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Abstract: The new energy structure needs to balance energy security and dual carbon goals, which has
brought major challenges to coal-fired power plants. The pollution reduction and carbon emissions
reduction in coal-fired power plants will be a key task in the future. In this paper, an optimization
technique for the operation of an electrostatic precipitator is proposed. Firstly, the voltage-current
model is constructed based on the modified dust charging mechanism; the modified parameters
are trained through the gradient descent method. Then, the outlet dust concentration prediction
model is constructed by coupling the mechanism model with the data model; the data model adopts
the long short-term memory network and the attention mechanism. Finally, the particle swarm
optimization algorithm is used to achieve the optimal energy consumption while ensuring stable
outlet dust concentration. By training with historical data collected on site, accurate predictions
of the secondary current and outlet dust concentration of the electrostatic precipitator have been
achieved. The mean absolute percentage error of the voltage-current characteristic model is 1.43%,
and the relative root mean-squared error is 2%. The mean absolute percentage error of the outlet dust
concentration prediction model on the testing set is 5.2%, and the relative root mean-squared error is
6.9%. The optimization experiment is carried out in a 330 MW coal-fired power plant. The results
show that the fluctuation of the outlet dust concentration is more stable, and the energy saving is
about 43% after optimization; according to the annual operation of 300 days, the annual average
carbon reduction is approximately 2621.34 tons. This method is effective and can be applied widely.

Keywords: pollution reduction; carbon emissions reduction; long short-term memory; attention
mechanism; energy saving; concentration prediction; particle swarm optimization

1. Introduction

In the context of dual carbon, renewable energy generation has increased steadily,
the proportion of coal power installed capacity has continued to decline, and the role
of coal-fired power plants as a foundational and system-regulating power source is also
becoming increasingly clear [1]. However, from the perspective of security and energy
security, it is difficult to fundamentally change the energy structure dominated by coal in a
short time. The new energy structure needs to take into account energy security and dual
carbon goals [2]. The effective collaborative development of coal power and new energy is
the key to building a new power system and ensuring energy security and stability, which
brings major challenges to coal-fired power plants, mainly including frequent start-up and
large load change, deep peak regulation, and biomass blending [3–5].

In response to these challenges, coal-fired power plants have adopted a series of
measures, including optimizing the operation mode, improving the energy utilization
efficiency, and developing carbon capture and storage technology [6]. As the main device for
particulate matter removal, an electrostatic precipitator (ESP) directly affects the reduction
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effectiveness of pollution and carbon emissions in coal-fired power plants. An ESP realizes
dust removal by consuming energy; the greater the energy consumption, the higher the
dust removal efficiency [7–9]; therefore, in order to ensure the outlet dust concentration
meets the standard, the operation energy consumption of an ESP in coal-fired power plants
is generally high [10]. In addition, the fuel composition and operating conditions have
become more complex due to factors such as biomass blending, deep peaking, and fuel
cost, which puts new requirements on the stable operation of an ESP. Therefore, it is urgent
to develop the optimization operation technology of an ESP to reduce pollution and carbon
emissions, so as to achieve ultra-low emissions of PM under complex working conditions
while reducing energy consumption.

An ESP is generally optimized by negative feedback on the outlet dust concentration,
which cannot take into account the mutual influence of each electric field and cannot
achieve the optimal solution. For the optimization of an ESP, a large number of scholars
have carried out relevant research. Li et al. [11] proposed a least square fitting model
to identify the corona power of an ESP, using the neural network model to predict the
outlet dust concentration and using a genetic algorithm to achieve optimal control. Chen
Weiguang [12] built a mathematical model for an ESP and proposed an optimization control
method based on fuzzy logic and multi-objective programming. Grass [13] et al. proposed
a fuzzy control strategy to adjust the ESP by boiler load dynamically. Liu et al. [14] studied
the influence of different high-voltage power supplies and power supply modes on outlet
dust concentration, analyzed power consumption under different working conditions, and
proposed optimization operation strategies under different working conditions. In order to
achieve the optimal control, power consumption and outlet dust concentration must be
accurately obtained.

The above research has achieved certain results. However, the temporal correlation
between the input and output of an ESP has not yet been considered, and the lack of critical
information makes it impossible to build an accurate prediction model. The movement of
flue gas from the inlet to the outlet of the ESP takes time, and the outlet dust concentration
has a time delay relative to the flue gas parameters and power parameters. The outlet
dust concentration is the result of the combined effects of relevant parameters over a
period of time; therefore, it is necessary to choose an algorithmic model that takes temporal
correlation into consideration. The long short-term memory (LSTM) network can solve the
problem of gradient disappearance or explosion in the recurrent neural network and has
long-term memory capabilities, making it very suitable for processing long-term response
data. Moreover, most of the ESPs in coal-fired power plants consist of multiple chambers
and multiple electric fields. Considering factors such as structural differences, wear of
wire, change in operating conditions, flue gas flow field, fuel characteristics, and the
characteristics of each field are independent and correlated, there are still some problems
that need to be solved.

In this paper, the affecting factors are analyzed, and the voltage-current characteristic
model and the outlet dust concentration prediction model are established. Through the pre-
diction results of the voltage-current characteristic model and the outlet dust concentration
prediction model, the particle swarm optimization (PSO) algorithm is used to obtain the
optimal secondary voltage under the requirement of satisfying the outlet dust concentration.
Finally, an optimization experiment is carried out in a 330 MW coal-fired power plant.

The rest of this paper is as follows. Section 2 proposes an optimization control method
and discusses the affecting factors; Section 3 analyzes the results of the optimization control
method; and Section 4 is the conclusion of this paper.

2. Main Affecting Factors and Control Methods

The optimization control of an ESP is a complex engineering system with multi-
ple inputs and outputs, strong coupling, and is nonlinear and hysteretic with dynamic
changes [15]. As shown in Figure 1, the ESP in a 330 MW power plant consists of four cham-
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bers (Chamber A1–B2) connected in parallel and five electric fields (Field 1–5) connected in
series, which is highly sensitive to multiple variables.
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Figure 1. Structure of an ESP in a 330MW power plant.

2.1. Main Affecting Factors

Load and coal. The load is dynamically variable, and the current coal composition is
relatively complex. Due to the fixed mechanical structure, the inlet flue gas volume varies
with load and coal. When the flue gas volume is large, the flue gas flow rate is fast, and the
flue gas residence time in the chamber is short, which will reduce the overall dust removal
efficiency. Therefore, the input power of the electric field can be adjusted according to the
change in the load and coal.

Mechanical structure. An ESP consists of multiple chambers connected in parallel and
multiple electric fields connected in series. Under normal circumstances, the deviation of
each chamber is very small, and the channels are independent of each other, so we only
need to analyze a single chamber. The dust removal efficiency of a single chamber depends
on the dust removal efficiency of each electric field within the chamber, and the overall dust
removal efficiency is the average of the dust removal efficiencies of all the chambers. The
dust removal efficiency is closely related to each electric field. The dust removal efficiency
of an ESP can be calculated as follows:

η = ∑n
i=0 ηi/n (1)

ηi = 1 − ∏m
j=1 (1 − η(i,j)) (2)

where η is the dust removal efficiency of ESP. ηi is the dust removal efficiency for chamber
i. n is the total number of chambers. ηij is the dust removal efficiency for chamber i and
field j. m is the total number of electric fields in a single chamber.

High voltage. High voltage is applied to the discharge electrode to generate a strong
electric field, and the gas will be ionized. Electrons are emitted into the gas layer near the
corona electrode surface, and the dust particles in the flue gas gain charge through collision
and diffusion and become charged particles. Under the action of the electric field force,
these charged particles move to the collecting electrode and attach to the anode plate, so
that the dust particles can be separated from flue gas [16]. The charging of particles and
the driving speed of charged particles are both related to the voltage of the power supply.
However, maintaining an excessively high voltage will result in significant corona current
and energy waste. Therefore, different electric fields require a reasonable distribution of
secondary voltage.
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Rapping system. Charged particles lose charge and become neutral particles after
reaching the collecting electrode, which is grounded, and then the collecting electrode is
cleaned through mechanical rapping; in this way, the neutral particles will fall off. Therefore,
setting a reasonable rapping time can better remove particulate matter. In addition, in order
to ensure that the outlet dust concentration is up to standard, two electric fields cannot be
simultaneously rapped in a common chamber.

2.2. Control Methods

The ESP is highly sensitive to multiple variables; the former fields will also have
influence on the latter electric fields, so it is difficult to realize an accurate description
with the mechanism. In order to achieve efficient pollutant reduction and low-cost op-
eration, an optimization method for an ESP is designed, including the voltage-current
characteristic model, the outlet dust concentration prediction model, and the PSO model.
The voltage-current characteristic model is built based on the dust charging mechanism and
the historical operating data of an ESP; the secondary current of an ESP can be calculated
by the voltage-current characteristic model. Once the conversion efficiency of the power
supply is given, the energy consumption can be calculated from the secondary voltage
and secondary current. The outlet dust concentration prediction model is divided into two
parts: firstly, the mechanism model is built based on the dust removal mechanism and
the parameter correction method to obtain the predictive value of the mechanism model;
secondly, the data model is built by a deep learning algorithm, which utilizes the historical
data as input and the difference between the predictive value of the mechanism model and
the measured value as output. The outlet dust concentration prediction is realized through
the coupling of the mechanism with data. The PSO model derives the optimal secondary
voltage based on the real-time operating conditions to minimize the energy consumption
and to ensure compliance with emission standards.

2.2.1. Voltage-Current Characteristic Model

During the operation process, the operating cost of the ESP mainly considers the
power consumption of the power supply. Therefore, it is only necessary to consider the
power consumption of the power supply. The variation of the secondary voltage and
secondary current causes changes in the power consumption, and the variation of the
secondary voltage and secondary current is coupled according to the characteristics of the
corona discharge. Under different secondary voltages, the current density is affected by
parameters such as the flue gas composition and the electrode configuration; the secondary
current can be obtained from the following equation [17]:

Io =
ε0bil
16sy

[γ +
√

γ2 + 192(Uo − Uc)(syE1)
3] (3)

γ = 9(Uo − Uc + syE1)
2 − 12(syE1)

2 (4)

Uc = rdE0δ(ρi + 0.03
√

ρi
rd
) ln

re f f

rd
(5)

E1 =
πUc

dw ln
re f f
rd

(6)

where εo is the dielectric constant in vacuum. bi is the ion mobility (cm2/V/s). l is the total
length (m) of the wire. sy is the wire-plate distance (m). E1 is the effective electric field intensity
(V/m). Uo is the secondary voltage (V). Uc is the inception voltage (V). rd is the radius (m)
of the wire. E0 is the electric field intensity (V/m) of the spark discharge under standard
conditions. δ is the surface roughness of the discharge electrode. ρi is the relative density of
the flue gas. re f f is the effective cylinder radius (m). dw is the wire-wire distance (m).

In the actual operation of an ESP, factors that affect the corona discharge include
the accumulation of dust on the electrode plates and wires, wear and tear, the corona
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enclosure, etc. The corona discharge process deviates from the ideal process described
by Equation (3); the voltage-ampere characteristics are variable, the secondary voltage is
proportional to the load when the secondary current is fixed, and there is a certain deviation
between the effective secondary voltage and the operating secondary voltage. Therefore, it
is necessary to modify the discharge mechanism model to improve its accuracy. This paper
introduces some correction parameters into the corona discharge mechanism and calculates
the effective discharge voltage using the following equation, based on the research results
of Guo [18]:

U∗
o = Uo + αL + β (7)

where U∗
o is the effective secondary voltage (V). L is the load (MW). α and β are the

correction factors.
The surface roughness of the discharge electrode, relative density of the flue gas, and

ion migration rate all vary with the theoretical design parameters, which are also set as
trainable variables. Subsequently, TensorFlow is used to construct the voltage-current
characteristic correction model. This model takes coal, the secondary voltage of the power
supply, and temperature as inputs and the secondary current as outputs. The model
accuracy is improved through gradient descent training.

The energy consumption of an ESP can be described by the following equation:

P = Uo Io/ηp (8)

where ηp is the efficiency of the energy conversion from the primary side to the secondary
side, ≥90%.

2.2.2. Outlet Dust Concentration Prediction Model

1. Mechanism model

The migration and removal processes of particles are affected by some factors, such
as the mechanical parameters, flue gas parameters, and operational parameters of the
power supply. It is generally believed that the removal of particles with different sizes is
independent of each other, and there is no conversion between different sizes. The outlet
dust concentration can be described by the following equation [19]:

Co =
∫ dpmax

dpmin

Co(dp)ddp (9)

Co(dp) = Cin(dp)∏n
i=1 ende (10)

nde = − A
Q

q(dp, ui)E(ui)Cm(dp)

3πµdp
(11)

where dp, dpmin, and dpmax are the particle diameter (µm), minimum particle diameter
(µm), and maximum particle diameter (µm), respectively. Cin

(
dp

)
and Co

(
dp

)
are the dust

concentration (mg/Nm3), with the particle diameter of dp at the inlet and outlet of the ESP,
respectively. n is the total number of electric fields. nde is the Deutsch number. q

(
dp, ui

)
is

the electrical charge (C) of the particle diameter of dp in field i; the particle charge is decided
by the particle diameter and secondary voltage. E(ui) is the electric field intensity (V/m)
of field i. Cm

(
dp

)
is the Cunningham correction factor for different particle diameters. A is

the collecting plate area (m2) of a single electric field. Q is the flue gas quantity (m3/s). µ is
the flue gas viscosity (Pa·s).

Considering the deviation of the ideal process, according to the research [20] of Li
et al., proportional and exponential factors are applied to correct the Deutsch number. The
corrected outlet dust concentration equation is given as:

Co =
∫ dpmax

dpmin

Cin(dp)∏n
i=1 e f (nde)ddp (12)
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f (nde) = λ1nλ2
de (13)

where λ1 is the proportional factor and λ2 is the exponential factor.

2. Data model

The mechanism model has now been constructed, but it still has some defects. There-
fore, the data model needs to be built. By utilizing the mechanism model, the difference
between the predictive outlet dust concentration and the measured value can be obtained,
and the difference will be used as the target value in the data model. In this way, a
mechanism-and-data-coupled outlet dust concentration prediction model is constructed;
the model has the advantages of high accuracy and generalization ability.

Due to the time required for the flue gas to flow from the inlet to the outlet, the
historical data of coal, flue gas, and power-related parameters are refreshed in seconds.
The outlet dust concentration is lagging behind, which is the result of the effects of relevant
parameters during the period from the inlet to the outlet of flue gas. When using time series
data for regression modeling, it is possible to consider the impact of input from multiple
time steps on the output. In this paper, the LSTM network is used in the data model; since
the dust removal process involves many parameters, the attention mechanism is added into
the LSTM (A-LSTM) network. The attention mechanism selectively filters a small amount
of key information from a large amount of data and effectively highlights the importance
of different parameters, and the accuracy and generalization ability of the model can be
improved [21]. The A-LSTM network structure is displayed in Figure 2.

Processes 2024, 12, x FOR PEER REVIEW 6 of 14 
 

 

the ESP, respectively. 𝑛 is the total number of electric fields. 𝑛ௗ௘ is the Deutsch number. 𝑞(𝑑௣, 𝑢௜) is the electrical charge (C) of the particle diameter of 𝑑௣ in field 𝑖; the particle 
charge is decided by the particle diameter and secondary voltage. 𝐸(𝑢௜) is the electric 
field intensity (V/m) of field 𝑖. 𝐶௠(𝑑௣) is the Cunningham correction factor for different 
particle diameters. 𝐴  is the collecting plate area (m2) of a single electric field. 𝑄 is the 
flue gas quantity (m3/s). 𝜇 is the flue gas viscosity (Pa·s). 

Considering the deviation of the ideal process, according to the research [20] of Li et 
al., proportional and exponential factors are applied to correct the Deutsch number. The 
corrected outlet dust concentration equation is given as: 

( )
o 1

( ) dpmax
de

pmin

d n f n
in p pid

C C d e d
=

= ∏  (12) 

2
1( )de def n n λλ=  (13) 

where 𝜆ଵ is the proportional factor and 𝜆ଶ is the exponential factor. 
2. Data model 

The mechanism model has now been constructed, but it still has some defects. There-
fore, the data model needs to be built. By utilizing the mechanism model, the difference 
between the predictive outlet dust concentration and the measured value can be obtained, 
and the difference will be used as the target value in the data model. In this way, a mech-
anism-and-data-coupled outlet dust concentration prediction model is constructed; the 
model has the advantages of high accuracy and generalization ability.  

Due to the time required for the flue gas to flow from the inlet to the outlet, the his-
torical data of coal, flue gas, and power-related parameters are refreshed in seconds. The 
outlet dust concentration is lagging behind, which is the result of the effects of relevant 
parameters during the period from the inlet to the outlet of flue gas. When using time 
series data for regression modeling, it is possible to consider the impact of input from 
multiple time steps on the output. In this paper, the LSTM network is used in the data 
model; since the dust removal process involves many parameters, the attention mecha-
nism is added into the LSTM (A-LSTM) network. The attention mechanism selectively 
filters a small amount of key information from a large amount of data and effectively high-
lights the importance of different parameters, and the accuracy and generalization ability 
of the model can be improved [21]. The A-LSTM network structure is displayed in Figure 
2.  

 
Figure 2. A-LSTM network structure of the data model. Figure 2. A-LSTM network structure of the data model.

The attention layer is used to process the time series data output by the LSTM layer
and can be represented by the following equation:

st = softmax(hT
t Wkhall) (14)

Ht = ∑n
t=1 sthn (15)

y = tanh(Wc[Ht; ht]) (16)

where ht is the hidden state of the last LSTM layer output at the last moment. hall is the
hidden state of the last LSTM layer output. Wk is the weight matrix. st is the coefficient
vector. softmax() and tanh() are the activation functions. n is the time step of the LSTM
network. Ht is the temporal weight vector. Wc is the temporal weight matrix. y is the
output of the A-LSTM.

In the data model, air volume, secondary voltage of the power supply, inlet tempera-
ture of the ESP, and coal are used as inputs, while dust concentration deviation is used as
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the output. The root mean square error (RMSE) is used as the evaluation function for the
model, and RMSE is calculated as follows:

yi = Co,i − C′
o,i (17)

RMSE =

√
1
n∑n

i=1 (yi − y′i)
2

(18)

where Co,i is the measured value (mg/Nm3) of number i. C′
o,i is the predictive value

(mg/Nm3) of number i in the mechanism model. y′i is the predictive value (mg/Nm3) of
number i in the data model.

2.2.3. PSO Model

The optimization goal of an ESP is to minimize the operational cost by providing
each electric field with a secondary voltage while meeting the outlet dust concentration
standards. The optimization operation is a nonlinear programming problem, which can
be effectively solved by PSO due to its advantages in searching and optimizing nonlinear
systems in multiple dimensions. PSO is suitable for the optimization of an ESP. When using
PSO to construct the optimization control problem, the total energy consumption of an ESP
should be minimized while meeting the emission limit, which can be expressed as:

min∑n
i=1 Pi (19)

s.t.
{

c′out ≤ climit
ui,min ≤ ui ≤ ui,max

(20)

where n is the total number of electric fields. Pi is the power (kW) of field i. c′out and
climit are the predictive value (mg/Nm3) and limit value (mg/Nm3) of the outlet dust
concentration, respectively. ui, ui,min, and ui,max are the secondary voltage (kV), minimum
secondary voltage (kV), and maximum secondary voltage (kV) of field i, respectively.

There are constraints in this optimization problem. Generally, the way to solve con-
strained optimization problems is to construct penalty functions, which incorporate the
boundary conditions into the objective function of the optimization problem, thereby creat-
ing a new objective function. The solution to the original optimization problem is obtained
by solving the new optimization problem. There are several penalty functions that can be
used when particles are outside the boundary conditions; for instance, the dead penalty
function sets the fitness of particles to infinity directly, the static penalty function gives
particles a fixed punishment, and the hierarchical penalty function [22] adopts different
penalty coefficients based on the degree of violation of the penalty function. In this article,
the A-LSTM network is used to correct the dynamic characteristics of an ESP, and the trend
of the dust concentration changes at the outlet can be calculated with a few steps. Therefore,
the following form of hierarchical penalty function is adopted:

Penalty = ε∑m
i=1

sgn(c′out,i − climit) + 1
2

(21)

where m is the total step. ε is penalty coefficient. sgn() is the signum function. c′out,i is the
predictive value (mg/Nm3) of the outlet dust concentration at step i.

This form of the penalty function imposes a higher penalty on particles that exceed
the limit many times; the optimization problem can then be described as:

min∑n
i=1 Pi + Penalty (22)

s.t.ui,min ≤ ui ≤ ui,max (23)

Obviously, the above problem is a nonlinear programming problem, which cannot be
solved using conventional linear programming methods. Therefore, the PSO algorithm is
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adopted to solve the above problem. According to the principles of the PSO algorithm, the
secondary voltage is abstracted as the position attributes of particles, which are randomly
generated within the solution space, and Equation (22) is the fitness function. The position
and velocity of the particles can be updated based on their fitness, according to the following
equation:

Vi,t+1 = ωVi,t + c1r1(Pi,pbest − Pi,t) + c2r2(Pgbest − Pi,t) (24)

Pi,t+1 = Pi,t + Vi,t+1 (25)

where ω is the inertia weight. Vi,t is the velocity vector of particle i at time t. C1 and C2
are the learning factors. r1 and r2 are the random numbers. Pi,pbest is the optimal position
vector in the history of the particle. Pgbest is the global optimal position vector of all the
particles. Pi,t is the position vector of particle i at time t.

When using TensorFlow to run the PSO model, some parameters need to be set. The
specific parameters are set as follows: the particle number is 50; the iteration number is 10;
the mode is vectorization; the upper value is 80; the lower value is 30; the inertia weight is
0.8; the learning factors are 0.5.

Figure 3 shows the PSO process of an ESP; the information contained in the particles
correspond to the secondary voltage of each electric field. The PSO process can be described
as follows: (1) Logical judgment, which ensures that the emissions are controlled within
the limit values under various operating conditions; it is reasonable to set the target value
at 80% of the limit value. (2) Particle initialization, the purpose of particle initialization is to
set the initial secondary voltage for the particle swarm, and the secondary voltage value
must be within the allowable range of the device. (3) Fitness calculation. (4) Update the
global best particle and continue to calculate fitness and update the particle until the end
of iteration. (5) End the current optimization. This process needs to be used repeatedly in
practical work in order to ensure the reliable and stable operation of the system; it is also
necessary to consider factors such as severe fluctuations in operating conditions, secondary
dust caused by rapping, and distortion of the turbidity meter.
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3. Results

In order to validate the effectiveness of the optimization control, the research is
conducted on the ESP of a 330 MW power plant, and each electric field is equipped with
an independent high-voltage power supply. The detailed design parameters are shown in
Table 1. The optimization system contains a prediction module, an optimization module,
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and a control module. The prediction and optimization modules are developed based on
the Python platform, and the control module communicates with external systems through
the OPC protocol.

Table 1. Design parameters of an ESP.

Design Parameter Unit Value

effective cross-sectional area m2 276
effective length m 3.91

specific collecting area m2/(m3/s) 106.42
flue gas velocity m/s 0.87

wire-plate distance m 0.2
wire-wire distance m 0.49

discharge electrode type field 1, 2, 3: barbed wire
field 4, 5: spiral wire

3.1. Prediction Results and Analysis of Voltage-Current Characteristic Model

The secondary current prediction performance of the voltage-current characteristic
model is shown in Figure 4. During the sampling period, the actual secondary current
ranges from 100 mA to 1500 mA and covers almost all the operation conditions. The
average value of the secondary current is 631 mA, the mean absolute error (MAE) is 9 mA,
the mean absolute percentage error (MAPE) is 1.43%, the RMSE is 12 mA, the relative root
mean-squared error (RRMSE) is 2%, R-squared (R2) is 0.98, and the maximum predictive
deviation is 86 mA. Compared to the front electric fields (field 1–3), the relative deviation
of the fourth and fifth electric fields is larger, with a MAE of 11 mA and a RMSE of 13.5 mA.
This is because the discharge electrode type of the last two electric fields is a spiral wire and
adopts the structure of one plate with two wires, which can produce a larger secondary
current under the same secondary voltage; the average value of last two electric fields is
701 mA. The results show that a voltage-current characteristic model can accurately follow
the change in the secondary current.
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3.2. Prediction Results and Analysis of Outlet Dust Concentration Prediction Model

With the mechanism model, it is difficult to eliminate impermeable disturbances such
as airflow distribution and wear of the wire. The model adopts the fusion of mechanism
and data; firstly, it predicts the outlet concentration by the modified mechanism model,
and then it constructs the data model to calculate the deviation to obtain the prediction of
the outlet dust concentration coupled with the mechanism and data. We constructed a data
set using 500,000 historical data from the ESP; 85% of the data is selected as the training
set, and the remaining 15% is used as the testing set. The result of the dust concentration
prediction model on the training set is shown in Figure 5.
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Figure 5. Result of outlet dust concentration prediction model on the training set.

The outlet dust concentration of the training set is distributed in the range of 20–45 mg/Nm3,
and the average outlet dust concentration is 30.1 mg/Nm3. As shown in Figure 5, the prediction
performance of the outlet dust concentration prediction model is outstanding; the MAE of the
prediction is 0.43 mg/Nm3, the MAPE is 1.4%, the RMSE is 0.546 mg/Nm3, the RRMSE is
1.8% and the R2 is 0.98. The prediction accuracy is high across the entire range of data, and the
predictive values align with the real values in terms of trends. However, a well-fitted performance
on the training set often leads to overfitting, which will reduce the generalization ability of the
model. Therefore, it is necessary to observe the performance of the data model on the testing
set. The result of the outlet dust concentration prediction model on the testing set is shown
in Figure 6.
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Figure 6 presents the performance of the outlet dust concentration prediction model
on the testing set. The average value of the outlet dust concentration is 30.19 mg/Nm3, the
MAE is 1.57 mg/Nm3, the MAPE is 5.2%, the RMSE is 2.08 mg/Nm3, the RRMSE is 6.9%
and the R2 is 0.66. As can be seen in Figure 6, the prediction of outlet dust concentration is
relatively evenly distributed on both sides of the real value; according to the dimensionless
evaluation indicators of the RRMSE and MAPE, the model has achieved an accurate outlet
dust concentration prediction.

3.3. Prediction Results and Analysis of PSO Model

In order to validate the optimization performance of the PSO model, a comparative
experiment is conducted in a 330 MW coal-fired power plant; manual control and PSO
control are performed at similar conditions. The coal feeding quantity, total air volume,
outlet dust concentration of the ESP, and the outlet dust concentration of chimney and
energy consumption are shown in Figure 7.
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When controlling manually, the secondary voltage is adjusted according to the ex-
perience of the operators and is usually set high due to efficiency requirements. In order
to ensure the stable compliance of the outlet dust concentration, the secondary voltage is
near the flashover point. At this moment, the energy consumption of the ESP is relatively
high, with an average consumption of 904.46 kW; the phenomenon of flashover coexists
simultaneously, which can lead to an unstable outlet dust concentration. The average
outlet dust concentration is 34.2 mg/Nm3, the maximum value is 42.6 mg/Nm3, and the
minimum value is 31.6 mg/Nm3. After the PSO control, the energy consumption of the
ESP significantly decreases, with an average energy consumption of 514.75 kW; since the
secondary voltage is much lower than before, there is almost no flashover. Moreover, when
the input parameters are varied over a wide range, the outlet dust concentration becomes
more stable, with fluctuation within ±3 mg/Nm3. Compared to the manual control, the
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energy saving is about 43% after the PSO control. According to the annual operation of
300 days, the annual average carbon reduction is approximately 2621.34 tons.

3.4. Future Prospects

In this paper, some progress has been made in the research on the optimization of an
ESP, and industrial validation has been carried out, but there are still some problems to be
explored in the future:

(1) An ESP can be primarily classified into dry and wet types. A wet ESP is generally
installed after wet flue gas desulfurization to further remove the escaped ultra-fine
particles, but due to its complex working process, there has been less research and
development on its capture and optimal control. The technology is currently used in
a dry ESP and can next be studied for a wet ESP.

(2) Researching the regulation technology to realize the overall optimal energy consump-
tion by combining it with denitrification and desulfurization.

4. Conclusions

This paper proposes an optimization method for an ESP, establishes a voltage-current
characteristic model, an outlet dust concentration prediction model, and a PSO model.
Finally, the optimization experiment is conducted in a 330 MW power plant to validate the
proposed model, and the following conclusions can be drawn:

(1) The voltage-current characteristic model is constructed through the charging mechanism
and parameter correction, then the model is trained by historical data. The results show
the performance is excellent, with a MAPE of 1.5% and a RRMSE of 1.8%.

(2) The outlet dust concentration prediction model is constructed based on the mechanism
model and the data model. The RRMSE of the training set and testing set are 1.8%
and 6.9%, the MAPE are 1.4% and 5.2%, and an accurate prediction of the outlet dust
concentration has been achieved.

(3) The PSO is used to obtain the optimal secondary voltage, which can minimize the power
consumption of the ESP while meeting the outlet dust concentration requirement.

(4) Compared to the manual control, the energy saving is about 43% after the PSO
control, with an annual average carbon reduction of approximately 2621.34 t, and the
fluctuation of the outlet dust concentration is more stable.
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