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Abstract: The wettability of coal is an important factor influencing hydraulic stimulation. Field-
trial data has proven that high-pressure N2 injection plays a positive role in increasing the coalbed
methane (CBM) production rate. For the purpose of investigating the mechanism by which N2

promotes the gas rate, multiple experiments were conducted sequentially on the wettability of
anthracite under different N2 pressures. Testing of the coal surface contact angle was conducted
under 0.1–8 MPa nitrogen pressure using a newly built contact angle measuring device. The coal
samples were collected from the Xinjing Coal Mine in the Qinshui Basin, China. The test results
revealed that the contact angle increased with increasing N2 pressure. That is, the contact angle was
77.9◦ at an N2 pressure of 0.1 MPa and gradually increased to 101.4◦ at an infinite N2 pressure. In
contrast, the capillary pressure decreased with an increasing N2 pressure, from 0.298 MPa to −0.281
MPa. The relationship between contact angle and N2 pressure indicated that the wettability was
reversed at a N2 pressure of 5.26 MPa, with a contact angle of 90° and a capillary pressure of 0 MPa.
The capillary pressure reversed to a negative value as the N2 pressure increased. At the microlevel,
a high N2 pressure increases the surface roughness of coal, which improves the ability of the coal
matrix to adsorb N2, forming the gas barrier that hinders the intrusion of water into the pores of the
coal matrix. The results of this study provide laboratory evidence that high-pressure N2 injection
can prevent water contamination and reduce the capillary pressure, thus benefiting coalbed methane
production.

Keywords: coalbed methane; contact angle; capillary pressure; wettability; surface roughness

1. Introduction

CBM is a type of clean and unconventional natural gas that holds immense signifi-
cance in its development and utilization. It offers significant contributions in supplying
clean energy, mitigating coal-mine gas disasters, and reducing carbon emissions [1–4].
Permeability plays a crucial role in evaluating the production potential of CBM wells [5–7].
Low-permeability coal seams are widely developed in China, accounting for 72%, and have
been incentivized for a long time in the CBM industry [8–10].

Hydraulic fracturing has obvious advantages in improving the permeability of coal
reservoirs and CBM production and has been widely used worldwide [11–13]. However,
during high-pressure hydraulic fracturing, water intrusion into the pores of the coal matrix
increases the capillary pressure, leading to capillary trapping or the water-blocking effect,
inhibiting the transportation of CBM and reducing the recovery rate [14–17]. Contact
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angle is one of the important parameters for characterizing wettability. The smaller the
contact angle is, the better the wettability of the coal surface. On the contrary, the larger
the contact angle is, the worse the wettability of the coal surface. In order to reduce the
degree of inhibition of CBM desorption via hydraulic fracturing, increasing the coal–water
contact angle by adding surfactants to the fracturing fluid is widely used in CBM well
fracturing [18–20]. The liquid phase plays a certain role in affecting the contact angle of
the coal surface, but the contact angle is more widely related to the properties of the solid
phase, liquid phase, and gas phase. Among them, both solid and gas phases are key factors
affecting the contact angle of the coal surface.

The surface roughness of coal (a solid property) is another factor determining the
coal–water contact angle [21–23]. Shojai Kaveh et al. [24] investigated the wettability and
surface roughness of hvbB coal under different CO2 pressure atmospheres and found
that, with an increase in CO2 pressure, the surface roughness of coal increased because
of the expansion of the coal matrix as a result of the diffusion of CO2 into the coal matrix.
Consequently, the contact angle increased. Song et al. [25] used atomic force microscopy
(AFM) to study and analyze the relationship between the surface roughness and wettability
of middle-order coal. It was found that increased roughness led to poorer wettability. The
same results were also obtained for different coal ranks in a similar study [26].

The gas phase is another important factor affecting contact angle. Arif et al. [27]
tested the contact angles of different coal rank samples under CO2 pressures of 0–20 MPa
and found that the contact angles of the different coal ranks increased with an increasing
CO2 pressure. A research group tested the coal–water contact angles of different-rank coal
under CH4, N2, CO2, and He pressures of 0–2 MPa [28–30]. They found that, as the gas
pressure increased, the contact angles all increased, the higher the coal rank, the stronger the
gas adsorption and the greater the increase in contact angle. The gas adsorption strengths
were as follows: CO2 > CH4 > N2 > He. It can be found that, in a gaseous environment,
the contact angle increases with the increasing gas pressure, and the increasing trends of
adsorbent gases are larger than those of non-adsorbent gases.

High-pressure N2 is a common gaseous medium used for fracturing and production
enhancement in low-permeability and low-pressure coal reservoirs because it has as low
viscosity, strong penetration ability, and significant fracturing and permeability enhance-
ment effects [23,31,32]. When its high expansion energy is released, it has the effects of
driving the flow of the water in the coal seam, reducing the degree of water intrusion in
the reservoir, and alleviating the damage of water to the reservoir [33,34]. Zhu et al. [35]
conducted contact angle experiments on three coal samples under different N2 pressures
and found that the wettability worsens with an increasing N2 pressure, and the highest
rate of CBM production was related to the N2 pressure. The field-test results of Cao [36]
and Ni [37] showed that the injection of high-pressure N2 into coal beds can increase CBM
production. Therefore, an in-depth exploration of the contact angle properties under a
high-pressure N2 atmosphere is necessary.

Previous studies have indicated that injecting high-pressure N2 into coal seams can in-
crease the contact angle, eliminate the water-blocking effect, and increase CBM production.
In engineering practice, engineers use a simple model to evaluate the change characteristics
of the contact angle under N2 injection to optimize the engineering design, but this model
is currently unclear. Therefore, in this study, a high N2 pressure environment contact angle
measurement device was developed, a calculation model for the contact angle of anthracite
under different N2 pressures was established, and the trend of contact angle was analyzed.
The changes in the coal surface roughness with and without N2 treatment were tested
and the influencing factors of the coal wetting characteristics under high N2 pressures
were explained from a microscopic perspective to provide theoretical guidance for the
improvement of the CBM recovery rate via high N2 pressure treatment.
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2. Coal Samples and Laboratory Experiments
2.1. Sample Collection and Preparation

The coal samples were collected from coal seam 3# (Figure 1) in the Shanxi Formation
(P1sh) of the Xinjing Coal Mine, located in the northern Qinshui Basin, Shanxi Province,
China. The thickness of this coal seam is 0.755–4.31 m, with an average of 2.33 m. The
methane content is 18.17 m3/t, and the permeability is 0.00047–0.00344 mD. And, it has a
simple structure. Disturbed by tectonic deformation, fragmented coal and mylonite coal
are well developed. Fresh block samples collected from the working face were immediately
sealed with foil to prevent oxidation and moisture loss and were transported to the lab-
oratory for cutting and crushing in preparation for subsequent testing. According to the
relevant national standards [38–40], approximate analysis, elemental analysis, and mineral
composition and density testing were conducted on the coal samples (Tables 1 and 2). The
coal rank was classified as anthracite, indicated by the reflectance of 2.45% and volatile
content of 11.06%. The mineral is mainly kaolinite, with a content of 70%. The true density
is 1.67 g/cm3, and the apparent density is 1.34 g/cm3.
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Figure 1. Geologic and stratigraphic maps of the Xinjing Coal Mine.

Table 1. Basic parameters of the coal samples.

Proximate Analysis (%) Element Analysis (%) Ro,max (%)
Mad Aad Vad FCad Cdaf Hdaf Odaf Ndaf

1.00 15.74 11.06 72.20 91.52 3.95 3.05 1.11 2.46

Note: M: moisture content; A: ash yield; V: volatile matter; FC: fixed carbon; C: carbon; H: hydrogen; O: oxygen;
N: nitrogen; ad: air-dry basis; daf: dry ash-free basis; Ro,max: maximum vitrinite reflectance.

Table 2. Mineral composition and density of coal samples.

Minerals (%) Density (g/cm3)

Kaolinite Quartz Boehmite True Density Apparent Density

70 23.8 6.2 1.67 1.34
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2.2. Contact Angle Experiment under Gas Atmosphere

To test the wettability of the coal under different N2 pressure environments, a contact
angle measurement platform was developed based on the German KRÜSS Drop Shape
Analyzer DSA 25 (Figure 2). The platform was newly constructed by adding four units,
including 1⃝ a high-pressure chamber made of transparent glass to allow clear observation
of the water drops for accurate contact angle testing, which was the key component;
2⃝ a gas-injection system for injecting gas into the pressure chamber; 3⃝ a manual water-

injection pump; and 4⃝ a sample adjustment system for conducting multiple measurements
of one sample by adjusting the sample position. This platform can achieve contact angle
testing under a gas atmosphere with pressures of 0–10 MPa, and the measurement range of
the contact angle is 0–180◦, with an accuracy of 0.1◦ (Table 2). The specific test steps are
described below.

(1) Make two cake-shaped coal samples (40 mm in diameter and 5 mm in thick). Use 240,
600, 1000, and 2000 mesh sandpaper to polish the samples until the surface is smooth
and free of particle sensation. Finally, remove the residual powders on the surface of
the samples using high-purity N2;

(2) Place the sample in the high-pressure transparent chamber and adjust the sample
position, such that it can be observed through a camera. Turn on the gas-injection
system to inject N2 with a preset pressure and maintain this pressure for 4 h to allow
the N2 and coal samples to fully interact;

(3) Slowly rotate the water-injection pump to drip distilled water onto the coal surface,
record the water droplet on the coal surface using a high-definition camera to measure,
and calculate the contact angle using a computer testing system;

(4) Considering the nonuniformity of the coal surface, drop five drops and conduct
measurements at different positions on the coal sample and take the average value as
the contact angle of the sample;

(5) Once step 4 is completed, remove the sample and allow it to dry. Then, repeat steps
1–4 to test the coal-water contact angle under different N2 pressures of 1, 2, 3, 4, 5, 6, 7,
and 8 MPa at a temperature of 20 ◦C.
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Figure 2. Diagram of contact angle testing device in pressured N2 atmosphere.

2.3. Surface Roughness

The roughness of coal can affect the spreading ability and interaction forces of liquids
on the surface of the coal [41]. According to the national standard GB/T 40066-2021 [42],
AFM testing was performed on two coal samples that had undergone contact angle testing
using the German Bruker Dimension Icon atomic microscope. The instrument can mea-
sure material properties at the nanoscale and compare the surface-roughness differences
between N2-treated and non-N2-treated coal samples at the nanoscale. Finally, NanoSco-
peAnalysis1.9 software was used for 2D and 3D analysis of the coal surface.
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3. Results and Analysis
3.1. Coal–Water Contact Angle

Figure 3 presents the test images of the coal–water contact angle under N2 pressures
from 0.1 MPa to 8.0 MPa. The measured contact angle under a pressure of 0.1 MPa was
77.9◦. As the N2 pressure increased from 1.0 MPa to 8.0 MPa, the contact angle gradually
increased from 83.0◦ to 92.3◦. In this study, the contact angle was the greatest (92.3◦) under
the designed N2 pressure of 8.0 MPa and was 14.4 ◦ greater than that of 0.1 MPa. Wettability
changed from water–wetness (contact angle < 90 ◦) to gas–wetness (contact angle > 90◦).
Within the N2 pressure range of 0 to 5 MPa, the contact angle increased greatly. After 5 MPa,
the increase gradually slowed down. It can be seen from Figure 3 that there was a N2
pressure, within 5 to 6 MPa, at which the contact angle reached 90◦, which is the water–gas
reverse point.
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Figure 3. Photos showing the contact angles under different N2 pressures.

3.2. Surface Roughness

The surface roughness of coal is related to its wettability characteristics. The higher the
roughness, the worse its wettability. It has also been found that roughness is an indicator for
evaluating the adsorption capacity of coal. The larger the roughness, the more adsorption
points present on the coal, and the stronger the adsorption capacity [43]. Figure 4 shows the
two- and three-dimensional morphology of the coal surface. The colors in Figure 4 represent
the relative elevations or different degrees of height and undulation. The lighter the color, the
higher the relative elevation; the darker the color, the lower the relative elevation.
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Figure 4a presents an AFM image of the sample without N2 treatment. Its surface has
small particle clusters with relatively sharp and steep peaks. The relative elevations of the
low caves and high peaks range from −30.8 to 31.3 nm, with an elevation difference of
62.1 nm, and the calculated average roughness is 5.6 nm. Thus, the surface roughness of
the sample without N2 treatment is small. Figure 4b presents an AFM image of the sample
subjected to N2 treatment. The relative elevations of the low caves and high peaks range
from −96.1 to 101.3 nm, with a difference of 197.4 nm, and the calculated average roughness
is 22.3 nm. The average roughness is 3.2 times greater after N2 treatment (Table 3).

Table 3. Surface roughness of the coals with and without N2 treatment.

Coal Sample Maximum Fluctuation Height (nm) Minimum Fluctuation Height (nm) Roughness (nm) Standard Deviation (nm)

Without N2 treatment 31.3 −30.8 5.6 0.28
Pressure N2 treated 101.3 −96.1 22.3 2.14

4. Discussion
4.1. Mathematical Relationship between Contact Angle and N2 Pressure

To determine how the contact angle varies with increasing N2 pressure, as well as
the water–gas wettability reverse point, a mathematical relationship between the contact
angle and N2 pressure was determined (Figure 5 and Equation (1)). The fitting coefficient
R2 is 0.97, indicating a high degree of confidence. the coal–water contact angle in the
N2 atmosphere (◦) is θ, and P is the nitrogen pressure (MPa).

θ =
abP

1 + bP
+ c (1)Processes 2024, 12, x FOR PEER REVIEW 7 of 13 
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Figure 5. Contact angle versus N2 pressure.

a is the theoretical maximum contact angle increment under whatever high N2 pressure
atmosphere (◦), which is related to the adsorption capacity of a specific coal rank. In this study,
the theoretical value of a is 23.02◦ in a N2 atmosphere for Xinjing’s anthracite coal. In the
case of a CO2 and CH4 gas atmosphere, the a value of the studied coal samples will increase
because the adsorption capacities of CO2 and CH4 are stronger than that of N2.

b is the reciprocal of the N2 pressure when the wettability undergoes a reversal
(MPa−1). In this study, the b value of the anthracite coal is 0.19 (Table 4 and Figure 5). It is
an indicator for evaluating the difficulty of the wettability reversal of a coal sample. The
higher the value of b, the easier the wettability reversal. The theoretical N2 pressure of the
wettability reversal is 5.26 MPa for the studied coal sample.
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c is the theoretical initial contact angle under standard atmospheric pressure of 0.1
MPa (◦). The c value of the studied coal sample is 78.38◦, which is consistent with the
measured value of 77.90◦.

Table 4. Key parameters in Equation (1) for the studied coal.

a (◦) b (MPa−1) c (◦) R2

23.02 0.19 78.38 0.97

It should be noted that Equation (1) is similar to the Langmuir equation, a mathematical
expression of the isothermal adsorption mechanism. The increase in coal–water contact angle,
induced by N2, is mainly caused by the pressure of N2 occupying more adsorption sites,
which finally hinders the water molecules from intruding into the pores of the coal matrix.

In this study of anthracite coal, Equation (1) can be written as follows:

θ =
23.02 × 0.19P

1 + 0.19P
+ 78.38 (2)

Using the above equation, we can evaluate or predict the contact angle variation range
in different N2 pressure environments, providing CBM engineers with a high confidence in
determining the N2 injection design. However, for different coalification ranks, the values
of a, b, and c will be different and can be obtained via laboratory experiments.

Although the contact angle has been studied under pressured-gas conditions for a
long time, the mathematical expression in Equation (1) is addressed for the first time in this
study [24,30,44].

4.2. Capillary Pressure Changes Induced by Contact Angle and N2 Pressure

CBM engineers must reduce the water pressure inside the matrix pores and fractures to
below the critical desorption pressure through water drainage, resulting in the desorption
and production of CBM. The magnitude and direction of the capillary pressure of the
matrix pores have a significant impact on the migration ability of CBM [45]. When the
capillary pressure is positive, it resists and hinders the migration of CBM. The greater the
capillary pressure, the greater the resistance, and the more difficult is the gas migration.
When the capillary pressure is reversed to negative, it transforms into the driving force and
promotes the migration of CBM [46,47]. The smaller the capillary pressure is, the greater
the driving force.

The magnitude of the capillary pressure can be expressed by the Laplace formula:

Pc =
2σcosθ

rc
(3)

where Pc is the capillary pressure (MPa); σ is the surface tension (mN/m); θ is the contact
angle (◦); and rc is the capillary radius (nm).

According to the decimal coal pore classification scheme [48], <10 nm pores are adsorption
pores, 10–100 nm pores are diffusion pores, and >100 nm pores are seepage pores. Therefore,
the capillary pressure of the studied coal is calculated based on the contact angle obtained from
the experimental testing (0.1–8 MPa) and Equation (1). The rc and surface tension σ, of the water
are determined to be 100 nm and 71.2 mN/m. According to Equation (3), the capillary pressures
under different N2 pressures are calculated (Table 5 and Figure 6).



Processes 2024, 12, 568 8 of 12

Table 5. Capillary pressures for various contact angles and N2 pressures.

Contact Angle Source N2 Pressure (MPa) Contact Angle (◦) Capillary Pressure (MPa)

Actual measurement

0.1 77.9 0.298
1 83.0 0.174
2 85.3 0.117
3 86.0 0.099
4 87.1 0.554
5 89.7 0.007
6 91.4 −0.035
7 91.8 −0.045
8 92.3 −0.057

Fitted

10 93.5 −0.086
15 95.4 −0.135
20 96.6 −0.164
25 97.4 −0.183
30 98.0 −0.197
35 98.4 −0.208
40 98.7 −0.216
∞ 101.4 −0.281
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Figure 6 shows that as the N2 pressure increases, the contact angle gradually increases,
and the capillary pressure gradually decreases. Under a high-pressure N2 atmosphere, the
theoretical maximum contact angle of the experimental coal sample increases to 101.4◦,
and the theoretical minimum capillary pressure decreases to −0.281 MPa. When the N2
pressure reaches 5.26 MPa, the contact angle is 90◦, and the capillary pressure is 0 MPa.

Thus, we define 5.26 MPa as the critical N2 pressure for the studied coal, at which the
wettability is reversed and the capillary pressure changes from a resisting force to a driving
force. When the N2 pressure is less than 5.26 MPa, the contact angle is less than 90◦, and
the capillary pressure is positive. The capillary pressure is directed from the liquid phase
to the gas phase (Figure 7a), providing resistance and hindering CBM migration or sealing
the CBM in the pores and fractures. This phenomenon is defined as the water-blocking
effect. When the N2 pressure is greater than 5.26 MPa, the contact angle is greater than 90◦,
which causes the capillary pressure to be negative, and, finally, the capillary force reverses
from the gas phase to the liquid phase (Figure 7b). The capillary pressure changes from a
resisting force to a driving force, driving the transportation of CBM within the coal matrix
pores and fractures, which promotes more CBM production.
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Coal is a porous material. Nanometer scale micropores, which are most easily water
blocked under high-pressure hydraulic stimulation, account for 90% of the total pore volume.
The water-blocking effect is a significant factor in reducing methane migration and production.
Surfactant technology has been developed to eliminate the water-blocking effect in the CBM
industry for a long time. But, it has a high cost, and the desired goal is not always reached.
The new findings of this study provide a new measure for reducing the water-blocking effect,
i.e., to efficiently develop coal reservoirs, i.e., injecting high-pressure N2.

4.3. Mechanism of Contact Angle/Capillary Pressure Reversal under N2 Pressure

Under different gas atmospheres, such as CH4 [28], CO2 [27], and N2 [35], as the gas
pressure increases, the gas density inside the testing chamber also increases. The adsorption
of gas molecules on the coal surface also increases, reducing the ability of water molecules
to invade the coal matrix. This leads to an increasing contact angle and capillary pressure.
When the contact angle is greater than 90◦, the capillary pressure changes to a negative
value. The roughness tests results for the coal samples with and without N2 treatment
obtained in this study provide a better understanding of the mechanism by which the
competitive adsorption of N2 and water affects the contact angle.

Competitive adsorption of N2 and water occurs as follows. When the coal initially
adsorbs a small amount of gas (Figure 8a), and as the pressure increases progressively,
more and more adsorption sites in the coal are occupied by the gas. As the monolayer
adsorption (Figure 8b) changes to multilayer adsorption (Figure 8c), a “gas barrier” forms
on the surface of the coal. This “gas barrier” effectively hinders the intrusion of water
molecules and increases the contact angle.
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Coal has a specific expanding–shrinking property. That is, it expands when gas is
adsorbed and shrinks when gas is desorbed. The magnitude of coal expansion gradually
increases as more gas is adsorbed in the coal, and we can use the surface roughness to
describe the degree of expansion, i.e., the greater the roughness. The greater the expansion
of the coal, the more gas is adsorbed.

The observations presented in Figure 4 and Table 3 reveal that the roughness of coal
increased by 3.2 times after high-pressure N2 (8.0 MPa) treatment. This high roughness is
interpreted as the significant expansion of coal, as a large amount of N2 is adsorbed under
high pressure. Thus, the “gas barrier” with multilayer N2 adsorption generated on the coal
surface strongly hinders the intrusion of water into the coal matrix, causing the contact
angle to increase and the capillary pressure to decrease, becoming even more negative.

5. Conclusions

For investigating the mechanism by which pressurized N2 injection in a coal reservoir
significantly improves CBM production, a series of coal–water contact angle experiments
on anthracite samples were conducted under N2 pressures of 0.1 to 8 MPa using a newly
constructed testing platform. The surface roughness of samples with and without N2 treatment
was measured via AFM. The main conclusions of this study are as follows.

(1) The contact angle of anthracite increases with the increase of N2 pressure and finally
stabilizes; the relationship between contact angle and N2 pressure is similar to the
Langmuir isothermal adsorption curve;

(2) With the increase of N2 pressure, the amount of N2 adsorbed in the coal matrix
increases, which is the main reason for the increase in contact angle. At 5.26 MPa N2
pressure, the contact angle reaches 90◦, and the wettability of anthracite is reversed.
The capillary pressure changes from a resisting force to a driving force;

(3) In addition, high-pressure N2 increases the surface roughness of the coal matrix and
enhances the adsorption capacity and amount of N2, which is beneficial for improving
the contact angle.

This research improves our understanding of why and how high-pressure N2 stimula-
tion can reduce the capillary pressure or alleviate the water-blocking effect in low-pressure
coal reservoirs, and they provide an advanced measure with a high confidence of effectively
increasing CBM production via high-pressure N2 injection.
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