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Abstract: The use of integrated plasma-activated water (PAW) with micro/nanobubbles (MNBs),
ultraviolet (UV) photolysis, and ultrasonication (US) for the synergistic efficiency of Escherichia coli
inactivation in chicken meat was investigated. A 2k factorial design was employed to optimize the
combined treatment parameters for pathogen disinfection in Design of Experiments (DOE) techniques.
Its effectiveness was evaluated based on electrical conductivity (EC), oxidation–reduction potential
(ORP), hydrogen peroxide (H2O2) concentration, and E. coli inactivation. The most significant impact
on E. coli reduction was observed for MNBs, UV treatment time, and their interaction (MNBs and
UV). Optimal E. coli inactivation (6 log10 CFU/mL reduction) was achieved by combining PAW with
MNB and UV for 10 and 20 min, respectively. Integrating PAW with appropriate supplementary
technologies enhanced E. coli inactivation by 97% compared to PAW alone. This novel approach
provides a promising alternative for pathogen control in chicken meat, potentially improving food
safety and shelf life in the poultry industry.

Keywords: plasma technology; plasma-activated water (PAW); microbubbles/nanobubbles;
ultraviolet; ultrasonication; pathogen inactivation

1. Introduction

Poultry is a revenue-generating industry that continues to expand globally. Due to
naturally existing microbes and enzymes, rotting food has a shorter shelf life and worse
quality than fresh food. Traditional methods, like chemical disinfection and cold storage,
while effective, often come with drawbacks such as residue buildup and a limited shelf
life. This necessitates exploring innovative solutions to guarantee the quality and safety of
poultry products while meeting the growing demand for fresh and diverse food options.
Chemical disinfection also causes residues in the production process that affect the health
of consumers. However, in order to maintain food quality, which affects consumer health,
it is crucial to develop efficient antimicrobial treatments and apply them responsibly
as the demand for meat grows. An increased consumption of food products that are
linked to illness outbreaks has been promoted by the desire for a healthy lifestyle and
customers’ desires for more food diversity and accessibility, with a diet that is high in fresh
foods, processed foods, and minimally processed foods. These goods are used without
any processing or raw components that can introduce microorganisms [1]. Food-borne
pathogens in the poultry industry, such as S. aureus, C. perfringens, C. botulinum, and B.
cereus, can also enter the human food chain via contaminated poultry carcasses [2].
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Plasma technology emerges as a promising alternative for microbial control in the
poultry industry [3–8]. This technology utilizes cold ionized gas to generate reactive oxygen
species (ROS), like ozone and hydroxyl radicals. These ROS possess potent antimicrobial
properties, including E. coli [9,10], S. aureus [11–14], aerobic bacteria [15], H. alvei, S. cere-
visiae, L. mesentroids [16], and H. alvei [17]. Therefore, a plasma gas release scheme has
been developed to purify freshly washed poultry meat and prevent contamination. ROS,
which are formed during the plasma process, cause damage to proteins, DNA, and en-
zymes that are essential for cell function. Additionally, ROS induce lipid peroxidation
and amino acid oxidation in cell membranes. Therefore, it is crucial to efficiently elim-
inate microorganisms [18]. Fresh chicken meat is cleaned and sterilized using PAW, an
application of plasma technology [19,20]. Recent studies have demonstrated the efficacy of
plasma-activated water (PAW) in cleaning and sterilizing fresh chicken meat. However, the
complex structure and thickness of poultry meat pose challenges to achieving uniform and
complete disinfection. This necessitates further research and development to enhance PAW
effectiveness, potentially through synergistic integration with other disinfection methods.

The related techniques found to have the potential to increase PAW efficiency include
micro/nanobubbles (MNBs), ultraviolet (UV) photolysis, and ultrasonication (US). MNBs
are tiny bubbles, ranging from micro- to nanometer-sized, that are filled with gas. These
bubbles possess several crucial properties—including low buoyancy, a slow rising velocity,
and a high interior gas density—that lead to prolonged suspension in water, maximizing
their surface contact with pathogens [21–23]. MNBs with air can sustainably provide
oxygen to the surrounding water due to there being much greater relative surface area and
durability [24,25]. These characteristics are thought to aid in removing excited electrons and
preventing the electron–hole pair from recombining [26]. Additionally, the single-scattering
albedo of tiny bubbles in the solution is high and can enhance light scattering, potentially
improving the efficacy of photocatalytic disinfection processes [27]. As a result, secondary
radiation may be produced by electromagnetic illumination, which could cause electric
charges close to the bubble to oscillate [28]. The wavelength will be longer as the bubble
size decreases. MNBs may produce increased lateral/backward scattering intensity [28,29].
Essentially, the light efficiency of photocatalytic processes might be increased as a result of
this light scattering effect. As far as we are aware, the impact of MNBs on photocatalytic
disinfection and the underlying processes have not been researched. Due to their capac-
ity to produce and retain reactive free radicals, MNBs have been used in food washing
water treatment and waste water treatment in the food industry [30,31]. Secondly, UV is
another type of disinfection method that has been demonstrated as an efficient method of
eliminating pathogenic microorganisms [32,33]. The primary mechanism responsible for
UV-induced photochemical reactions in microbial cells, specifically genetic components
like DNA, is the inactivation of microorganisms [34–36]. Thirdly, the US technique utilizes
high-frequency sound waves to generate cavitation bubbles that disrupt the cell mem-
branes and internal structures of microorganisms. The US technique has been shown to be
particularly effective in disinfecting thick and complex food structures. It has long been
recognized for its effectiveness in washing food products because it can destroy germs
through sonolysis and cavitation. US produces high pressure and a temperature gradient,
causing air bubbles to form. These bubbles raise the fluid pressure outside, pushing liquid
molecules into contact with one another. The mechanical shocks from these bubbles can
disturb the structural and functional elements of cells to the point of cell lysis [37,38]. In
the previous study, US significantly improved pathogen inactivation for food with thick
and complex structures [19,20].

While PAW has emerged as a promising technology for food sanitation, currently, its
efficiency in disinfection remains a bottleneck hindering widespread adoption in the food
industry. This study proposes a novel approach to address this challenge by synergistically
integrating PAW with MNB, UV, and US technologies.

Gas-filled bubbles enhance light scattering and oxygen supply using the technique
of MNBs within the PAW reactor. Increased scattering improves light utilization, while
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sustained oxygenation promotes the generation of ROS, which are crucial for pathogen
inactivation. Additionally, MNBs potentially suppress electron–hole recombination, further
boosting PAW efficiency. In the case of UV, radiation directly targets microbial DNA,
causing irreversible damage and preventing replication from occurring. This synergistic
action with PAW broadens the spectrum of targeted pathogens and ensures comprehensive
disinfection. Lastly, ultrasound induces cavitation, generating shock waves and high shear
forces that disrupt the cell membranes and internal structures of microorganisms. This
mechanical action complements the oxidative effects of PAW and UV, and it is particularly
effective against pathogens embedded within complex food matrices.

The advantages of the proposed combined approach were expected to be the syn-
ergistic action of PAW, MNB, UV, and US to significantly improve pathogen reduction
compared to individual technologies. This could lead to shorter treatment times and
lower energy consumption. The combination of technologies targets various microbial
inactivation pathways—including oxidative damage, DNA disruption, and mechanical
breakdown—expanding the range of treatable pathogens. This proposed approach might
be potentially adaptable to various poultry processing stages and food types, offering wider
applicability in the poultry industry. Additionally, optimizing the synergistic parameters of
PAW, MNB, UV, and US for maximum efficacy, examining the underlying mechanisms of
action and potential interactions between these technologies, and evaluating the economic
feasibility and scalability of the combined approach for industrial implementation are areas
that must be investigated.

This study presents a promising strategy to overcome the efficiency limitations of
PAW disinfection in the poultry industry by integrating complementary technologies. The
synergistic action of PAW, MNB, UV, and US holds the potential to revolutionize food
sanitation practices, ensuring safer and healthier poultry products without the addition of
external chemical disinfectants.

2. Materials and Methods

This experiment used the PAW system with a Flyback Transformer (FBT). In a previous
study, this PAW system could produce an optimal H2O2 concentration with efficiently
inactive food-borne pathogens [4]. The single-electrode non-thermal atmospheric pressure
underwater plasma with a DC power supply was used to generate PAW in this experiment.
The device consists of copper wire as a single electrode cover with a quartz tube and
stainless steel as a ground. The reactor was connected to an FBT powered at 30 watts for
20 min at 25 ◦C. The device was set up to discharge beneath the water surface with an
electrode–ground gap distance of 5 mm to create plasma discharge.

To investigate the effectiveness of the combined system on sterilization efficiency,
PAW was used in conjunction with MNB, UV, and US. The operating conditions for the
supplementary techniques were determined based on a previous study. The MNB system
(made in-house) was set up at a pressure of 3 bar for 10 min at 25 ◦C [39]. In the meantime,
the UVC lamp (OZUAR, Jiangsu, China) was installed and operated at 9 watts. Addi-
tionally, the system also utilized the US Digital Ultrasonic Cleaner Model 20A. The motor
conductor had a length of 300 mm, and the ultrasonic power was 120 watts. The voltage
was AC220-240V at a frequency of 50 Hz.

The operating temperature was 25 ◦C, and the full capacity was 3 L (OEM, Bangkok,
Thailand). Figure 1a shows a schematic diagram of PAW combined with a supplementary
technique, and Figure 1b shows a process diagram of PAW combined with a supplementary
technique (b). These experimental conditions had a total of 22 experiments that were
conducted based on a 2k factorial design. Each experiment was repeated three times. Subse-
quently, the treated water was characterized in terms of EC, ORP, and H2O2 concentration.
A test was conducted to determine the survival of E. coli after incubating for 48 h at 35 ◦C.
The designed experiment was evaluated programmatically using the Analyze Factorial
Design feature in Minitab® Statistical Software © 2021 Minitab, LLC, Pennsylvania State
University, United States of America.
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Figure 1. (a) A schematic diagram of PAW combined with a supplementary technique; (b) 3D model
of PAW combined with a supplementary technique.

The 2k factorial experiment was designed to determine the effect of plasma on en-
hancing efficiency when combined with other technologies. The experiment consisted of
two parts: in the first part, a PAW generation experiment was conducted along with addi-
tional disinfection methods (MNBs and UV and US technology), and the second part used
the soaking process, which involved using the optimum number of common food-borne
pathogens. The optimal condition determined from the first experiment was then used
to generate treated water, referred to as PAW’. In this second experiment, chicken meat
contaminated with food-borne pathogens was tested during the soaking process.

Moreover, during the second experiment, PAW’ was combined with other disinfection
techniques (UV and US technology) to investigate the synergistic effect of these supplemen-
tary techniques on the inactivation of E. coli. The MNB technique was not performed on
PAW due to the possibility of MNBs remaining in the water for an extended period during
the soaking process, as shown in Figure 2. It was discovered that nanobubbles can last in
aqueous solutions for several weeks after their creation. The solution contained bubbles
with diameters ranging from 150 to 200 nm over the course of two weeks [40].

Theoretical knowledge and a review of related studies on important issues, such as
common food-borne pathogens, PAW, MNB, and UV and US technology, are required to
study the practical concerns for improving the effectiveness of plasma technology and
supplemental disinfection procedures. To culture E. coli O157:H7, use a sterile technique
to transfer a loopful of E. coli onto a slant in a culture flask containing 150 mL of Nutrient
Broth (NB) as a starter. Incubate the flask at 37 ◦C with shaking at 150 rpm for 24 h. Then,
using a sterile technique, pipette 10 mL of NB into another culture flask and incubate it at
the same conditions for 24 h.

The concentration of E. coli cell cultures can be determined by measuring the spec-
trophotometer readings at OD600 = 0.5. An OD600 reading of 1.0 corresponds to a concentra-
tion of 8 × 108 cells/mL in a 10 mL dilution sample, as shown in Figure 3a. In the soaking
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procedure experiment, chicken meat was inoculated with a 10 mL dilution sample for 1 h,
as depicted in Figure 3b.
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Figure 3. (a) An experimental schematic diagram of PAW generation process and (b) PAW with
soaking process.

3. Results

To investigate the effect of PAW combined with supplementary techniques, the char-
acterization of physicochemical properties and pathogen survival was analyzed. Experi-
mental designs based on MNB, UV, and US combined with PAW were investigated using
treatment time as a factor. There are high and low threshold levels for various factors. The
results of the concept framework tests are presented below.

3.1. Effect of PAW Combined with a Supplementary Disinfection Technique during the Soaking
Process on the Survival of E. coli in Inactivation Experiment
3.1.1. Physicochemical Characterization and Bactericidal Effects of PAW Combined with a
Supplementary Technique

The physicochemical characterization and bactericidal effects of the PAW system com-
bined with supplementary techniques are shown in Figure 4a–c. The results show that PAW
with UV has the maximum concentration of EC, with a value of 240 mS/cm. Simultaneously,
the ORP measurements show that PAW with MNB results in the highest ORP, which is
361.92 mV. Finally, the measurement of the H2O2 concentration indicates that PAW treatment
with all combination techniques leads to the highest H2O2 concentration. The combination
techniques in the treatment of PAW/MNB/UV and PAW/MNB/UV/US proved highly effec-
tive, resulting in a 6.00 log10 CFU/mL reduction in E. coli, as shown in Figure 4d. Furthermore,
the inhibition of pathogenic microorganisms was optimized when using 10 min for the MNB
treatment, 20 min for the UV treatment, and 20 min for the US treatment.
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Table 1. ANOVA of E. coli inactivation experiment based on factorial experimental design. 

Source DF Adj SS Adj MS F-Value p Value 
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Figure 4. Physicochemical characterization of (a) EC, (b) ORP, and (c) H2O2 and (d) survival of
E. coli in PAW combined with a supplementary technique during PAW generation. Survival of
E. coli (log10 CFU/mL) after being treated with PAW combined with a supplementary technique.
Error bars indicate standard deviation (n = 3). Different letters indicate significant difference among
treatments (p < 0.05). Abbreviations: PAW = plasma-activated water; MNB = micro/nanobubbles;
UV = ultraviolet photolysis; US = ultrasonication; Tap = tap water.

3.1.2. Statistical Evaluation of the Effect of PAW Combined with a Supplementary
Technique on the Survival of E. coli

Table 1 presents the analysis of variance (ANOVA) for the factorial design experiment
on PAW combined with a supplementary technique. The results indicate that only PAW
combined with MNB, UV, and their two-way interactions (MNB*UV) significantly impact
the survival rate of E. coli (p < 0.05). To determine the reliability of the model, the decision
coefficient test (R-Square) was applied to the response values obtained from the ANOVA.
The coefficients of determination for the E. coli quantification test, represented by R2 and
R2 adjustment, were found to be 99.89% and 99.85%, respectively. As a result, the model is
highly reliable and provides ample data to fit the equation and establish a predictive model
capable of identifying the optimal type for reducing E. coli infection.

The coefficients of the elements that affect the reaction of the process are expressed in
the form of an equation to create a predictive model. This predictive equation enables us to
utilize the data obtained from the program’s analysis in order to determine the coefficients
of the terms that have a statistically significant impact. By employing Equation (1), we can
identify the optimal values for the treatment factors that effectively minimize the survival
of E. coli.

Survival of E. coli = 5.7975 − 0.01475 MNB − 0.03237 UV − 0.025013 MNB*UV (1)

According to the factorial design experiment, regression Equation (1) derived from this
study can mathematically predict the responses for further study reproduction. The prediction
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of responses is based on the change in significant factors and the coefficient of the equation.
For instance, when the parameters of Equation (1) are set to lower conditions (MNB treatment
time = 0 min, UV treatment time = 0 min), then the predicted survival of E. coli will be 5.79 log10
CFU/mL. On the other hand, if the experimental parameters are changed to upper conditions
(MNB treatment time = 10 min, UV treatment time = 20 min), then the predicted survival of E.
coli will be 0.00 log10 CFU/mL. These predicted values are insignificantly different from the
experimental values of 5.82 and 0.00 log10 CFU/mL, respectively.

Table 1. ANOVA of E. coli inactivation experiment based on factorial experimental design.

Source DF Adj SS Adj MS F-Value p Value

Model 4 92.7473 23.1868 2467.43 0.000
Blocks 1 0.0003 0.0003 0.03 0.860
Linear 2 67.7220 33.8610 3603.32 0.000

MNB 1 28.0635 28.0635 2986.38 0.000
UV 1 39.6585 39.6585 4220.27 0.000

2-Way Interactions 1 25.0250 25.0250 2663.04 0.000
MNB*UV 1 25.0250 25.0250 2663.04 0.000

Error 11 0.1034 0.0094
Total 15 92.8507

The results of the E. coli measurement tests were compared to determine the significant
factor. The contour curve displays the MNB and UV treatment times, along with the optimal
factor level value, to achieve the lowest possible amount of E. coli, as shown in Figure 4d.
An E. coli inactivation test was conducted, and the results were used to create a contour
plot illustrating the survival of E. coli. The contour plot between the MNB treatment time
and UV treatment time in the plasma treatment, where the lowest result from the diagram
represents the boundary of the desired area, is shown in Figure 5a. The boundary zone,
depicted in dark blue, indicates a lower quantity of E. coli. After the plasma treatments
with 20 min of MNB and then 20 min of UV, the quantity of E. coli was significantly reduced.
Similarly, Figure 5b illustrates the effect of the MNB and US treatment times on the contour
graph, while Figure 5c shows the effect of the UV and US treatment times. The lighter green
boundary area indicates a lower survival population of E. coli. Furthermore, Figure 5b,c
demonstrate that the US treatment time did not significantly affect the survival rate of E.
coli, as all US treatment times projected the same E. coli population amount.

The response optimizer function was employed to determine the optimal conditions
for the experiment. This function used a statistical approach to identify the appropriate
parameters that contribute to the best response result. During evaluation, the program
requires inputs for the direction, optimal value, weight, and importance. In this study,
we set the minimum value of E. coli as the target value of 0, while the upper limit was
defined as 6 based on the E. coli value in the control unit. Additionally, both the weight and
importance were set to 1, as shown in Table 2. The results indicate that the most effective
factors for reducing E. coli infection were an MNB treatment time of 10 min and a UV
treatment time of 20 min, without US treatment. This combination resulted in a minimum
E. coli value of 0.000 and a desirability rating of 1.0000. The high desirability highlights the
significance of using the response surface analysis to determine the optimum point.
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Table 2. Optimal values of E. coli survival according to response optimization function.

Parameters

Response Goal Lower Target Upper Weight Importance
Survival of E. coli Minimum 0 6 1 1

Solution MNB UV Survival of E. coli Fit Composite Desirability
1 10 20 −0.0000000 1

Multiple Response Prediction

Variable Setting
MNB 10
UV 20

Response Fit SE Fit 95% CI 95% PI
Survival of E. coli −0.0000 0.0485 (−0.1067, 0.1067) (−0.2385, 0.2385)

3.2. Effect of PAW Combined with a Supplementary Disinfection Technique during the Soaking
Process on the Survival of E. coli in Chicken Meat in Inactivation Experiment
3.2.1. Test Results for the Survival of E. coli in Chicken Meat

Figure 6 depicts the survival of E. coli in chicken meat when soaked with PAW from
the first experiment, combined with supplementary techniques during the soaking process.
The experiment utilized a factorial design technique (2k factorial design). UV and US
treatments were implemented within a range of 0–20 min, as determined by previous
investigations. The objective of this experiment was to assess the impact of PAW combined
with supplementary techniques on the survival of E. coli in chicken meat. The survival rate
of E. coli (log10 CFU/mL) was designated as the response variable, with the target value set
to minimize during statistical evaluation. Each experiment was conducted three times, and
the test results were characterized based on the survival of E. coli.
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Figure 6. Survival of E. coli (log10 CFU/mL) in chicken meat experiment after being treated by
PAW combined with supplementary techniques. Error bars indicate standard deviation (n = 3).
Different letters indicate significant difference among treatments (p < 0.05). PAW’ = The optimal
condition determined from the first experiment was used to generate treated water. Abbreviations:
MNB = micro/nanobubbles; UV = ultraviolet photolysis; US = ultrasonication; Tap = tap water.

3.2.2. Effect of Activation Time on E. coli Survival in Chicken Meat

Table 3 shows the ANOVA results of the factorial design experiment on PAW combined
with a supplementary technique. The results indicate that PAW combined with UV, US,
and their two-way interactions (UV*US) significantly affect the survival rate of E. coli in
chicken meat (p < 0.05). The reliability of the model was determined using the decision
coefficient test (R-Square) of the response values obtained from the ANOVA. The coefficient
of determination for the E. coli quantification test, denoted as R2, and the adjusted R2

value were 99.93% and 99.83%, respectively. Therefore, the model is highly reliable and
provides sufficient data to fit the equation and create a predictive model that identifies the
appropriate type for optimizing the reduction in E. coli infection in chicken meat.

Table 3. ANOVA of E. coli in chicken meat inactivation experiment based on factorial experimental design.

Source DF Adj SS Adj MS F-Value p Value

Model 4 70.2937 17.5734 999.67 0.000
Blocks 1 0.0021 0.0021 0.12 0.752
Linear 2 51.7780 25.8890 1472.71 0.000

UV 1 26.6085 26.6085 1513.64 0.000
US 1 25.1695 25.1695 1431.78 0.000

2-Way Interactions 1 18.5136 18.5136 1053.16 0.000
UV*US 1 18.5136 18.5136 1053.16 0.000

Error 3 0.0527 0.0176
Total 7 70.3465

The coefficients of the variables that influence the response of the process are written as
equations to construct a predictive model. The coefficients of the terms that had a statistically
significant effect were determined from the equation values used to generate the prediction
model, utilizing information from the program analysis. For instance, the following equation
was employed to ascertain the most precise value and determine the minimum level of E. coli
in chicken meat, which was examined and evaluated for the results. Equation (2) presents the
formula for calculating the concentration of E. coli in chicken meat.

Survival of E. coli = 7.1950 − 0.03025 UV − 0.02525 US − 0.015212 UV*US (2)

According to the factorial design experiment, the regression Equation (2) derived
from this study can mathematically predict the responses for further study reproduction.
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The prediction of responses will be based on the changes in significant factors and coef-
ficients of the equation. For instance, when the parameters of Equation (2) are set to the
lower conditions (UV treatment time = 0 min, US treatment time = 0 min), the predicted
survival of E. coli in chicken meat will be 7.19 log10 CFU/mL. On the other hand, if the
experimental parameters are changed to the upper conditions (UV treatment time = 20 min,
US treatment time = 20 min), then the predicted survival of E. coli in chicken meat will
be 0.00 log10 CFU/mL. These predicted values are not significantly different from the
experimental values of 7.20 and 0.00 log10 CFU/mL, respectively.

The response optimizer function was employed to determine the optimal conditions
for the experiment. The data were analyzed and evaluated, and the most accurate number
and the lowest level of E. coli were determined using Equation (2), which illustrates the
formula for estimating the concentration of E. coli in chicken meat. From Table 4, the goal
of the response was selected to minimize the value. The target value for E. coli is 0.00,
while the upper limit is 8.11, which represents the mean of the E. coli test results in the
control group without plasma treatment in this experiment. The results indicate that the
most effective factors for reducing E. coli infection were a UV treatment time of 20 min
and a US treatment time of 20 min. This led to a minimum E. coli concentration of 0.000 in
chicken meat, with a desirability score of 1.0000. The high desirability score indicates that
the optimum point analysis with the resulting surface was significant.

Table 4. Optimal values of E. coli survival in chicken meat according to response optimization function.

Parameters

Response Goal Lower Target Upper Weight Importance
Survival of E. coli Minimum 0 8.42 1 1

Solution UV US Survival of E. coli Fit Composite Desirability
1 20 20 0.0000000 1

Multiple Response Prediction

Variable Setting
UV 20
US 20

Response Fit SE Fit 95% CI 95% PI
Survival of E. coli 0.0000 0.0938 (−0.2984, 0.2984) (−0.5168, 0.5168)

4. Discussion

This research investigated the potential of plasma technology to boost disinfection
efficiency by comparing its effectiveness to established methods like MNB, UV, and US.
In a two-phase study, researchers first experimented with PAW (plasma-activated water)
to determine its effectiveness against common food-borne pathogens during a soaking
phase. They then used the optimal PAW conditions identified in the first phase to treat
water (labeled PAW’) for the second phase. This treated water was used to soak chicken
meat contaminated with a food-borne pathogen. Notably, MNB was not combined with
PAW due to its prolonged persistence in water, potentially masking the effects of the other
treatments. In the second phase, researchers also examined the combined effectiveness
of PAW with UV and US technologies against a specific pathogen like E. coli, aiming to
explore potential synergistic effects. To optimize this combined approach, they employed a
factorial design, varying three treatment times: MNB, UV, and US. The research results from
the experiments show that both the PAW/MNB/UV and PAW/MNB/UV/US conditions
significantly reduced E. coli by 6.00 log10 CFU/mL. The most effective suppression of
microbial pathogens occurred when using an MNB treatment time of 10 min, a UV treatment
time of 20 min, and a US treatment time of 20 min. This study specifically focuses on ROS
that are present in PAW, particularly long-lived ROS like H2O2, which are responsible for
bacterial survival. The bacterium inactivation method can be explained using the following
four steps.
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Firstly, PAW is a unique disinfectant with significant antibacterial activity due to a
variety of ROS. PAW results from non-thermal atmospheric plasma reacting with water
and contains a wide range of highly ROS [41,42]. The underwater plasma generates a high
concentration of ROS; secondly, ROS oxidize the lipid bilayer in the bacterial cell membrane,
altering cell permeability and promoting membrane depolarization; in the third stage, ROS
pass through temporary pores and induce oxidative stress within the cell, leading to an
increase in intracellular ROS; and finally, in the fourth step, intracellular ROS interact
with proteins, lipids, and carbohydrates, causing alterations in molecular structures and
chemical bonds. However, it was discovered that adding organic matter to PAW reduces
the levels of ROS. Excessive intracellular ROS, along with low pH, trigger redox reactions
in the cell, disrupting pH homeostasis and resulting in cell death [11]. ROS play significant
roles as signal molecules in different biological cells. It is known that ROS can boost
inner oxidative stress and programmable cell death Furthermore, the research revealed
synergistic antimicrobial properties within PAW [43]. The study found that PAW combined
with specific supplemental approaches significantly affects its physicochemical properties
and bactericidal potential. The physicochemical parameters of PAW were also studied,
including EC, ORP, and H2O2. Synergistic effects between PAW and UV irradiation at
240 mS/cm were observed, as evidenced by the significantly elevated EC compared to other
treatment conditions, which may be attributed to an increase in ionic activity. Conversely,
PAW with MNB generated the highest ORP at 361.92 mV, indicating stronger oxidizing
power. Interestingly, all PAW combinations resulted in higher H2O2 concentrations than
PAW alone, potentially contributing to its improved antibacterial activity. As a result,
PAW with combination techniques significantly reduced E. coli by 6.00 log10 CFU/mL.
These findings correspond to previous research highlighting the effectiveness of PAW in
bacteria inactivation. The results reveal that the PAW process can reduce E. coli by 0.74 log10
CFU/mL in chicken meat [20]. This consistency shows that the experimental results are
moving in the same direction. Moreover, PAW with combinations can increase the efficiency
of inhibiting germs more than what was achieved in past research.

Within this investigation, MNB technology was chosen due to its demonstrated efficacy
in facilitating the transfer of reactive species generated by PAW. A subsequent analysis of
the treatment process revealed that the combined application of PAW and MNB yielded
the most substantial reduction in E. coli population, achieving a decrease of 0.35 log10
CFU/mL compared to the other tested conditions. Building upon this success, MNB was
further synergistically combined with low-pH PAW to leverage the potential benefit of
enhanced reactive species transfer alongside intensified bactericidal activity. To elucidate
the specific factors contributing to this observed synergy, a comprehensive analysis of
E. coli inactivation patterns under various treatment combinations was conducted. This
analysis revealed that the synergistic effect primarily stemmed from the improved mass
transfer dynamics of biochemically active species from the PAW matrix to the microbial
targets within the solution, a finding that corroborates with those reported in previous
studies [39,41,44,45]. MNBs, characterized by their high specific interfacial area, prolonged
residence time, and elevated internal pressure, have demonstrably enhanced mass transfer
rates from the gas phase to the liquid phase. Consequently, employing microbubbles to
encapsulate the reactive species generated by cold atmospheric plasma processes (CAPP)
presents a promising avenue for optimizing the efficiency of existing reactors. Within this
study, planktonic bacterial cells were subjected to bactericidal PAW, which is abundant in
ROS. These ROS possess the capability to interact with key microbial components—including
membrane proteins, DNA, and metabolic enzymes—thereby disrupting vital cellular functions
and structures and ultimately leading to potent antimicrobial efficacy.

Investigative research has demonstrably established, both empirically and theoreti-
cally, that Henry’s law coefficient does not solely govern the dissolution of both highly and
weakly soluble gases like H2O2 and O3 [46]. ROS have been identified as the primary inac-
tivation agents in non-thermal plasma processes. Previous research has aptly highlighted
the crucial role of ROS within PAW, particularly highlighting the impact of exceptionally
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long-lived ROS, such as H2O2, on bacterial survival. The synergistic effect of a low pH and
excessive intracellular ROS accumulation triggers redox reactions within the microbial cell,
disrupting pH homeostasis and ultimately leading to cell death [11,47–50]. The primary
inactivation agents are ROS. The PAW production process generates a significant quantity
of ROS. The production of ROS affects the physicochemical properties of PAW with MNBs.
The following describes the series of key reactions ultimately leading to the formation of
H2O2 [51]. The rise in ORP was most likely caused by PAW, as MNBs included more active
ions and oxidizing species [52]. The relationship between pH and ORP is noteworthy. In
acidic environments, increased hydrogen ion (H+) concentration directly influences ORP.

The present study investigated the effect of storage time on the physicochemical prop-
erties of plasma-activated water (PAW), particularly focusing on its ORP and H2O2 content.
This research observed that the ORP values increased over a 2 h storage period, suggesting
an ongoing production of oxidizing species within the PAW matrix. To elucidate the under-
lying mechanisms, the H2O2 content was measured as a key indicator of ROS generation.
As outlined in Equations (3)–(5), H2O2 is primarily produced through water dissociation
and subsequent OH radical recombination. However, reactions 1 and 2 also contribute to
H2O2 consumption over time, leading to a gradual decrease in its concentration during
storage [52].

H2O2 → HO• + HO2• + O2 (3)

NO− +HO → NO− + HO (4)

HO• + HO• → H2O2 (5)

Both the PAW/UV and PAW/UV/US treatments decreased E. coli by 0.85 log10
CFU/mL in the generated process. As a result, in the UV and US soaking conditions,
E. coli had a survival population of 1.83 log10 CFU/mL in chicken meat. Due to the major
mechanism of bacterial inactivation by UV radiations, the dimerization of thymine bases
occurs in their DNA strands, which has been discussed in relation to how UV radiation
affects the formation of PAW [53]. The UV radiation produced by the direct discharge of
plasma underwater helped to inactivate germs [54]. The intensity of UV radiation generated
in the underwater discharged plasma increases with PAW conductivity [53,55].

Another technique used to decontaminate spores resembling the Bacillus subtilis strain
MW01 is ultraviolet (UV) irradiation [56,57]. Several strategies have been explored to
enhance ROS production within MNBs, including the introduction of UV radiation or
chemical additives like copper [58–60]. However, the underlying mechanisms of this
synergy and its impact on microbial inactivation remain unclear. This study aimed to
investigate the combined effect of PAW and UV irradiation on E. coli survival compared to
individual PAW and UV treatments.

Notably, synergistic antimicrobial activity has been previously observed in PAW com-
binations [43]. For instance, a study reported a >5 log10 CFU/mL reduction in E. coli
O157:H7 populations following exposure to UVA light for 30 min [61]. Nonetheless, the
effects of combined PAW and UV treatments on the microbial load and quality parameters
of fresh produce have not yet been fully elucidated. Possible mechanisms for microbial
inactivation in this system involve both direct and indirect pathways. Direct inactiva-
tion can occur through UV-induced DNA damage, as UV light with a wavelength of
approximately 260 nm can induce thymine–cytosine dimer formation, thus hindering DNA
replication [62,63].

Additionally, the electric field ions and UV radiation generated by plasma can influ-
ence the biological activity of the resulting excited molecules and free radicals. Indirect
inactivation, typically mediated by ROS formed in water, is believed to contribute signif-
icantly to radiation-induced cell death, as demonstrated by clonogenic survival experi-
ments [64]. Equations (6)–(15) further illustrate the complex interplay between ionizing
radiation, free radical formation, and subsequent ROS generation. While studies have
explored the use of UV radiation and chemicals to boost ROS production in MNBs, the
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detailed mechanisms underlying this synergy and its practical implications for microbial
inactivation—particularly in food applications—warrant further investigation.

This study aims to address this knowledge gap by examining the combined effect of
PAW and UV treatments on E. coli survival and its potential for enhancing the disinfection
efficacy in chicken meat, which currently faces limitations due to its thickness, complex
structure, and fat content. The efficacy of plasma-activated water (PAW) as a disinfectant
can be further enhanced by introducing additional factors that promote the generation of
ROS. These include UV radiation and chemical catalysts, like copper, as demonstrated in
previous studies [58–60]. The synergistic effect of such interventions has been quantified
through controlled comparisons of E. coli survivability following PAW-UV treatment versus
a standard inactivation test. This approach allows for the construction of predictive models
that estimate the impact of combined therapies on bacterial populations. Supporting
this strategy is the established synergistic antimicrobial activity of PAW, as identified in
independent research [43].

Additionally, UV light—especially UVA within the 260 nm wavelength range—exhibits
significant bactericidal properties. In one study, E. coli O157:H7 populations were reduced
by over 5 log10 CFU/mL after exposure to UVA light for 30 min [61]. However, the com-
bined application of PAW and UV to address the microbial burden and quality parameters
in fresh produce remains unexplored. One proposed mechanism for microbial inactivation
through PAW-UV treatment involves direct DNA damage inflicted by UV rays emitted by
the plasma [62]. This phenomenon, which is well documented in UV radiation studies,
disrupts DNA replication by inducing thymine and cytosine dimerization within the same
DNA strand [63].

UV Radiation Excitation

H2O → H2O* → •OH + H• (6)

UV Radiation Ionization
H2O → H2O• + e− (7)

H2O + H2O• → H3O+
aq + •OH (8)

e− + H2O → OH− + H• (9)

e− + nH2O → e−aq (aqueous electron) (10)

UV Radiation Recombination of Ion Radiations

H3O+
aq e−aq → H• + H2O (11)

•OH + OH• → H2O2 (12)

H• + H• → H2 (13)

UV Radiation in the Presence of Oxygen

O2 + e−aq → O2
•− (14)

O2 + H• → HO2
• ↔ H+ + O2

•- (15)

Ultrasound
H2O → •OH + H• (16)

•OH + •OH → H2O2 (17)

H• + H• → H2 (18)

OH + •OH → •O• + H2O (19)
•O• + N2 → •NO + •N (20)
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O2 + H• → HO2
•− ↔ H+ + O2

•− (21)

Despite the promising results of PAW-UV treatment on E. coli in chicken meat, further
research is necessary to optimize its efficacy for practical applications. US technology
has been explored as a potential enhancer, with the rationale that high temperatures and
pressures generated by cavitation bubbles could promote the thermal dissociation of water
and enhance ROS production. However, studies have shown that ROS production by US is
dependent on exceeding the cavitation threshold (Equations (16)–(21)) [52]. In our study,
while the combined PAW-US treatment demonstrated a slight decrease in E. coli population
(0.22 log10 CFU/mL) compared to PAW alone, it did not significantly outperform either
method. This suggests that further investigation is needed to optimize the parameters of
US application for synergistic effects with PAW.

The observed differences in bacterial survival between chicken muscle and skin could
be attributed to variations in their composition. The higher organic matter content on the
skin likely hindered the penetration of ROS produced by PAW-US, resulting in less severe
membrane damage and bacterial protrusion compared to the muscle. Furthermore, lipid
oxidation, a known concern associated with plasma treatments in muscle foods [20], may
have been exacerbated by the US-induced disruption of bacterial membranes, releasing
unsaturated lipids prone to free radical interactions. Therefore, future studies should
consider mitigation strategies for lipid oxidation to maintain the quality of chicken meat
treated with PAW-US.

Our findings align with those of previous reports highlighting the synergistic poten-
tial of combining PAW with other non-thermal technologies, such as moderate heat and
ultrasound, for enhanced antibacterial efficacy [20,65]. This approach holds promise for
reducing food-borne pathogens while minimizing negative impacts on product quality.
For instance, the sequential application of PAW and moderate heating (60 ◦C) effectively
reduced injected pathogens on shredded cabbage without compromising its quality [65].
Similarly, recent research has demonstrated the effectiveness of PAW-US for inactivating E.
coli on chicken meat and skin [66,67].

PAW combined with other techniques is larger than PAW alone because the major
mechanism of bacterial inactivation can be enhanced by the synergy of these technologies,
such as the following: PAW with MNB. Using a combination of techniques can improve the
efficiency of biochemically reactive species mass transfer from plasma to microbial targets
in a solution [44]. UV radiations lead to the dimerization of thymine bases in their DNA
strands, which has been discussed in relation to how UV radiation affects the formation
of PAW [68]. The UV radiation produced by the direct discharge of plasma underwater
helped to inactivate germs [54]. UV radiation emitted by the direct discharge of plasma
underwater aided in the inactivation of microorganisms.

Moreover, US helps accelerate the rate of PAW penetration into the samples. Acceler-
ated oxidation processes (AOPs) based on US and UV radiation are also receiving scientific
attention for water treatment and disinfection. When UV and US are combined, sonopora-
tion is induced, which is an intracellular generation of ROS, or the energy stimulation of
aquaporins to deliver ROS.

In addition, the injection of extracellular ROS into sonoporated cells has been identi-
fied as a primary method in [69]. The growing demand for safe, fresh, and healthy food
necessitates the exploration of innovative non-thermal processing methods. PAW, in combi-
nation with other technologies like US, has emerged as a promising tool for inactivating
food-borne pathogens and extending shelf life while preserving product quality. Further
research is crucial to optimize the parameters of these combined approaches and ensure
their effective implementation in the food industry.

5. Conclusions

This study investigated the optimal conditions for inactivating E. coli on chicken
meat using a combined approach of PAW, MNB, UV, and US. The initial microbial disin-
fection trials revealed that PAW alone showed moderately impressive results against E.
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coli. However, for chicken meat applications, the combination of PAW, MNB, UV, and US
emerged as the most effective strategy. PAW with MNB for 10 min followed by 20 min of
UV achieved a 6.00 log10 CFU/mL reduction in E. coli on chicken meat under the optimal
soaking condition. PAW, UV, and US were all identified as crucial factors (p < 0.05) impact-
ing bacterial survival, thus highlighting the synergistic effectiveness of these techniques.
Combining PAW with other technologies not only proved effective in enhancing bacteria
inactivation on chicken meat compared to PAW alone, but also suggests the potential for
further improvements in food processing.
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