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Abstract: To achieve effective and accurate segmentation of photovoltaic panels in various working
contexts, this paper proposes a comprehensive image segmentation strategy that integrates an
improved Meanshift algorithm and an adaptive Shi-Tomasi algorithm. This approach effectively
addresses the challenge of low precision in segmenting target regions and boundary contours in
routine photovoltaic panel inspection. Firstly, based on the image information of photovoltaic panels
collected under different environments by cameras, an improved Meanshift algorithm based on
platform histogram optimization is used for preliminary processing, and images containing target
information are cut out; then, the adaptive Shi-Tomasi algorithm is used to extract and screen feature
points from the target area; finally, the extracted feature points generate the segmentation contour
of the target photovoltaic panel, achieving accurate segmentation of the target area and boundary
contour of the photovoltaic panel. Experiments verified that in photovoltaic panel images under
different background environments, the method proposed in this paper enhances the accuracy of
segmenting the target area and boundary contour of photovoltaic panels.

Keywords: photovoltaic panel; image segmentation; Meanshift algorithm; Shi-Tomasi algorithm

1. Introduction

Energy is an important pillar of economic and social development, and it is also the
main source of carbon emissions. Currently, the world’s energy development is moving
towards a new era of cleanliness, low carbonization, and intelligence. The use of clean
energy sources such as photovoltaic, wind, nuclear, and hydroelectric power to replace
fossil fuel-based power generation can effectively promote energy cleanliness. Among
these, photovoltaic power generation has significant potential due to its cost advantages,
and its penetration rate is expected to continuously rise, gradually becoming a primary
energy source. Currently, with the rapid development of the photovoltaic industry, the
photovoltaic sector is experiencing a trend of continuously increasing demand, accelerated
expansion of installed capacity, and a more diverse range of application scenarios. This
has raised higher requirements and more challenges for the operational management of
photovoltaic power stations, which largely depend on the condition of the photovoltaic
panels [1]. In recent years, image segmentation technology has been widely applied in both
military and civilian sectors. It has also been adopted for the operational monitoring of
photovoltaic power stations. By leveraging image segmentation techniques, substantial
labor detection costs can be saved, and the efficiency of inspection can be significantly
enhanced. This holds significant implications for the daily maintenance and operation of
photovoltaic power stations [2,3]. However, as the diversification of photovoltaic panel
application environments becomes the primary trend in the future, current image seg-
mentation techniques face challenges in accurately segmenting target areas and boundary
contours in the diverse photovoltaic panel application environments. This paper will
primarily address and investigate these two issues.
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To effectively segment photovoltaic panels, considering the characteristics of pho-
tovoltaic panel images, scholars, both domestically and internationally, have proposed
numerous segmentation methods. These can be broadly categorized into the following:
threshold-based segmentation methods [4], edge detection-based segmentation methods [5],
region-based segmentation methods [6], and machine learning-based methods [7–10]. The
threshold-based segmentation method has good results in images with good grayscale
differences. Among threshold segmentation methods, the Otsu threshold method is a
relatively classic segmentation method. In reference [11], an improved two-dimensional
Otsu algorithm and a black widow spider optimization algorithm are proposed. This
algorithm can calculate the optimal threshold with modest computational complexity, ef-
fectively enhancing the speed of threshold search and the efficiency of image segmentation.
However, threshold-based segmentation algorithms obtain segmentation results by solving
the gray-level frequency information contained in an image, resulting in poor segmenta-
tion accuracy when the background gray level is similar to that of the photovoltaic panel.
Reference [12] presents a segmentation method based on K-means clustering, primarily
utilizing the elbow method (EM) and gap methods to cluster thermal images into multiple
regions and identify damaged areas. However, this approach does not account for the
similar spatial information surrounding photovoltaic panel images, leading to reduced
segmentation accuracy when there is similar spatial structure information present in the
photovoltaic panel background environment. Reference [13] introduces the segmentation
of photovoltaic panel images by combining standard image processing procedures with
the edge detection operator (Canny), enhancing the speed and precision of the segmenta-
tion process. However, this approach only applies when no similar contours exist in the
background. The method for segmenting photovoltaic panels based on infrared images
as described in reference [14] is discussed. However, due to natural environmental distur-
bances, atmospheric attenuation, and inherent limitations of detectors, the spatial resolution
of infrared images is generally low, leading to phenomena such as detail loss, blurred edges,
and pronounced noise. Furthermore, in visible light images, both the background and
target areas become more intricate, resulting in a more indistinct outline segmented by this
algorithm. Consequently, it cannot effectively adapt to the segmentation of photovoltaic
panels in complex environments. Reference [15] visually constructs a state-of-the-art se-
mantic segmentation algorithm framework using tables to enumerate methods and data
under various categories. Semantic segmentation based on convolutional neural networks
not only identifies objects present in the image but also assigns a semantic label to each
pixel. They can automatically learn features in images, helping computers achieve a more
detailed and accurate understanding of objects in images, thereby greatly improving the ac-
curacy of algorithms. However, due to the backpropagation characteristics of convolutional
neural networks, semantic segmentation based on convolutional neural networks requires
a large amount of data to support them, and the existence of pooling layers may lead to the
loss of valuable information, resulting in low accuracy in edge segmentation under small
sample conditions.

Based on the research and analysis of the aforementioned methods, it is evident that
there are limitations and challenges in overcoming them in practical applications. To
address the challenges of poor target area segmentation accuracy and low precision in
segmentation boundary contours in various photovoltaic panel application environments,
this paper proposes an image segmentation strategy based on an enhanced fusion of Mean-
shift clustering and the adaptive Shi-Tomisa algorithm. This integrated approach involves
preliminary image clustering and segmentation followed by the precise extraction of feature
points from the target region, thereby generating a comprehensive segmentation contour.
This strategy aims to enhance the segmentation performance of photovoltaic panels in
environments with interference elements. Moreover, the segmentation contour generated
based on feature points exhibits notable clarity and accuracy. The enhanced Meanshift
algorithm presented in this paper addresses the initial value sensitivity of traditional Mean-
shift clustering. Building upon the original algorithm, this study leverages the platform



Processes 2024, 12, 564 3 of 22

histogram equalization algorithm to optimize the image histogram grayscale for image
enhancement. Subsequently, the initial clustering center is determined based on a peak
calculation formula to refine the original Meanshift algorithm. Moreover, an adaptive
Shi-Tomisa algorithm is developed for feature point extraction. Through image segmen-
tation experiments in several typical environments, it is proven that the segmentation
strategy presented in this paper can effectively remove regions in the image information
that are unrelated to the target object. Direct feature-point-based contour segmentation and
generation are performed on the target area of the photovoltaic panel, achieving improved
accuracy in segmenting the target area and boundary contour of the photovoltaic panel in
different environments.

2. Materials and Methods
2.1. Improved Meanshift Algorithm
2.1.1. Core Principles of the Meanshift Algorithm

The Meanshift algorithm is widely applied in clustering, image smoothing, segmen-
tation, tracking, and various other domains. In traditional machine learning clustering
algorithms such as K-Means, the initial clustering centers influence the final clustering
outcome. The introduction of the K-Means++ algorithm provides a basis for selecting better
initial clustering centers. However, in these algorithms, the number of clusters k still needs
to be predetermined. For datasets where the number of clusters is not known in advance,
both K-Means and K-Means++ pose challenges for accurate solutions. To address this,
several improved algorithms have been proposed to handle scenarios where the number of
clusters is unknown. Like K-Means, the Meanshift algorithm is a clustering algorithm based
on cluster centers. However, unlike K-Means, the Meanshift algorithm does not require the
number of clusters to be predetermined. The core operation of the Meanshift algorithm
involves calculating the drift vector of the center point through data density changes within
the region of interest. This drift vector moves the center point for the next iteration until
it reaches the region with the maximum density (with the center point unchanged). This
process can be applied starting from each data point. During this iteration, the number of
data points within the region of interest is counted, and this parameter serves as the basis
for classification in the end. Essentially, the Meanshift algorithm is an iterative process
that uses parametric density estimation to identify local extrema within a dataset’s density
distribution [16]. The specific derivation is as follows:

For a given set of n sample points, i = 1, . . . , n, in a d-dimensional space Rd, select any
point x within the space. The basic form of the Meanshift vector is defined as follows:

Mh =
1
K ∑ xi∈sh(xi − x) (1)

In Equation (1), K denotes the number of points within the n sample points xi that fall
within the sh region. Sh is a set of points y within a high-dimensional spherical region with
a radius of h, satisfying the following relationship:

sh(x) =
{

y : (y − xi)T(y − xi) < h2
}

(2)

In the d-dimensional space, select any point and, using this point as the center, con-
struct a hypersphere with radius h. Since there are d dimensions, d of which may be greater
than 2, it is a high-dimensional sphere. All points within this sphere and the center will
produce a vector, which is the endpoint of the vector starting from the center and ending at
the point within the sphere. Then, add all these vectors together. The result is the Meanshift
vector. Take the endpoint of the Meanshift vector as the center and construct another
hypersphere. By repeating these steps, one can obtain a Meanshift vector. By repeating this
process, the Meanshift algorithm can converge to the place where the probability density is
maximum, that is, the most densely populated place.
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2.1.2. Meanshift Algorithm with Kernel Function

Regarding the fundamental Meanshift formulation described in Equations (1) and (2),
there exists an issue: within the region of Sh, every point contributes equally to x [17]. How-
ever, in reality, this contribution is related to the distance from x to each point. Moreover,
the significance of each sample varies. Based on these considerations, a kernel function and
sample weights are incorporated into the basic Meanshift vector formulation, resulting in
the following improved Vector Meanshift formulation:

Mh(x) =
Σn

i=1GH(xi − x)w(xi)(xi − x)
Σn

i=1GH(xi − x)w(xi)
(3)

In Equation (3),

GH(xi − x) = |H|−
1
2 G
(

H− 1
2 (xi − x)

)
(4)

G(x) is a unit kernel function. H is a positive-definite symmetric d × d matrix, referred
to as the bandwidth matrix, which is a diagonal matrix. w(xi) ≥ 0 represents the weight of
each sample. The diagonal form of H is as follows:

H =


h2

1 0 · · · 0
0 h2

2 . . . 0
...

...
. . .

...
0 0 · · · h2

d


d×d

(5)

The above vector (3) can be rewritten as:

Mh(x) =
Σn

i=1G
(

xi−x
hi

)
w(xi)(xi − x)

∑n
i=1 G

(
xi−x

hi

)
w(xi)

(6)

For a given set of n sample points, i = 1, . . . , n, in a d-dimensional space Rd, the
multivariate kernel density estimate at point x is as follows:

f̂ (x) =
1

nhd ∑n
i=1 k

(∥∥∥∥ x − xi
h

∥∥∥∥2
)

(7)

In the above equation, k(x) is the side profile function and h is the window radius. Let
the gradient of Equation (7) be 0. The stagnation point of the density function is obtained as:

x =
∑n

i=1 xi · g
(∥∥∥ x−xi

h

∥∥∥2
)

∑n
i=1 g

(∥∥∥ x−xi
h

∥∥∥2
) (8)

In Equation (8), g(x) = −k′(x) serves as the side profile function of the kernel function
G(x). By continuously iterating to calculate the Meanshift vector and shifting until the
program converges, one can locate the local mode. The iterative equation is as follows:

yj+1 =
∑n

i=1 xig
(∥∥∥ yj−xi

h

∥∥∥2
)

∑n
i=1 g

(∥∥∥ yj−xi
h

∥∥∥2
) , j = 1, 2, . . . , (9)

In Equation (9), y is the initial position center of the kernel window; yj+1 is the
weighted average calculated using kernel G and window radius h at yj.
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For the Epanechnikov kernel function:

kE(x) =

{
(2Cd)

−1(d + 2)
(
1 − xTx

)
, i f xTx < 1

0 , otherwise
(10)

In the Equation (10), Cd represents the volume of a d-dimensional sphere.
Using the Meanshift algorithm with the kernel function, this algorithm can ex-

plore potential probability density modes. The algorithm can be described through the
following steps:

(1) Divide the feature space into n non-overlapping, equally sized partitions. The size
of each partition is (Gmax − Gmin)/n, where Gmax and Gmin represent the maximum
and minimum grayscale values of image pixels. To avoid low-density regions, it
is necessary to ensure that the number of pixels in each section is not less than a
threshold value T1.

(2) Run the Meanshift program n times to obtain n convergent points. The Meanshift
program employs a kernel radius of h = (Gmax − Gmin)/n.

(3) Merge adjacent convergence points that are closer than a preset threshold T2 into a
single point and determine the potential center of m (m < n) probability density modes.

2.1.3. Utilizing Optimized Histogram for Initial Cluster Centers

The key operation of the Meanshift algorithm is to calculate the displacement vector
of the center point through the data density change within the region of interest, thereby
moving the center point for the next iteration until it reaches the maximum density (with the
center point unchanged). From this, it can be inferred that the selection of the initial center
point has a significant impact on the classification performance. Based on the characteristics
of photovoltaic panel images, it can be roughly divided into the following two regions: the
photovoltaic panel and the background area. However, in complex environments, the gray-
level histograms of the background and panel areas often have multiple peaks and valleys,
and even multiple closely spaced peaks. To effectively distinguish the gray-level histogram
of the photovoltaic panel from the complex background, it is necessary to enhance the
original image. Histogram equalization is a commonly used image enhancement method
based on images [18]. It adjusts gray levels according to the cumulative histogram of
the image to enhance the image. The gray level adjustment strategy is as follows: in the
histogram, the intervals between pixels with many and densely distributed gray levels
become larger, enhancing the contrast; for pixels with few and sparsely distributed gray
levels, the intervals become smaller, even zero (the gray levels are merged), to reduce
contrast. If general histogram equalization is used to enhance infrared images, it will result
in more gray levels occupied by background and noise, and fewer gray levels for targets,
which is equivalent to increasing the contrast of background and noise and reducing
the contrast of targets. Therefore, to overcome the shortcomings of ordinary histogram
equalization algorithms, this paper uses a platform histogram equalization algorithm to
optimize images.

The platform histogram is a modification of the histogram. It adjusts the statistical
histogram as follows by selecting an appropriate platform threshold T:

PT(k) =
{

P(k), P(k) ≤ T
T, P(k) > T

(11)

where k represents the grayscale level of the image (0 ≤ h ≤ 255). PT(k) is the platform
histogram of the image, and P(k) is the statistical histogram of the image. T is the platform
threshold. As observed in Equation (11), when T → ∞ , for k ∈ [0, 255], PT(k) = P(k),
indicating that the platform histogram transforms into the statistical histogram. Therefore,
the statistical histogram is a special form of the platform histogram. The equalization
process for platform histograms is similar to that for histogram equalization, with the
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following few exceptions: in histogram equalization, the cumulative histogram of the image
is derived from the statistical histogram, whereas in platform histogram equalization, the
cumulative histogram of the image is derived from the platform histogram. Subsequently,
the gray levels of the image are redistributed through the cumulative histogram to produce
an equalized image:

FT(k) =
k

∑
j=0

PT(j), (0 ≤ k ≤ 255) (12)

DT(k) =
255FT(k)
FT(255)

(13)

where FT(k) represents the cumulative histogram of the image and DT(k) represents the
grayscale value of pixels with a grayscale level of h after platform histogram equalization
(0 ≤ DT(k) ≤ 255). The grayscale histogram of the optimized platform histogram equaliza-
tion algorithm is calculated to find the peak value, and the highest peak value is selected as
the initial cluster center. The formula for calculation is as follows:

Ps = ((i, hd(i))|hd(i) > hd(i − 1))&hd(i) > hd(i + 1)) (14)

Vs = ((i, hd(i))|hd(i) < hd(i − 1))&hd(i) < hd(i + 1)) (15)

In the above equation, hd(i) represents the histogram, and i is the grayscale value.
The following images illustrate the effect of the optimization process. Figure 1 shows the
original image, the image after histogram equalization, and the image after optimization
using the platform histogram equalization proposed in this paper from left to right, and
Figure 2 represents the corresponding grayscale histograms. Figure 3 presents a com-
prehensive comparison of different histograms. The images processed with the platform
histogram equalization proposed in this paper have improved contrast, especially in the
darker regions.
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By using the optimized histogram processing method to select the peak grayscale as the
clustering center, the Meanshift clustering method mentioned earlier is optimized. Figure 4
compares the original image to the effect of Meanshift clustering with the optimized initial
cluster center selection method proposed in this paper, demonstrating that the optimization
of the initial cluster centers results in improved clustering performance.
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(a) mean-shift clustering of the original image and (b) the improved mean-shift clustering method.

2.2. Adaptive Shi-Tomasi Algorithm
2.2.1. Core Principles of the Shi-Tomasi Algorithm

The Shi-Tomasi algorithm is an enhancement of the classical corner detection algo-
rithm, the Harris algorithm. Generally, it yields superior corners compared with the Harris
algorithm. In this section, we will briefly delineate the theoretical underpinnings of the
Shi-Tomasi algorithm. The core of the Harris algorithm involves utilizing a local window to
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move across the image, assessing whether there has been a significant change in grayscale
values. If the grayscale values within the window (as represented on the gradient map)
exhibit substantial variations, then there exists a corner in the region where this window
is located.

Initially, by establishing a mathematical model, it is determined which windows
would cause significant changes in grayscale values. By positioning the center of a window
at a location in the grayscale image, the pixel grayscale value at that position serves as
the starting value. If this window is shifted by a small displacement in both the x- and
y-directions to a new position, the pixel grayscale value at that position represents the
change in grayscale values caused by the window movement. Assuming the simplest case,
where all the pixels within the window are assigned a weight of 1, representing an average
filtering kernel, the formula for the change in pixel grayscale values caused by moving the
window in various directions is as follows:

E(u, v) = Σx,yw(x, y)[Γ(x + u, y + v)− I(x, y)]2 (16)

After expanding using Taylor’s formula, the approximation is given by:

E ≈ [u, v]∑ w(u, v)

[(
I2
x , Ix Iy

Ix Iy, I2
y

)](
u
v

)
(17)

For small local displacements [u, v], the following expression can be approximately
obtained:

E ≈ [u, v]M
(

u
v

)
(18)

M is a 2 × 2 matrix obtained from the derivatives of the image:

M = ∑x,y w(u, v)
[

I2
x Ix Iy

Ix Iy I2
y

]
(19)

After diagonalizing the matrix M, the eigenvalues λ1 and λ2 represent the grayscale
change rates in the X- and Y-directions, respectively.

M = ∑x,y w(u, v)
[

I2
x Ix Iy

Ix Iy I2
y

]
=

[
λ1 0
0 λ2

]
(20)

The corner response function for the Harris corner detection algorithm is:

R = λ1λ2 − K(λ1 + λ2)
2 (21)

The Harris corner detection algorithm involves thresholding the corner response
function R: R > threshold, which identifies local maxima in R. Shi-Tomasi’s algorithm is an
improvement on Harris, where, similar to Harris, if the value of the minimum eigenvalue
(λ1 or λ2) exceeds a minimum value, the point is considered a corner [19].

The corner response function of the Shi-Tomasi corner detection algorithm is:

R = min(λ1, λ2) (22)

2.2.2. Adaptive Threshold Shi-Tomasi Algorithm

Based on the previous section, both the Harris and Shi-Tomasi corner detection al-
gorithms require the manual setting of a final corner feature value filtering threshold.
This subsection, building upon the Shi-Tomasi corner detection algorithm, proposes a
multi-level thresholding technique to achieve adaptive threshold setting. Given an image,
let I(i, j) denote the gray value of the pixel at position (i, j), where 1 ≤ i ≤ M and
1 ≤ j ≤ N, and 0 ≤ l(i, j) ≤ L − 1, where L is the grayscale level of the image. First,
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the grayscale histogram of the image is computed. It is assumed that an optimal threshold
T can be found to segment the image into a binary image. In the binary image, all pixels
with grayscale values lower than T are replaced with A, and all pixels with grayscale values
higher than T are replaced with B. Defining the error function as the sum of the squared
differences between the gray values of corresponding pixels in the binary image and the
original image, and employing integration for ease of expression, the error function can be
represented as:

e2 =
∫ T

0
(k − A)2h(k)dk +

∫ L−1

T
(k − B)2h(k)dk (23)

In Equation (23), L represents the gray value of the pixel, and h(k) denotes the fre-
quency of the gray value in the histogram. By setting the partial derivatives of e with
respect to T, A, and B equal to 0, one can derive:

T =
A + B

2
(24)

A =

∫ T
0 k · h(k)dk∫ T

0 h(k)dk
= µ1 (25)

B =

∫ L−1
T+1 k · h(k)dk∫ L−1

T+1 h(k)dk
= µ2 (26)

A and B represent the means of the two parts of the histogram divided by the threshold
T. It is noteworthy that the threshold T is determined solely by the means A and B of
these two parts. However, the calculation of these means A and B is only possible once the
threshold T has been established. Therefore, an iterative algorithm is required as follows:
an initial threshold is first selected as a starting point; then, using this threshold, the
histogram is divided into two parts, and the means of each part are calculated separately.
Subsequently, the threshold is updated to be half of the sum of the means of these two parts.
This process is repeated until the threshold converges. The steps involved are as follows:

(1) Choose an initial threshold (the mean of the entire histogram).
(2) Divide the histogram into two parts using this threshold, compute the means of the

two parts, and take the average as the updated threshold.
(3) Repeat the above process until the threshold converges.

Based on this concept, the Meanshift algorithm is initially employed to determine the
underlying probability density mode number, K. The threshold between adjacent modes
is calculated through an iterative threshold selection method. Subsequently, a multi-level
thresholding approach (with K thresholds) is utilized to segment the image grayscale range
into K + 1 parts. These K thresholds effectively segment the image histogram into K + 1
non-overlapping regions according to the following formula:

J(i, j) =



0 , T(1) ≤ I(i, j) ≤ T(2)
L−1
k+1 , T(2) ≤ I(i, j) ≤ T(3)

2(L−1)
k+1 , T(3) ≤ I(i, j) ≤ T(4)

. . .
L − 1, T(K + 1) ≤ I(i, j) ≤ T(K + 2)

(27)

The final step is to set the iteratively determined thresholds as the Shi-Tomasi algorithm
thresholds for the given image, enabling adaptive thresholding. The specific effect is shown
in Figure 5 below.
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As can be seen from the above Figure 5, the Shi-Tomasi algorithm has better edge
detection accuracy compared with the Harris algorithm, and the adaptive threshold Shi-
Tomasi algorithm has better quality and quantity of detection points compared with the
original algorithm.

2.3. Image Processing Strategy in This Paper

This study employs the platform histogram equalization algorithm described in
Section 2.1.3 to enhance the captured images of photovoltaic panels. Furthermore, the
initial clustering center of the clustering algorithm is determined based on the peak value
calculation formula, thereby enhancing the original mean-shift algorithm. Subsequently, the
enhanced mean-shift algorithm is employed for the preliminary segmentation of complex
backgrounds and target photovoltaic panels, removing most of the background areas unre-
lated to the target object. Then, the adaptive Shi-Tomasi algorithm described in Section 2.2
is utilized to optimize feature point extraction for the preliminarily segmented target area,
generating contour points from the edge feature points. This approach achieves precise
segmentation and contour extraction for photovoltaic panels under various environments.
The comprehensive image segmentation strategy is outlined as follows:

Step 1: Use the platform histogram to determine the initial clustering centers for the
Meanshift algorithm.
Step 2: Perform clustering operations using the Meanshift algorithm as per Equation (6).
Step 3: Apply multi-level thresholding based on Equation (27) to the target area obtained
after clustering.
Step 4: Utilize the Shi-Tomasi algorithm with the threshold values obtained through the
iterative algorithm to extract feature points.
Step 5: Finally, generate image contours based on the obtained feature points to complete
the image segmentation.
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3. Results

To validate the segmentation efficacy of the algorithm presented in this paper, exper-
iments were conducted using OpenCV and Python tools on photovoltaic panel images
under various environmental conditions. The experimental data were acquired from a
camera platform with the model number MER-125-30 UC. The algorithm was executed on
a CPU system with a clock frequency of 3.3 GHz and 4 GB of RAM, operating under the
Windows 10 environment. The iteration error of the algorithm was set to 1 × 10−5. Further-
more, as per reference [19], the Gaussian kernel function’s coefficient was set to σ = 6.5, the
neighborhood window size was 3 × 3, and the peak point after histogram smoothing was
determined to be the image’s center point. The semantic segmentation model of the convo-
lutional neural network (CNN) in this experiment was the Fully Convolutional Network
(FCN), a classic model in the field of deep neural network semantic segmentation. The FCN
model for this experiment is based on the VGG-16 model, specifically structured as follows:
convolutional layer 1 (conv3-64), convolutional layer 2 (conv3-128), convolutional layer
3 (conv3-256), and convolutional layer 4 (conv3-512), each with 64, 128, 256, and 512 3 × 3
convolutional kernels, respectively. In between each two layers, there is a maxpooling
layer with a 2 × 2 kernel and a stride of 2. After convolutional layer 5 (conv3-512), there
are 6, 7, and 8 convolutional layers, with the corresponding kernel sizes being (7, 7, 4096),
(1, 1, 4096), and (1, 1, 1000) respectively. Since all layers in the network are convolutional, it
is also referred to as a fully convolutional neural network, with a final soft-max prediction
layer. The semantic segmentation algorithm based on convolutional networks utilized
200 images from the dataset as the test set, while the remaining images served as the
training set and validation set. The experiments primarily focused on the following three
typical scenarios involving photovoltaic panel deployments: a grassland background, a
sandy soil background, and a brick roof background. The dataset for these experiments
comprised 2400 images from each scenario, totaling 800 images per dataset. In this paper, a
representative image from each dataset was selected for visual qualitative analysis, and
quantitative calculations were performed on the entire dataset of 2400 images. The accu-
racy of different algorithms was evaluated using the F1-score metric [20] across various
environmental datasets, while the boundary accuracy was assessed using the Hausdorff
distance metric [21].

The present study employs the Otsu algorithm, the K-means algorithm, the algo-
rithm from reference [12], the semantic segmentation algorithm of convolutional neural
networks, and the segmentation strategy introduced in this paper for testing and com-
parison. To validate the performance of the algorithms, experiments were conducted on
photovoltaic panels set against backgrounds including grasslands, brick roofs, and sandy
soil. A large number of images were employed in the experimental process. In Figures 6–11,
representative images are selected for intuitive description and display. Meanwhile, in
Figures 12–18, this paper conducts quantitative calculations on all experimental images,
which are displayed in the form of scatter plots.
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Figure 12. Results of the algorithm in this paper.
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4. Discussion

This study selects three major typical scenarios for the application of photovoltaic
panels for experimental validation. Meanwhile, two major evaluation metrics including
the F1-score and Hausdorff distance are employed to compare and assess the algorithms.
Before interpreting these evaluation metrics, it is essential to clarify the concept of the
confusion matrix, as these metrics are related to or derived from the confusion matrix. The
confusion matrix, also known as the error matrix, is a standard format for representing
precision metrics, represented in a matrix format with n rows and n columns. Specific
evaluation metrics include overall precision, mapping precision, user precision, etc. These
precision metrics reflect the accuracy of image classification from different perspectives.
In the evaluation of image accuracy, it is mainly used to compare the classification results
with the actual measured values. The accuracy of the classification results can be displayed
in a confusion matrix, as shown in Figure 19:
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In the figure, TP (True Positive) is determined as a positive sample, which is a posi-
tive sample; TN (True Negative) is a sample judged as negative that indeed is negative;
FP (False Positive) is an instance that is classified as a positive sample but is a negative
sample; and FN (False Negative) is a sample judged as negative but in fact is positive.

The F1-score is an index used in statistics to evaluate the precision of binary clas-
sification models. It simultaneously considers both the precision and recall rates of the
classification model. The F1-score can be viewed as a weighted average of the model’s
precision and recall rates, with a maximum value of 1 and a minimum value of 0, as shown
in the formula in Figure 19. In this study, all images within the dataset were manually
segmented into precise regions, serving as the positive reference set for the experimental
data, as shown in Figure 20. Additionally, their contour coordinate sets were acquired as
the boundary-positive reference set.

This study employs the Otsu algorithm, the K-means algorithm, the algorithm from
reference [12], and a fusion of the Meanshift and Shi-Tomasi algorithms for testing and
comparison to validate the performance of the algorithms. The validation was conducted
on photovoltaic panels set against backgrounds of grasslands, brick roofs, and sandy
soil. A large number of images were employed in the experimental process, and several
representative images were selected for illustration and demonstration in this paper.

The visual effects of various algorithms for segmentation under different backgrounds
can be seen in Figures 7–12. Figure 6 shows the original image of a single photovoltaic panel
image in a complex environment, Figure 7 is the manual segmentation of the photovoltaic
panel image, Figure 8 is the segmentation result of the Otsu algorithm, Figure 9 is the
segmentation result of the K-means clustering algorithm, Figure 10 is the segmentation
result of the algorithm in reference [12], and Figure 11 is the segmentation result of the
algorithm presented in this paper. From the figures above, it can be observed that the
Otsu algorithm in Figure 8 cannot effectively differentiate objects similar to the edges
of photovoltaic panels in a complex background compared with manual segmentation,
and the contour generation is incomplete. The K-means clustering algorithm in Figure 11
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cannot stably differentiate objects similar to the color and shape of photovoltaic panels
in a complex background compared with manual segmentation. The algorithm in refer-
ence [12] is an improvement to the K-means clustering algorithm, and compared with the
segmentation result in Figure 9, it can better differentiate areas with background colors
similar to photovoltaic panels, but there are still some cases of false segmentation. Figure 11
shows the semantic segmentation results of a neural network, and Figure 12 shows the
segmentation process and results of the algorithm presented in this paper. Compared with
the results of the above algorithms, the semantic segmentation results of the neural network
more closely match the manual segmentation areas compared to the segmentation contour
areas generated by the algorithm presented in this paper.
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Next, we employ the F1-score metric to quantitatively analyze the regional segmen-
tation accuracy of algorithms across various backgrounds. Based on the F1-score values
of 800 images under the grassland background shown in Figure 13, it is evident that the
integrated segmentation strategy proposed in this paper, which combines the Meanshift
and Shi-Tomasi algorithms, outperforms traditional Otsu threshold segmentation, K-means
clustering, and the algorithm described in reference [12]. By averaging all F1-score values
for each algorithm in the grassland background, Table 1 is obtained. Notably, the seg-
mentation method proposed in this paper exhibits an average improvement of 30% over
traditional Otsu threshold segmentation, K-means clustering, and the algorithm described
in reference [12], and it is only 0.45% inferior to the accuracy of convolutional neural
network semantic segmentation. In a sandy soil background, as depicted in Figure 14, the
proposed segmentation method continues to offer significant advantages over traditional
Otsu threshold segmentation, K-means clustering, and the algorithm described in refer-
ence [12], achieving an average improvement of 26.2%. However, it is only 2.87% inferior to
the accuracy of convolutional neural network semantic segmentation. In the most complex
setting of a brick roof background, the accuracy rates of all algorithms exhibit some decline.
However, referring to Table 1, the algorithm proposed in this paper still offers an average
improvement of 39.4% over traditional Otsu threshold segmentation, K-means clustering,
and the algorithm described in reference [12], while achieving a precision comparable to
that of the convolutional neural network semantic segmentation algorithm.



Processes 2024, 12, 564 20 of 22

Table 1. Comparison of algorithm results.

Background

Method

Parameters Otsu K-
Means Reference [12] Semantic

Segmentation

Algorithm
Presented in
This Paper

grassland F1-score 0.642 0.684 0.739 0.891 0.887
Hausdorff-95 0.342 0.288 0.246 0.163 0.121

sandy soil F1-score 0.625 0.687 0.761 0.897 0.872
Hausdorff-95 0.268 0.251 0.193 0.137 0.113

brick roof
F1-score 0.574 0.642 0.708 0.897 0.894

Hausdorff-95 0.326 0.285 0.241 0.198 0.165

After analyzing the accuracy of target region segmentation using the F1-score, the
accuracy of boundary contour segmentation is also crucial. In this paper, the Hausdorff
distance is employed to evaluate the algorithm’s accuracy in boundary contour segmenta-
tion. Unlike the aforementioned Dice coefficient (of which the F1-score is a type), the Dice
coefficient is sensitive to the internal filling of the image, while the Hausdorff distance is
sensitive to the boundaries of the segmented region.

This study employs the Hausdorff distance method to evaluate the accuracy of bound-
ary contour segmentation for various algorithms under three typical backgrounds. A closer
value to zero indicates a higher similarity between the contour and the reference positive
sample set, indicating superior segmentation accuracy. Based on the Hausdorff distance
values for different algorithms under the grassland, sandy soil, and brick roof backgrounds
depicted in Figures 16–18, it is evident that the proposed comprehensive segmentation
strategy exhibits superior accuracy compared with traditional Otsu threshold segmentation,
K-means clustering, and the algorithm mentioned in reference [12]. The average Hausdorff
distance of all images under different algorithms was also calculated. Referring to Table 1,
in the grassland background„ the segmentation method proposed in this paper, compared
with the traditional Otsu threshold segmentation algorithm, K-means clustering algorithm,
and the algorithm described in reference [12], exhibits an average improvement of over
58.5% in boundary contour segmentation accuracy and is superior to the convolutional
neural network semantic segmentation algorithm by 25.8%. In the sandy soil background,
the proposed segmentation method still has a significant advantage over the traditional
Otsu threshold segmentation algorithm, K-means clustering algorithm, and the algorithm
described in reference [12], with an average improvement of 52.4%, and outperforms the
convolutional neural network semantic segmentation algorithm by 17.5%. In the most
complex background of brick roofs, the algorithm proposed in this paper still shows an
average improvement of 41.9% compared with the traditional Otsu threshold segmentation
algorithm, K-means clustering algorithm, and the algorithm described in reference [12]
and is superior to the convolutional neural network semantic segmentation algorithm by
20% in accuracy.

The execution time or speed of an algorithm is a crucial metric, particularly during
the inference phase after the algorithm model is deployed. This evaluation uses average
execution time to assess each algorithm by calculating the total time executed across a full
sample set to determine the average execution time. Furthermore, the average execution
time of the algorithm in this paper is used as the baseline for comparison, as shown in the
Table 2 below.

From the Table 2, it is evident that the algorithm proposed in this study exhibits a
37.67% advantage in execution time over the neural network semantic segmentation algo-
rithm under the conditions of this experiment. Furthermore, it outperforms the method
described in reference [12] by 18.8%. In terms of execution time, the algorithm is compara-
ble to the K-means algorithm. After analyzing the algorithm performance in three typical
scenarios, it is evident that the algorithm proposed in this paper possesses significant
advantages over traditional threshold and clustering segmentation algorithms in terms of
segmentation accuracy within the target region. It is only slightly inferior to convolutional
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neural network semantic segmentation algorithms. However, when it comes to accurate
segmentation of the target contour, the proposed algorithm shows pronounced advantages
in segmentation efficiency. Based on the aforementioned experimental comparisons, the
algorithm presented in this paper exhibits commendable segmentation performance across
three typical application scenarios for photovoltaic panels. Furthermore, within the appli-
cation scenarios discussed in this study, the algorithm can also be extended to objects with
similar shapes, enabling broader applications.

Table 2. Comparison of average execution time.

Method Average Execution Time (ms)

Baseline 84.22
Algorithm presented in this paper 94.22 +0

Otsu 87.87 −6.35
K-means 95.96 +1.74

Reference [12] 113.73 +19.51
Semantic segmentation 151.14 +56.92

5. Conclusions

This paper proposes a segmentation strategy that integrates the Meanshift and adap-
tive Shi-Tomasi algorithms. The experimental results of this paper show that compared
with traditional image segmentation algorithms, the algorithm proposed in this paper
achieves excellent accuracy in target region segmentation and boundary contour segmenta-
tion in typical application scenarios of photovoltaic panels. Meanwhile, in the case of small
samples, compared to semantic segmentation algorithms based on convolutional neural
networks, it can achieve similar accuracy in region segmentation and better accuracy in
boundary contour segmentation. This method utilizes the optimized platform histogram to
determine the initial center of the cluster and conducts preliminary image segmentation.
Meanwhile, based on the traditional Shi-Tomasi algorithm, it adaptively obtains the thresh-
old using a multi-level thresholding method, achieving better feature points in the target
region to generate the corresponding contour. According to the experimental results, the
segmentation performance of the proposed algorithm is superior to the Otsu algorithm,
K-means algorithm, and the algorithm in reference [12]. In three typical application sce-
narios of grassland, sandy soil, and brick roofs, it achieves more than 30% improvement
in segmentation accuracy of the target region of photovoltaic modules and more than
40% improvement in segmentation accuracy of the boundary contour. Compared with
the commonly used convolutional neural network semantic segmentation model, it has
similar target region segmentation accuracy and about 20% improvement in boundary
contour segmentation accuracy. The results indicate that this image segmentation strategy
has excellent segmentation capabilities in the three typical photovoltaic panel application
scenarios of grassland, sandy soil, and brick roofs.
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