601 0.70203 1.2872
Mean square error (MSE) 1.6058 0.52161 1.7083

Root mean square error (RMSE) 1.2672 0.72223 1.307
Mean absolute percentage error (MAPE) 26.87% 14.93% 27.41%

(2) Optimization of training function

When the activation function is tansig, the prediction accuracy of the BP network
under different training functions is shown in Table 2; it can be seen that the prediction
effect is the best when the training function is trainlm (Lmurm algorithm), so the training
function is optimized for trainlm.

Table 2. Forecast error table under different training functions.

Training Function Traingd Trainrp Trainbfg Trainlm

Mean absolute error (MAE) 1.0102 2.2183 0.67071 0.44247
Mean square error (MSE) 1.0517 5.7882 0.46471 0.20631

Root mean square error (RMSE) 1.0255 2.4059 0.6817 0.45422
Mean absolute percentage error (MAPE) 21.59% 47.56% 14.33% 9.37%

(3) Optimization of the number of hidden layers and nodes

The single hidden layer BP neural network model and the double hidden layer neural
network model are established, respectively. The number of hidden layer neuron nodes is
adjusted using the following empirical formula.

hiddennum =
√

m + n + a (4)

In the formula, m is the number of nodes in the input layer, n is the number of nodes
in the output layer, and a is generally taken as an integer between 1 and 10.

The number of hidden layer neurons in the single hidden layer network model is 7.
In the double hidden layer neural network model, the best number of nodes in the first hid-
den layer is 9, and the best number of nodes in the second hidden layer is 5. The prediction
results of the model are shown in Table 3, and the results show that the prediction effect of
double hidden layers is better.

Table 3. Forecast error table under different hidden layers.

Evaluation Criteria Double Hidden Layer Single Hidden Layer

Mean absolute error (MAE) 0.36743 0.70203
Mean square error (MSE) 0.14877 0.52161

Root mean square error (RMSE) 0.3857 0.72223
Mean absolute percentage error (MAPE) 7.77% 14.93%

(4) SSA-optimized BP neural network model

On this basis, SSA is used to optimize a single-layer BP neural network and double-
layer BP neural network, respectively. The population size of the sparrow algorithm is set
to 30, the maximum evolution algebra of population is 50, the proportion of discoverers
is set to 70%, and the proportion of vigilant is set to 20%. The best sparrow individual is
optimized with the sparrow search algorithm, which is used as the weight and threshold of
the BP neural network. Results as shown in Table 4; after the SSA optimization of weights
and thresholds, the prediction effect of single hidden layer BP network model is better
than that of double hidden layer model, and the double hidden layer model will appear
to be over-fitting after optimization. Tight gas reservoirs account for more than half of
unconventional natural gas resources in China and have a good development prospect.
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The efficient development of tight gas reservoirs has long-term strategic significance for
ensuring energy supply and promoting social and economic development of our country.
Due to the special geological characteristics and complex percolation mechanism, tight gas
reservoirs are different from conventional gas reservoirs with poor reservoir physical prop-
erties, low natural productivity, rapid production decline, and poor production stability,
and they usually require horizontal wells and hydraulic fracturing to achieve industrial
gas flow. Therefore, it is of great theoretical and practical significance to study the basic
seepage theory of different well types of tight gas reservoirs and reveal the influence of
various gas well and formation parameters on the development of tight gas reservoirs.
This is important in order to accurately grasp the production performance of gas wells and
guide the reasonable development of tight gas reservoirs.

Table 4. Forecast error table under different hidden layers after SSA optimization.

Evaluation Criteria. SSA—Double Layer BP SSA—Single Layer BP

Mean absolute error (MAE) 0.21993 0.17476
Mean square error (MSE) 0.06234 0.036954

Root mean square error (RMSE) 0.24968 0.19223
Mean absolute percentage error (MAPE) 4.60% 3.76%

Using the single-layer BP model optimized with the sparrow search algorithm and the
model without the sparrow search algorithm, the prediction effect of gas well productivity
is shown in Figure 2. From Figure 2b, we can see that the network model optimized
without the sparrow search algorithm has a poor fitting result in the training stage, and
the predicted value of the model in the learning stage is generally lower than the real
production value. This is because the selection of weights and thresholds of the model
without SSA optimization is random; even if other super parameters of this model have
been optimized, it is still difficult to use directly. The model optimized with the sparrow
algorithm is obviously better in both the fitting effect of the training section and the test
results of the test section (as shown in Figure 2b).
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4.3. Comparative Analysis of Prediction Results

In order to further verify the practicability and stability of the SSA-BP neural network
built in this paper, the SSA-BP neural network, HongYuan model [20], and Arps model [16]
are used to predict productivity based on the actual production data of 20 tight gas wells in
the Ordos Basin. The average prediction days are 49.75 days when the forecast accounts for
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10%, and the average absolute mean percentage error predicted with the SSA-BP model is
3.97%. The average absolute mean percentage error predicted with the HongYuan model
is 33.04%. The average absolute mean percentage error predicted with the Arps model
is 22.94%. When the forecast ratio is 20%, the average prediction days are 99.5 days, and
the average absolute mean percentage error predicted with the SSA-BP model is 20.16%,
indicating that the long-term prediction effect is poor. The average prediction days are
49.75 days when the forecast accounts for 10%, and the average absolute mean percentage
error predicted with SSA-BP model is 3.97%. The average absolute mean percentage error
predicted with the HongYuan model is 33.04%. The unsteady seepage flow model of the
horizontal well in tight gas reservoir is established, and the Pedrosa substitution and regular
perturbation theory combined with the Laplace transform, orthogonal transform, and
Green’s function theory are applied to solve the model. Additionally, the pressure solution
and constant pressure production solution of horizontal well are obtained. The flow stages
of uniform medium pressure dynamic and production decline curve can be divided into the
pure wellbore accumulation effect stage, transitional flow stage after wellbore accumulation,
early vertical radial flow stage, middle linear flow stage, and late system quasi-radial flow
stage. The flow stages of the dual medium pressure dynamics and production decline
curves can be divided into the pure wellbore accumulation effect stage, transitional flow
stage after wellbore accumulation, early vertical radial flow stage, early linear flow stage
in fracture system, middle radial flow stage in fracture system, cross-flow stage in matrix
system to fracture system, and late quasi-radial flow stage in system. The unsteady seepage
flow model of fractured horizontal wells in tight gas reservoirs was established, and the
linear sum solution expression was derived by applying Pedrosa substitution, regular
perturbation theory, Laplace transform, and Green’s function theory. Then, the pressure
solution and constant pressure production solution of fractured horizontal wells were
obtained with a discrete analysis of fractured fractures. Hence, the flow stages of uniform
medium pressure dynamics and production decline curves can be divided into the pure
wellbore accumulation effect stage, transition flow stage after wellbore accumulation
perpendicular to the fracturing fracture in the early linear flow stage, near the fracturing
fracture in the middle stage of the system linear flow stage perpendicular to the horizontal
wellbore, and the late system quasi-radial flow stage. The flow stages of the dual medium
pressure dynamics and production decline curves can be divided into the pure wellbore
reservoir effect stage, transitional flow stage after concurrent reservoir, fracture linear
flow stage, fracture radial flow stage, natural fracture linear flow stage, natural fracture
radial flow stage, matrix system to fracture system cross-flow stage, and late total system
pseudo-radial flow stage.

5. Conclusions

(1) This paper optimizes the BP neural network based on the sparrow search algorithm.
Aiming at the optimization of the trasig activation function, trainlm training func-
tion, and single-layer BP neural network for tight gas wells in the Ordos Basin, the
parameters of the sparrow search algorithm are also mentioned, which realizes the
automatic optimization of a neural network’s weight and threshold, and avoids the
tedious parameter adjustment process of a conventional neural network.

(2) The production of 20 tight gas wells in the Ordos Basin is predicted by using the
SSA-BP neural network, HongYuan model, and Arps model. The results show that
the average absolute mean percentage error of the SSA-BP neural network is only
3.97%, the error of the HongYuan model is 33.04%, and the error of the Arps model is
22.94%. It shows that the model established in this paper has high prediction accuracy
and can effectively predict the production of tight gas wells.

(3) The prediction results of the SSA-BP neural network under different proportions
of prediction data are compared and analyzed. The average error is 3.97% when
the proportion of prediction data is 10%, and the average error is 20.16% when the
proportion of prediction data is 20%. The prediction accuracy of the model decreases
with the increase in the proportion of prediction data.
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