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Abstract: In the wake of Industry 4.0, the ubiquitous internet of things provides big data to poten-
tially quantify the environmental footprint of green products. Further, as the concept of Industry
5.0 emphasizes, the increasing mass customization production makes the product configurations
full of individuation and diversification. Driven by these fundamental changes, the design for sus-
tainability of a high-mix low-volume product–service system faces the increasingly deep coupling
of technology-driven product solutions and value-driven human-centric goals. The multi-criteria
decision making of sustainability issues is prone to fall into the complex, contradictory, fragmented,
and opaque flood of information. To this end, this work presents a data-driven quantitative method
for the sustainability assessment of product–service systems by integrating analytic hierarchy process
(AHP) and data envelopment analysis (DEA) methods to measure the sustainability of customized
products and promote the Industry 5.0-enabled sustainable product–service system practice. This
method translates the sustainability assessment into a multi-criteria decision-making problem, to
find the solution that meets the most important criteria while minimizing trade-offs between con-
flicting criteria, such as individual preferences or needs and the life cycle sustainability of bespoke
products. In the future, the presented method can extend to cover more concerns of Industry 5.0,
such as digital-twin-driven recyclability and disassembly of customized products, and the overall
sustainability and resilience of the supply chain.

Keywords: Industry 4.0; Industry 5.0; sustainability; product–service system; design for sustainability;
multi-criteria decision making; analytic hierarchy process; data envelopment analysis

1. Introduction

With the evolution of the digitalization revolution, especially after the impact of the
COVID-19 epidemic, the landscape of modern industry has been changing dramatically in
the past decade. Firstly, the fourth industrial revolution (Industry 4.0) is emerging in the
global manufacturing industry and in the technical side, it is characterized by absorbing
the internet of things (IoT), artificial intelligence (AI), big data analytics, blockchain, digital
twin (DT), additive manufacturing, and various types of intelligent robots into manufac-
turing scenes, which empowers the smart factories by widely connecting and extensively
integrating production systems [1]. These new technologies are enabling ever-higher levels
of production efficiencies, and are transforming the production paradigm from mass pro-
duction to mass customization. Furthermore, they also have the potential to dramatically
influence social and environmental sustainable development. Industry 4.0 technologies
have potential to benefit all 17 of the United Nations Sustainable Development Goals
(SDGs) [2]. For instance, by means of IoT technology, data throughout the product life cycle
(PLC), including raw material procurement, manufacturing, logistics and transportation,
product use and maintenance, and recycling and processing, can be collected into cloud
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platforms and become accessible. Furthermore, big data analytics can enhance efficiency
and optimization and lead to better management of energy and material consumption.
Additive manufacturing offers numerous notable benefits, including direct production
without the need for molds and tooling, enabling greater design flexibility, efficient material
utilization, and environmentally friendly processes [3]. The DT model generates a new
opportunity to identify and eliminate the unpredicted undesirable behavior, which has a
major impact on the reduction in wasted resources in the life cycle of our systems [4]. The
blockchain technology, which has proven to be compatible with Industry 4.0, allows for
supporting an emissions trading application framework [5]. AI could impact sustainable
products in many ways [6], such as facilitating designing business models for a circular
economy considering the uncertainties of demand and supply, and optimizing product take-
back and recycling with image recognition and robots. Therefore, the increasing number
of studies that underline the relationship between Industry 4.0 and sustainability declare
that sustainability is one pillar of smart manufacturing [7]. In addition, it is demonstrated
that there are complex interrelationships and sometimes trade-offs between the impacts
of the various emerging technologies on the “triple-bottom-line” (TBL) sustainability di-
mensions: environmental, social, and economic. These interrelationships and trade-offs
between diverse industrial sectors can vary, leading to increased complexity, difficulty, and
uncertainty in decision-making processes [8].

More recently, the Industry 5.0 concept [9] was forwardly proposed on the assumption
that Industry 4.0 is believed to promote sustainable development, but it has ignored or
misunderstood many prevailing sustainability concerns. Other scholars may prefer to label
it as Industry 4.0 Plus, Industry 4.0 Symmetrical, Industry 4.0-S, or using other terminology,
the key of which is to encourage a departure from uncritical thinking and narrow episte-
mologies that currently dominate our understanding of science and technology [10]. In a
brochure published by the European Commission, Industry 5.0 is defined by a re-found
and widened purposefulness, going beyond producing goods and services for profit, which
embraces three core elements: human-centricity, sustainability, and resilience [11]. Sus-
tainability emphasizes that a business focused solely on profit is increasingly challenging
to sustain in a globalized and highly volatile environment. Resilience refers to the ability
to deal with vulnerabilities that can occur on many levels, including the factory floor,
supply network, and industrial system levels. The human-centric approach in industry
puts core human needs and interests at the heart of the production process, instead of
taking emergent technology as a starting point and examining its potential for increasing
efficiency. For an industry to become a provider of true prosperity, it must include social,
environmental, and societal aspects. The essence of Industry 5.0 is the symbiosis of the
three segments: technological, social, and ecological [12]. Leng et al. [13] interpreted the
connotation of Industry 5.0 as follows: Industry 5.0 prioritizes the welfare of workers by
ensuring that manufacturing processes adhere to the ecological capacity of our planet,
fostering a harmonious relationship between humans and machines to achieve societal
goals beyond mere job creation and economic growth, ultimately advancing sustainable
development toward a super-smart society with ecological values. Ivanov [14] reckoned
that Industry 5.0 spanned three levels, society, network, and plant, and forms a new TBL of
resilient value creation, human well-being, and sustainable society.

SDG 12 emphasizes the importance of responsible consumption and production prac-
tices, aiming to separate economic growth from unsustainable resource consumption and
emissions. It also focuses on enhancing the management of hazardous substances and
waste to promote sustainability [15]. Many people are paying more attention to sustainable
consumption or socially responsible consumption now than before; in particular, Millenni-
als and Generation Z especially indicate a willingness to achieve SDGs, including equality,
climate change, peace, justice, eradicating poverty, and prosperity [16]. Attitude is the most
significant factor that influences responsible consumption intentions, which entail a critical
perspective on consumption, including responsible purchasing, waste production concerns,
reduced consumption, non-consumption, and alternative approaches with environmental
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or social objectives in mind [17]. In modern times, businesses are constantly exploring
new avenues to improve their interactions with clients. One crucial aspect of a company’s
sustainable strategy involves engaging stakeholders in the decision-making process. In
pursuit of the dual goals of profitability and sustainability, leading organizations have
integrated environmentally responsible practices into their business models. Sustainability
considerations have become increasingly important factors for consumers and corporate
purchasers when making buying and investment decisions, including assessing carbon foot-
prints. The current decade may see an overall shift for corporations toward a growth model
that emphasizes societal and environmental well-being alongside profits, highlighting the
growing significance of sustainability in modern business practices.

Figure 1 schematically sums up the aforementioned vision. Briefly, we are at a decisive
moment, in which some of the “old normal” will crumble and a “new normal” is becoming
true. However, transition to the grand vision still faces severe challenges and arduous
obstacles, especially with SDGs’ deadline of 2030 approaching, and a lot of people increas-
ingly argue that SDG 12 and its targets seem too ambitious to be fulfilled. The goal seems
to be increasingly consistent and constructive, but the practice is highly isolated or full of
differences. To argue the importance of this work more clearly, the following problems are
further focused on:
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First, the decision-making process of green consumption is highly complex, and sel-
dom becomes true as one wishes. The most prominent problem is that the sustainable
consumption and sustainable production agendas are often isolated from each other. The
lack of transparency and clarity in production chains and operations poses significant
challenges for individuals seeking to understand the manufacturing processes involved.
Additionally, the prevalence of long and complex supply chains in contemporary global
trade makes it difficult to discern the connections between consumption and production,
as these systems can span vast distances. Consumers are often faced with complex and
confusing information about production and supply chains that demands significant cogni-
tive resources. This can engender a sense of ignorance and uncertainty among consumers,
which is further complicated by the demands of busy daily life. The difficulty of long-term
information gathering and decision making in other areas exacerbates the challenge of com-
prehending the complexities of production chains in modern manufacturing. Credibility is
especially a major challenge in the midst of an intensive and conflictive field of informa-
tion [18]. While a significant number of consumers express concerns about environmental
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issues, their actual consumption habits often do not align with environmentally responsible
practices. Entrenched in social norms, cultural traditions, and daily routines, individuals
may find it challenging to transition toward greener consumption patterns. Additionally,
a lack of comprehensive information, limited availability of sustainable products, and
doubts regarding their quality can complicate the decision-making process associated with
green consumption. These factors collectively contribute to the complexity of adopting
environmentally friendly habits, potentially impeding the widespread acceptance and
realization of greener consumption goals [19].

Second, the sustainable product–service concept driven by the coupling of technology
and value is not yet mature for wide acceptance and practice. As mentioned above, because
the production paradigm in the era of Industry 5.0 is mass individualization or mass person-
alization, the whole process will appear creative in design and complex in manufacturing.
Mass personification allows the customers to customize the individualized product through
digital technologies and e-commerce, while smart customization means providing smart
user toolkits for co-design. Therefore, the customer can influence the product development
before and after the purchase. This requires the deep coupling of the technology-driven
and value-driven methods to fulfill the whole individualized manufacturing process in a
reorganized symbiosis. One promising approach to tackle these challenges is the adoption
of product–service systems (PSSs) [20]. A PSS is a value proposition that aims to provide
user satisfaction by delivering an integrated system of products and services. If properly de-
signed, PSS can create economic and competitive incentives for stakeholders to continually
improve sustainable resource management practices. Recognizing the growing demand
for customized products, manufacturers are shifting from a high-volume, low-variety
production model to a low-volume, high-variety model [21]. The solution lies not only in
making production methods more ecologically sound but also in influencing consumer
behavior through the introduction of environmentally responsible products, services, and
practices. Therefore, the successful implementation and widespread adoption of PSS inno-
vations require collaboration among multiple actors rather than relying on a single entity or
small network. Servitization is a business strategy that involves shifting focus from selling
products to providing services and solutions that meet the needs of customers. Despite
the potential benefits and driving factors mentioned above, the diffusion of sustainable
product–service systems (SPSSs) remains limited.

Obviously, the multi-criteria decision making of sustainability issues is prone to fall
into the complex, contradictory, fragmented, and opaque flood of information. Therefore,
more practical studies are expected to reveal the implications of these emerging changes
on SPSS and address the manufacturing companies’ and designers’ challenges. The an-
alytical hierarchy process (AHP), analytical network process, case-based reasoning, and
multi-criteria decision analysis are the common data-driven approaches for product sus-
tainability assessment. For a large amount of data of the entire life cycle of the product, the
collection can be effectively completed by IoT, and the customers demand information and
the available product information can be collected through the mobile terminal and the
database. In this research, we intend to propose an approach that combines AHP with a
data envelopment analysis (DEA) to measure the sustainability of customized products
and sustainable designs. Specifically, the contributions of this work include several aspects.

First, a data-driven quantitative evaluation method of SPSS is proposed. In the ranking
and selection of SPSS practices, the proposed approach can facilitate the integration of
qualitative and quantitative criteria for addressing environmental, economic, and social
indicators. It is useful to increase environmentally sustainable innovation and green choices
of the personalized products in mass customization.

Second, as a proof of concept, the design for sustainability (DfS) of refrigerators is
demonstrated. In mass customization, some components of refrigerators have selectable
variants (e.g., sources of energy, compressor, refrigerant, materials, sensors, network com-
ponents, different after-sales service manners, and so on) or can be customizable due to the
customization capability that the refrigerator company offers. The metric and correlation
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analysis of sustainability performance empower the design team to have a holistic approach
to the Industry 5.0-enabled sustainability of customized refrigerators.

2. Methodology
2.1. Design for Sustainability of Product–Service System

Generally speaking, nearly 80% of all product-related environmental impacts are
determined during the design phase [22]. Accordingly, the product designer must focus
their attentions on the phases of the PLC that most significantly affect the environment so
that its environmental impact can be greatly reduced [23]. Design for environment (DfE,
US term) or eco-design (European term) or green product design (a coined term within the
marketing field) has been increasingly used in sustainable manufacturing during recent
decades [24]. Generally, “greenness” refers to the degree of sustainability performance of
an eco-friendly product or a green product [25]. The ISO 14006 standards provide guidance
for working on eco-design as part of an environmental management system [26]. Fiksel [27]
discussed four principles of DfE: design for dematerialization, design for detoxification,
design for revalorization, and design for capital protection and renewal. New technologies
will partially determine the future of design for sustainability. Kuik et al. [28] described sus-
tainable products using the 6Rs proposition, reduce, recycle, reuse, recover, remanufacture,
and redesign, over the stages of the PLC.

In the wake of Industry 4.0 and incoming Industry 5.0, these DfS or DfE or eco-
design methodologies are currently undergoing fundamental changes, such as becoming
more proactive, big-data-driven, intelligent, and robust. Trollman H. and Trollman F. [29]
performed a sustainability assessment of smart innovation in mass customization and
digital manufacturing. They contend that the necessary flexibility in the manufacturing
process for mass customization presents challenges related to optimizing material and
energy consumption. However, the traceability of products and the availability of take-back
options for reuse and recycling, as well as improved end-of-life (EoL) decisions, could
serve as advantages for personalized products. Offering service solutions for customers
and fostering long-lasting relationships between customers and products could enhance
product life cycle performance. Cicconi [30] suggested an interactive, web-based platform
as an eco-material tool, which could integrate recent technologies to develop digital mock-
ups of products and consumers’ preferences, encouraging innovative eco-material solutions.
Keivanpour and Kadi [31] proposed online analytical processing as an effective approach
for a multidimensional data analysis when evaluating complex product dismantling and
disassembling based on material type, recyclability, replicability, and material scarcity.
Additionally, Rojek et al. [32] showcased the application of DT in co-designing, planning,
and monitoring manufacturing processes for sustainability in both manufacturing and
maintenance. Industry 4.0 facilitates the adoption of eco-design tools and aids in removing
some existing challenges of applying eco-design tools. Conceivably, emerging technologies,
business models, and lifestyles will become a milestone marking the advent of a new,
sustainable world.

Furthermore, digitalization has given rise to innovative digitally connected products,
paving the way for sustainable product–service systems. While PSS alone may not guaran-
tee sustainable consumption, the provision of PSS within a circular economy and circular
business models is preferable to isolated product offerings, as PSS can reduce resource de-
pendency in consumption. The evolution of PSS has transformed them from mere product
ideas focused on environmental performance to comprehensive product–service systems
that foster radical, systemic, and behavioral innovation. Digitalization has permeated ev-
eryday life and shifted power dynamics from marketers to consumers, empowering them
to easily access peer reviews, assess service providers, and compare different offerings [33].
Further, the proliferation of internet connectivity has empowered consumers to demand
more customized products and services. Companies are responding by offering co-design
and participatory approaches that promote customer involvement in product development,
enabling the generation of flexible and innovative solutions. Cloud platforms and data
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sharing play a crucial role in facilitating customization, supporting co-design, and meeting
the increasing demand for personalized product–service solutions.

Considering the deep coupling of the technology-driven and value-driven require-
ments, herein, a basic method for the sustainability assessment of a product–service system
is proposed as shown in Figure 2. Life cycle modelling considers the product as well
as the technological infrastructure and the services [34]. The sustainability indicators
(SIs) are identified according to the sustainability willingness of customers. Then, SIs
are measured by the cloud platforms and database. These SIs may be quantitative or
qualitative, often conflicting. Therefore, sustainability assessment can be translated into a
multi-criteria decision-making problem, to find a solution that meets the most important
criteria while minimizing trade-offs between conflicting criteria. The AHP method pro-
vides a systematic and logical approach to decision making, allowing decision makers to
structure complex problems, prioritize criteria and alternatives, and reach a well-informed
and rational decision based on both qualitative and quantitative inputs. In addition, DEA
is a non-parametric method using linear programming techniques to measure the relative
efficiency of decision-making units (DMUs) by comparing their input–output relationships
with those of other DMUs. It allows for the inclusion of multiple inputs and outputs,
both quantitative and qualitative, without requiring any information about the functional
form or production technology of each DMU. Considering the features of sustainability
assessment, herein, an approach that combines AHP with DEA is proposed to calculate the
sustainability of customized products and sustainable designs.
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2.2. Analytic Hierarchy Process Method

AHP is a method of measurement through pairwise comparisons and relies on the
judgments of individuals toward decision making [35]. As a multi-criteria decision-making
(MCDM) tool, it also provides a methodology to calibrate the numeric scale for the mea-
surement of quantitative as well as qualitative performances [36]. In order to quantify
decision-making judgment and form a numerical value judgment matrix, an appropri-
ate scale value must be introduced to measure the relationship among different relative
importances. Some key and basic steps of the AHP are introduced as follows:

2.2.1. Evaluation Indicators for MCDM Problems

The evaluation indicator system is a comprehensive framework consisting of a set
of indicators that represent the characteristics of the objects and their interrelationships.
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Within this system, the elements are interconnected and interdependent and interact with
each other. Typically, the evaluation indicator system is categorized into the target layer,
criterion layer, and indicator layer.

2.2.2. Judgment Matrix

In the AHP, the relative importance between the paired factors at each layer is qualita-
tive. The decision-making judgment is quantified by an appropriate scale value introduced
to form a numerical value judgment matrix. T.L. saaty’s 1~9 scale (as shown in Table 1) is
applied to convert qualitative evaluation into quantitative evaluation. The numerical value
measures the relationship between different relative importances, and the judgment matrix
is built as follows:

A =

a11 · · · a1n
...

. . .
...

an1 · · · ann

 (1)

where n represents the order of the judgment matrix, ann = 1, a1n = 1
an1

.

Table 1. Judgment matrix scale and its connotation.

Scale Connotation

1 Means that the importance is the same in the comparison of two factors.
2 Between the mid-value of the two adjacent judgments above.

3 Means that one factor is slightly more important than the other in the
comparison of two factors.

4 Between the mid-value of the two adjacent judgments above.

5 Means that one factor is significantly more important than the other in the
comparison of two factors.

6 Between the mid-value of the two adjacent judgments above.

7 Means that one factor is much more important than the other in the comparison
of two factors.

8 Between the mid-value of above two adjacent judgments.

9 Means that one factor is extremely more important than the other factor in the
comparison of two factors.

Reciprocal If the importance ratio of Factor a and Factor b is k, then the importance ratio of
Factor b and Factor a is 1/k.

2.2.3. Calculate Indicator Weight

Having determined the judgment matrix A, we then use Matlab software of R2018a to
obtain the maximum Eigen value λmax and its corresponding Eigen vector V, and obtain
the indicator weight W after performing normalization treatment on Eigen vector V.

2.2.4. Check Consistency

First, we arrive at the consistency indicator CI = λmax−1
n−1 , and then calculate the

random consistency ratio CR = CI
RI , in which RI is the average consistency indicator of the

judgment matrix. The RI value is selected by referring to Table 2. Finally, it depends on CR.
If CR < 0.1, then consistency is satisfied. Otherwise, it is necessary to adjust the numerical
value of the judgment matrix until satisfactory consistency is obtained.

Table 2. RI average value calculated based on sample capacity of 1000.

n 2 3 4 5 6 7 8 9 10 11 12

RI 0 0.514 0.893 1.118 1.249 1.345 1.420 1.462 1.487 1.516 1.541

AHP is predominantly used in the area of selection and evaluation. John et al. [37]
used the integrated Life Cycle Assessment (LCA) and AHP approaches to evaluate four
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types of renewable energy (solar, wind, biomass, and mini-hydro energy) and select the
best renewable energy source in Tatau, Sarawak. LCA is a well-established and widely
accepted tool for determining the environmental profile of a product, and has been widely
applied in order to reduce materials and energy and environmental pollution during
product design and manufacturing. LCA is divided into four stages: objective and scope,
life cycle inventory, life cycle impact assessment, and interpretation (ISO 14040:2006 [38];
ISO 14044:2006 [39]) [40].

Mainar-Toledo et al. [41] utilized the AHP method to prioritize the significance of the
three TBL dimensions and their respective key performance indicators. This facilitated wine
producers in identifying areas for enhancing production sustainability. Martin et al. [42]
introduced a framework that combined environmental and social LCAs with a modified
AHP methodology to assess nine disposal scenarios for polyethylene terephthalate (PET)
bottle waste. Additionally, Bhyan et al. [43] employed fuzzy AHP to develop a compre-
hensive sustainability assessment system tailored to group housing in India across various
stages of the building life cycle.

Despite numerous benefits, the complexity of the pairwise comparison process and the
challenges associated with maintaining consistency in AHP present significant obstacles. The
weighting process is vulnerable to the subjective consciousness, experience, and knowledge
of the evaluators, potentially leading to biased and limited evaluation results. Moreover, the
discrete scale of AHP often makes it difficult to compare different factors in the presence of
uncertainty and ambiguity, compounded by the lack of sufficient information.

2.3. Data Envelopment Analysis Method

A data envelopment analysis (DEA) [44] is a widely used method for determining the
relative efficiency of units based on multiple inputs and outputs, providing an assessment
of the effectiveness of a set of peer entities known as DMUs. DEA is capable of handling
both qualitative and quantitative data and serves as an effective decision-making tool for
directing management attention to areas that require improvement [45]. Consequently,
researchers often describe DEA as a tool for identifying best practices when organizations
have multiple performance metrics or measures. Wang et al. [46] integrated economic
and environmental factors within supply chains to create a sustainability indicator and
proposed a supply chain greenness assessment method based on the multi-regional input–
output model (MRIO) and DEA. Additionally, Andrijauskiene et al. [47] utilized DEA to
evaluate the European Union’s innovation efficiency from 2000 to 2020. Notably, Kuo
and Kusiak [48] demonstrated that data-driven production research has transitioned from
analytical models to data-driven approaches, with manufacturing and DEA emerging as
the most popular application areas for these methodologies.

Here, the initial DEA model, as originally presented by Charnes, Cooper, and Rhodes
(CCR), is introduced directly [49], which includes the non-Archimedes infinitesimal ε.

2.3.1. CCR Model with Non-Archimedes Infinitesimal ε

It is assumed that there are N products to be evaluated, constituting an evaluation system
of N DMUs’ multi-indicator input and multi-indicator output. Each DMU has m types of
input Xi = [x1i, x2i, · · · , xmi]

T, i = 1, · · · , N and n types of output Yi = [y1i, y2i, · · · , ymi]
T,

i = 1, · · · , N. For convenience, P is set as the weight coefficient of input and Q as the weight
coefficient of output, denoted by P = [p1, p2, · · · , pm]

T and Q = [q1, q2, · · · qn]
T, in which Xi

and Yi(i = 1, · · · , N) are the input vector and output vector of DMUi = (Xi, Yi), while P and
Q are the weight vectors corresponding to m types of input and n types of output. For vector
coefficients P ∈ Em and Q ∈ En, the efficiency index of DMU i (i.e., DMUi, 1 ≤ i ≤ N) is

ei =
QTYi

PTXi
, i = 1, · · · , N (2)

where the weight coefficient P and Q meet ei ≤ 1, 1 ≤ i ≤ N.
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The non-Archimedes infinitesimal ε is an abstract mathematical concept, and it is a
number smaller than any positive number and bigger than 0 (usually ε = 10−10). It serves
to prevent negligence of an indicator’s effect when the indicator’s weight is 0 [50]. The
CCR model with the non-Archimedes infinitesimal ε is described as follows:

max QTY0
PT X0

s.t. QTY0
PT X0

≤ 1,i = 1, 2, · · · , N
PT

PT X0
≥ εaT

QT

QTY0
≥ εbT

(3)

where aT = [1, · · · , 1]T ∈ Rm, bT = [1, · · · , 1]T ∈ Rn, X0 = Xi0, and Y0 = Yi0 are the input
and output vectors of DMUi. The solution to the preceding formula is relatively hard to
obtain. Therefore, it is necessary to complete the Charnes–Cooper transformation, i.e., the
dual transformation, and convert the non-linear model into an equivalent linear planning
model. Let σ = 1/PTX0, φ = σP, and ϕ = σQ, and it is easy to obtain:

φTX0 = 1 (4)

ϕTY0 =
QTY0

PTX0
(5)

ϕTY0

φTX0
=

QTYi

PTXi
≤ 1, i = 1, · · · , N (6)

Therefore, Equation (3) can be converted into
max ϕTY0

s.t. φTXi − ϕTYi ≥ 0
φTX0 = 1
φT ≥ εaT

ϕT ≥ εbT

(7)

Its dual issue is

min
(
ξ̂1, ξ̂2, · · · , ξ̂N , ρT

1 , ρT
2 , εaT , εbT)(0, · · · , 0, 1)T

s.t.∑N
i=1 ξ̂iXi + δX0 + ρ1 = 0

− ∑N
i=1 ξ̂iYi + ρ2 = Y0

ξ̂i ≤ 0, i = 1, · · · , N
ρ1 ≤ 0, ρ2 ≤ 0
δ has no symbol restriction

(8)

in which ρ1 ∈ Rm and ρ2 ∈ Rn are both column vectors, denoted by −ξ̂i = ξi, i = 1, · · · , N,
−ρ1 = ρ−, and −ρ2 = ρ+, and placed into the above formula. The following is obtained:

min
[
δ − ε

(
aTρ+ + bTρ−

)]
s.t.∑N

i=1 ξiXi + ρ− = δX0

∑N
i=1 ξiYi − ρ+ = Y0

ξi ≥ 0, i = 1, · · · , N
ρ− ≥ 0
ρ+ ≥ 0

(9)

where δ is the efficiency evaluation parameter of DMUi, ξi is the combination ratio of
DMUi, ρ− and ρ+ are slack variables (also called redundant variables), ρ− represents
invalid input or redundant non-expected output, and ρ+ represents output insufficiency.
The slack variables may convert an inequation into an equation and the nature can be
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discussed by solving the equation on the basis of the equation. At the same time, the
scenario in which weak DEA is effective is identified. The optimal solution to Equation (9)
is

.
ξ,

.
ρ
−,

.
ρ
+, and

.
δ. So,

(1) If
.
δ < 1, then DMUi0 is non-DEA-effective.

(2) If
.
δ = 1, and

.
ρ
−
= 0 and

.
ρ
+
= 0, then DMUi0 is DEA-effective.

(3) If
.
δ = 1, and

.
ρ
− ̸= .

ρ
+ ̸= 0, then DMUi0 is weakly DEA-effective.

Therefore, it can be concluded that when the CCR model with non-Archimedes in-
finitesimal ε inspects the effectiveness of DMUi0 , it needs to only judge whether

.
ρ
− and

.
ρ
+

are 0 once, and it is unnecessary to inspect whether all
.
ρ
− and

.
ρ
+ are 0. This has simplified

the inspection of DEA effectiveness regarding DMUs.
For weakly DEA-effective and non-DEA-effective DMUs, the projection theorem can be

used to improve a DMU into an effective DMU. The projection theorem is described as follows:{
X′

0 = δ0X0 − ρ−0 = ∑N
i=1 Xiξ

0
i

Y′
0 = Y0 + ρ+0 = ∑N

i=1 Yiξ
0
i

(10)

in which (X′
0, Y′

0) is the projection of DMUj0 . According to the projection theorem, the
projection of each product on the relatively effective surface of DEA production is calculated,
and possible production improvements that can improve the green attributes of the product
can be identified. The input and output of the product are determined according to the
projection of the product on the effective surface of DEA production. Products of this
configuration have higher sustainability.

2.3.2. Improved DEA (iDEA)

For the improved DEA, the CCR model has been improved to obtain more detailed
results than the traditional CCR method. The aim of the improved model is to maximize the
efficiency index of the best virtual products and minimize the efficiency index of the worst
virtual products. Taking the optimal solution as the public weight, the efficiency value
of each DMU is calculated. This model is able to avoid the failure to obtain the product
efficiency index accurately because the traditional DEA model may arrive at infinite groups
of weight. In other words, “non-uniform evaluation” under the traditional DEA approach
is changed into “uniform evaluation”. At the same time, this model reduces the uncertainty
of weight coefficient selection and improves the reliability of evaluation results. A step-by-
step application of the iDEA to customized product sustainability assessment is introduced
as follows:

Step 1. Classify input and output indicators.
Each DMU is assumed to have m input indicators and n output indicators, and the in-

put and output vectors of DMUj are Xj =
(

x1j, x2j, · · · , xij, · · · , xmj
)T and

Yj =
(

y1j, y2j, · · · , yl j, · · · , ynj

)T
, of which xij and yl j are the values of the i input in-

dicator and the l output indicator of DMUj. When the DEA approach is used to classify
indicators, “the smaller, the better” indicators are usually defined as input indicators, while
“the bigger, the better” indicators are defined as output indicators.

Step 2. Introduce virtual solution.
The relatively best solution and the relatively worst solution are built and denoted by

DMUN+1 and DMUN+2. The scope of data envelopment is broadened to obtain a more
appropriate public weight. At the same time, the value range of the efficiency index is
expanded to sharpen the distinction among DMUs. The choice of virtual solution affects
only the absolute value of the evaluation result but not the relative value of the sustainability
of the bespoke products. In the construction of virtual products, the optimal value of the
indicators of all DMUs is taken as the best virtual product and the worst value as the worst
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virtual product. Then, the input vector xN+1 and the output vector yN+1 of the best virtual
product N + 1 are as follows, respectively:

XN+1 = (x1,N+1, x2,N+1, · · · , xi,N+1, · · · , xm,N+1)
T

xi,N+1 = min(xi1, xi2, · · · , xiN)i = 1, 2, · · · , m

YN+1 = (y1,N+1, y2,N+1, · · · , yl,N+1, · · · , yn,N+1)
T

yi,N+1 = max(yl1, yl2, · · · , ylN)l = 1, 2, · · · , n

The input vector xN+2 and the output vector yN+2 of the worst virtual product N + 2
are as follows, respectively:

XN+2 = (x1,N+2, x2,N+2, · · · , xi,N+2, · · · , xm,N+2)
T

xi,N+2 = max(xi1, xi2, · · · , xiN)i = 1, 2, · · · , m

YN+2 = (y1,N+2, y2,N+2, · · · , yl,N+2, · · · , yn,N+2)
T

yl,N+2 = min(yl1, yl2, · · · , ylN)l = 1, 2, · · · , n

Step 3. Input and output weight coefficients.
The public weight coefficient is used to calculate the efficiency index of each product,

and deliver more comparable evaluation results and an effective evaluation of product
sustainability. The iDEA evaluation model is used to determine the public input indicator’s
weight coefficient pk and the output indicator’s weight coefficient qr. In this way, the
uncertainty over the selection of public weight is reduced and the DMUs have consistent
evaluation criteria. The linear planning model is described as

min∑n
r=1 qryr,N+2

s.t.∑m
k=1 pkxk,N+2 = 1

∑n
r=1 qryr,N+1 − ∑m

k=1 pkxk,N+2 = 0
∑n

r=1 qryrj − ∑m
k=1 pkxkj ≤ 0, j ̸= N + 1

pk ≥ εk = 1, 2, · · · , m
qr ≥ εr = 1, 2, · · · , n

(11)

Step 4. Product efficiency index.
Based on the input and output weight coefficients pk and qr inferred from Equation (11),

the efficiency index ej of object j is determined as follows:

ej =
∑n

r=1 qryrj

∑m
k=1 pkxkj

j = 1, 2, · · · , N + 2 (12)

When it comes to one-dimensional sustainability evaluation, the efficiency index
equals the sustainability of products, and therefore its value can serve as a yardstick by
which to measure the sustainability of products. A higher index value indicates a greater
level of environmental friendliness for the product.

2.4. Integration of AHP and iDEA

AHP can help break down a complicated issue into a set of indicators on different
layers and involving different factors, and then the weight of each indicator layer can
be obtained. However, it does not apply to decision-making issues demanding a high
degree of quantification. The iDEA method can be used to obtain the efficiency index of
each DMU, making the evaluation results more objective. However, the iDEA method is
only able to make judgment about whether a DMU is DEA-effective, and it is unable to
sort the DMUs being evaluated. The combination of DEA with AHP is able to address
some of the disadvantages of traditional DEA. These two methods can be combined to



Processes 2024, 12, 473 12 of 24

deliver a comprehensive evaluation of the greenness of products and solve the problems
existing in each method effectively [51]. The idea of combining the AHP and DEA is not
new [52]. Gupta et al. [53] formulated an integrated multi-objective optimization model
for an extended capacitated sustainable transportation problem in a coal mining industry
by integrating AHP and DEA. The integration of AHP and DEA was also utilized in the
multi-criteria analysis of a people-oriented urban pedestrian road system [54].

2.4.1. MCDM-Based Framework for the Sustainability Evaluation

A reference framework of the green product configuration design process can be
found in paper [55]. A hierarchy of indicators is created to capture various indicators of
the sustainability of customized products. The hierarchical model of indicators for the
evaluation of customized products constructed by applying the AHP is shown in Figure 3.
The sustainability indicator system covers energy efficiency, refrigerant management, EoL
management, consumer engagement, and social concerns. The sustainability indicator
system for customized products is defined as follows:
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Figure 3. Proposed framework for the evaluation of product sustainability.

Target layer: R
Criterion layer: Rx = {R1, R2, R3, R4}, x = 1, 2, 3, 4
Indicator layer: Rxy, Rxy represents the yth indicator under attribute Rx

Sub-indicator layer: Rxyz, Rxyz represents the zth sub-indicator under Rxy

2.4.2. Indicator Layer Judgment

The judgment matrix Ad×d of qualitative indicators on the indicator layer of the
evaluation indicator system for customized products is created. The AHP is applied to
obtain the corresponding weight Wxy of each indicator on the indicator layer; the iDEA
method is used to obtain the efficiency index exy of each DMU based on Rxy on the indicator
layer. Ad×d represents a comparison of relative importance among the indicators on the
indicator layer, d is the number of indicators corresponding to each attribute, Wxy is the
weight of the yth qualitative indicator under attribute Rx, and exy =

{
exy1, · · · , exy,N+2

}
represents the efficiency index of the yth qualitative indicator under the attribute Rx.

2.4.3. Criterion Layer Judgment

Where the indicators have a sub-indicator layer, the green attribute Rx of the indicator
layer is obtained by multiplying the weight Wxy and the efficiency index exy corresponding
to each indicator on the indicator layer:

Rx = WT
xy × exy (13)
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where the indicators have no sub-indicator layer, the iDEA method is applied to obtain the
efficiency index ex of each attribute, i.e., the green attribute Rx of the criterion layer:

Rx = ex (14)

In the formula, ex = {ex1, · · · , ex,N+2} represents the efficiency index of attribute Rx
on the criterion layer.

2.4.4. Target Layer Judgment

The judgment matrix As×s of the criterion layer of the evaluation indicator system
for customized products is created, and the AHP is applied to obtain the weight Wx
corresponding to each indicator on the criterion layer; Rx is obtained through Equations (9)
and (13), the product of which is the sustainability R of customized products:

R = WT
x × Rx (15)

where As×s represents a comparison of relative importance among the attributes on the
criterion layer, s is the number of attributes corresponding to the target layer R, and Wx is
the weight of the xth attribute on the target layer R.

3. Case Study

The global refrigerator industry has been making strides toward sustainability, driven
by technological advancements, regulatory changes, and increasing consumer awareness.
Manufacturers have been focused on enhancing the energy efficiency of refrigerators
through the use of advanced insulation materials, energy-efficient compressors, and im-
proved temperature control systems, and the adoption of energy-saving technologies such
as inverter compressors. These efforts have led to significant reductions in energy consump-
tion and greenhouse gas emissions associated with refrigerator operation. The industry has
been actively transitioning away from high-global-warming-potential (GWP) refrigerants
such as hydrofluorocarbons (HFCs) toward low-GWP alternatives, including hydrocarbons
(such as isobutane and propane) and natural refrigerants like carbon dioxide and ammonia.
Stringent energy efficiency standards and regulations have been implemented in various
regions, compelling manufacturers to produce refrigerators that meet specific energy per-
formance criteria. While significant progress has been made, there are ongoing challenges,
especially maintaining a focus on continuous improvement in sustainability initiatives
across the entire product life cycle. In the context of mass individualization or mass per-
sonalization, the decision making to buy bespoke and green refrigerators is still complex
and they especially become personalized to balance individual preferences or needs (e.g.,
large capacity, multi-purpose, and intelligent interaction) and the life cycle sustainability.
Theretofore, collaboration among industry stakeholders, policymakers, and consumers
remains crucial for further advancing the sustainability of the refrigerator industry.

A sustainability evaluation indicator system for refrigerators can provide an objective
basis for the comprehensive performance evaluation of refrigerators [56,57]. Xiao et al. [58]
provided a cradle-to-grave LCA for a typical made-in-China refrigerator to evaluate the
environmental impacts. Today, the refrigerator enterprises are also facing the customer- and
data-driven personalized customization production, and they have the responsibility to
provide evaluation reports of the bespoke refrigerators’ sustainability according to relevant
regulations. Generally, a data-driven analytics framework for sustainability performance
includes four basic steps: data acquisition, storage and preprocessing, data mining, and
data application services [59]. Here, the data collection method based on the IoT is not cov-
ered [60], and the data application service is dedicated to the evaluation of the refrigerator
sustainability.
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3.1. Sustainability Indicators of Refrigerator

Broken down into input and output indicators, the data of each indicator of bespoke
refrigerators are shown in Tables 3–6.

Table 3. Indicator data of environmental attributes by refrigerator.

Environmental Attributes

Bespoke
Product

Air Pollution Water Pollution Solid Waste
Pollution

Input Indicators Input Indicators Input
Indicators

(µg/m3)
Chlorofluorocarbons

(CFCs)
(µg/m3)

Carbon Dioxide
(µg/m3)

Sulfur
Dioxide
(µg/m3)

Phosphorus
(µg/m3)

Suspended
Solids

(µg/m3)

Refrigerator 1 0 2.80 0.11 0.08 5.70 100
Refrigerator 2 0 2.80 0.11 0.09 7.80 100
Refrigerator 3 0 2.80 0.13 0.09 7.10 80.0
Best product 0 2.80 0.11 0.08 5.70 80.0

Worst product 0 2.80 0.13 0.09 7.80 100

Table 4. Indicator data of energy attributes by refrigerator.

Energy Attributes

Bespoke Product Input Indicator Output Indicator
Energy Efficiency

Ratio
Energy Utilization

Rate
Energy Recycling

Rate

Refrigerator 1 0.88 0.74 0.10
Refrigerator 2 0.84 0.61 0.090
Refrigerator 3 0.95 0.60 0.080
Best product 0.84 0.74 0.10

Worst product 0.95 0.60 0.080

Table 5. Indicator data of resource attributes by refrigerator.

Resource Attributes
Bespoke
Product

Input Indicators Output Indicators
Toxic Material

Rate
Hazardous

Material Rate
Material

Utilization Rate
Material

Recycling Rate

Refrigerator 1 1.01 1.51 0.71 0.41
Refrigerator 2 1.86 2.50 0.35 0.38
Refrigerator 3 2.28 2.34 0.59 0.38
Best product 1.01 1.51 0.71 0.41

Worst product 2.28 2.50 0.35 0.38

Table 6. Indicator data of social satisfaction by refrigerator.

Social Satisfaction
Bespoke
Product

Input Indicators Output Indicators

User Usage Cost
Social

Environmental
Cost

Factory
Satisfaction

Outside the
Factory

Satisfaction

Refrigerator 1 6.50 1.40 0.950 0.75
Refrigerator 2 8.00 2.30 0.900 0.73
Refrigerator 3 8.00 1.40 0.806 0.74
Best product 6.50 1.40 0.950 0.75

Worst product 8.00 2.30 0.806 0.73



Processes 2024, 12, 473 15 of 24

3.2. Indicator Layer Judgment
3.2.1. Apply AHP to Obtain the Weight of the Indicator Layer

The sustainability indicator system involves the ratings given by Little Swan, a home
appliance manufacturer. That is assuming that with the help of experts or eco-design tools,
customers build the judgment matrix of the indicator layer of the refrigerator evaluation
indicator system as shown in Table 7. After balancing individual preferences or needs and
the sustainability concerns, the judgment matrix is expressed as 1 4 5

1/4 1 2
1/5 1/2 1



Table 7. Weight judgment matrix of the indicator layer of environmental attributes.

Environmental
Attributes Air Pollution Water Pollution Solid Waste

Pollution

Air pollution 1 4 5
Water pollution 1/4 1 2

Solid waste pollution 1/5 1/2 1

The weight vector of the indicators under the environmental attribute is
W = (0.6833, 0.1998, 0.1168)T . In this matrix, the maximum feature value is λmax; the
consistency indicator is CI. When n = 3, the average random consistency indicator
RI = 0.5, and then the random consistency ratio CR = CI/RI = 0.0239. Since the con-
sistency criterion of the judgment matrix is CR < 0.1, the judgment matrix passes the
consistency check and it is concluded that the judgment matrix is correctly built, and the
weight in this way is the weight of each indicator.

3.2.2. Apply iDEA to Obtain the Efficiency Index

With air pollution as the metric, the efficiency indexes of the refrigerators are calculated.
Refrigerator 1, Refrigerator 2, and Refrigerator 3 are three DMUs, while the best virtual
product and the worst virtual product correspond to two virtual DMUs. The indicators
are classified by environmental attributes into input and output indicators. Among them,
fluoride, carbon dioxide, and sulfur dioxide are taken as input indicators, with the specific
data shown in Table 8. As there is no output indicator on the sub-indicator layer of air
pollution, its output indicator is set to 1.

Table 8. Classification of input and output indicators of air pollution.

Target Layer Indicator
Type

Indicator
Layer Refrigerator 1 Refrigerator 2 Refrigerator 3 The Best

Product
The Worst

Product

Environmental
attributes

Air pollution

Input
indicators

CFCs 0 0 0 0 0
Carbon
dioxide 2.80 2.80 2.80 2.80 2.80

Sulfur
dioxide 0.11 0.11 0.13 0.11 0.13

Output
indicator

Indicator
value 1 1 1 1 1
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The air pollution input vector on the indicator layer is defined as X11 and the output

vector as Y11. X11 =

0.00 0.00 0.00 0.00 0.00
2.80 2.80 2.80 2.80 2.80
0.11 0.11 0.13 0.11 0.13

, Y11 =
(
1 1 1 1 1

)
. As per

Equation (7), the optimized model is created as follows:

minq11
s.t.2.8p12 + 0.13p13 = 1

q11 − 2.8p12 − 0.11p13 = 0
q11 − 2.8p12 − 0.11p13 ≤ 0
q11 − 2.8p12 − 0.11p13 ≤ 0
q11 − 2.8p12 − 0.13p13 ≤ 0
q11 − 2.8p12 − 0.13p13 ≤ 0
p11, p12, p13 ≥ ε
q11 ≥ ε

(16)

The weight vector corresponding to output indicators under air pollution is arrived
at, Q11 = (0.8462), while the weight vector corresponding to input indicators is P11 =

(0, 0, 7.6923)T . Likewise, the output weight vector, input weight vector, and efficiency index
vector of water pollution and solid waste pollution can be obtained, with the specific data
shown in Table 9.

Table 9. Weight and efficiency index of each indicator under environmental attributes.

Environmental
Attributes Air Pollution Water Pollution Solid Waste

Pollution

Output weight vector 0.8462 0.7308 0.8000
Input weight vector 0, 0, 7.692 0, 0.1282 0.0100

3.2.3. Obtain the Green Attribute of the Indicator Layer

With air pollution as the metric, Equation (12) is used to obtain the efficiency index
of Refrigerator 1. The calculation process is Q11×y11

0×x11+0×x21+7.692×x31
= 0.8462×1

0+0+7.692×0.11 = 1.
The calculation of the efficiency indexes of Refrigerator 2 and Refrigerator 3, the best
virtual product, and the worst virtual product is omitted here. The vector thus obtained is
e11 = (1.000, 1.000, 0.8462, 1.000, 0.8462). Similarly, the weight of each indicator layer and
the efficiency index based on environmental attributes can be obtained, with the specific
data shown in Table 10.

Table 10. Calculate refrigerators’ efficiency index based on the sub-indicators under environmental
attributes.

Criterion Layer Indicator Name Refrigerator 1 Refrigerator 2 Refrigerator 3 The Best
Product

The Worst
Product

Environmental
attributes

Air pollution (0.6833) 1.000 1.000 0.8462 1.000 0.8462
Water pollution (0.1998) 1.000 0.7308 0.8028 1.000 0.7308

Solid waste pollution
(0.1168) 0.8 0.8 1 1 0.8

Equation (13) is used to obtain the green attribute corresponding to the indicator layer
of refrigerators, and the calculation process of Refrigerator 1 is 1 × 0.6833 + 1 × 0.1998 +
× 0.1168 = 0.976. Similarly, the green attribute of each refrigerator based on environmental
attributes is determined, respectively: 0.976, 0.922, 0.855, 1.00, and 0.817.



Processes 2024, 12, 473 17 of 24

3.3. Criterion Layer Judgment

By Equations (12) and (13), we arrive at the weight coefficients and efficiency indexes
corresponding to the input and output indicators of energy attributes, resource attributes,
and social satisfaction of Refrigerator 1, Refrigerator 2, and Refrigerator 3 as well as the
best virtual product and the worst virtual product, with the specific data shown in Table 11.

Table 11. Weight and efficiency index of each indicator with energy, resource and social satisfaction attributes.

Target Layer Energy Attributes Resource Attributes Social Satisfaction

Output weight vector 0, 8.842 0.6239, 0 0.6407, 0
Input weight vector 1.0526 0.4386, 0 0, 0.4348

Efficiency index of Refrigerator 1 0.9546 1.000 1.000
Efficiency index of Refrigerator 2 0.9000 0.2677 0.5766
Efficiency index of Refrigerator 3 0.7074 0.3681 0.8484

Efficiency index of the best virtual product 1 1 1
Efficiency index of the worst virtual product 0.7074 0.2184 0.5164

3.4. Target Layer Judgment
3.4.1. Apply AHP to Obtain the Weight of the Criterion Layer

The judgment matrix of the criterion layer of the refrigerator evaluation indicator system
is built, and the subjective weight vector is calculated as W = (0.6326, 0.1428, 0.1428, 0.0818)T.
And the judgment matrix passes the consistency check. From the calculation result, the green
attribute of each refrigerator can be concluded, based on environmental attributes, energy
attributes, resource attributes, and social satisfaction, and is shown in Table 12 and Figure 4.

Table 12. Sustainability of the refrigerators by attributes.

Indicator Name Refrigerator 1 Refrigerator 2 Refrigerator 3 The Best
Product

The Worst
Product

Sustainability
of the

refrigerators

Environmental attributes 0.9760 0.9220 0.8550 1.000 0.8170
Energy attributes 0.9546 0.9000 0.7074 1.000 0.7074

Resource attributes 1.000 0.2677 0.3681 1.000 0.2184
Social satisfaction 1.000 0.5766 0.8484 1.000 0.5164Processes 2024, 12, x FOR PEER REVIEW 18 of 25 
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3.4.2. Calculate the Sustainability of Refrigerators

Equation (15) is used to obtain the sustainability of Refrigerator 1, Refrigerator 2, and
Refrigerator 3 as well as the best virtual product and the worst virtual product throughout
their life cycle, that is, 0.9783, 0.7972, 0.7639, 1, and 0.6913. The calculation process of
Refrigerator 1 is 0.6326 × 0.976 + 0.1428 × 0.9546 + 0.1428 × 1 + 0.0818 × 1 = 0.9783, and
the calculation process of the rest is omitted here.

The preceding bar chart shows that except the virtual products, Refrigerator 1, Refrig-
erator 2, and Refrigerator 3 have different performances under different criteria.

(1) Throughout their life cycle, the sustainability of Refrigerator 1, Refrigerator 2, and
Refrigerator 3 is 0.7873, 0.8618, and 0.8561, respectively, and Refrigerator 2 has the
best sustainability as per the comprehensive evaluation result.

(2) If the refrigerators are measured by environmental attributes, Refrigerator 2 > Refrig-
erator 3 > Refrigerator 1; the green attributes of Refrigerator 1, Refrigerator 2, and
Refrigerator 3 are 0.7506, 0.9241, and 0.9083, respectively. It can be concluded that Re-
frigerator 2 shows the best environmental attributes. An analysis of the sub-indicators
under environmental attributes is presented as follows:

a. As for the air pollution, the efficiency indexes of Refrigerator 1, Refrigerator
2, and Refrigerator 3 are 0.7, 1, and 0.875, respectively. Refrigerator 1 should
decrease emission under the air pollution indicator.

b. As for the water pollution, the efficiency indexes of Refrigerator 1, Refrigerator
2, and Refrigerator 3 are 0.9783, 0.7972, and 0.7639, respectively, and Refrigera-
tor 1 needs to improve its technology in emission related to water pollution.

c. With solid waste pollution as the metric, the efficiency indexes of Refrigerator
1, Refrigerator 2, and Refrigerator 3 are 0.8, 0.8, and 1, respectively. There is
not much difference between the performance indicators of Refrigerator 1 and
Refrigerator 2, while Refrigerator 3 needs to decrease the solid waste indicator.

(3) If the refrigerators are measured by energy attributes, the efficiency indexes of Re-
frigerator 1, Refrigerator 2, and Refrigerator 3 are 0.9564, 0.9, and 0.7074, respectively,
Refrigerator 1 > Refrigerator 2 > Refrigerator 3, and there is not much difference in
energy indicators between Refrigerator 1 and Refrigerator 2. Therefore, Refrigerator
3 should adopt reasonable production processes to achieve the goal of saving and
improving resource utilization.

(4) If the refrigerators are measured by resource attributes, the efficiency indexes of these
refrigerators are 1, 0.2677, and 0.3681, respectively, and Refrigerator 1 > Refrigerator
3 > Refrigerator 2. Refrigerator 2 and Refrigerator 3 underperform compared to
Refrigerator 1 in resource attributes and can do better by cutting the content of toxic
and hazardous materials and increasing resource utilization and recycling.

(5) If the refrigerators are measured by social satisfaction, the efficiency indexes of these
refrigerators are 1, 0.5766, and 0.8484, respectively, and Refrigerator 1 > Refrigerator
3 > Refrigerator 2. To improve its economy, Refrigerator 2 needs to decrease its
economic indicators.

3.5. Result Discussion

For non-DEA-effective DMUs, the projection on the production front surface is calculated
by judgment of the slack variables, to arrive at improved values of the input and output variables
of each DMU. The improved values are analyzed to arrive at the calibrated values of specific
indicators in the production improvement direction. Equation (9) calculates the efficiency
evaluation parameters of Refrigerator 1, Refrigerator 2, and Refrigerator 3. The result is δ = 1,
ρ+ ̸= 0, and ρ− ̸= 0, indicating that Refrigerator 1 is weakly DEA-effective. The projected target
improved values by refrigerator are shown in Table 13 and Figure 5.



Processes 2024, 12, 473 19 of 24

Table 13. Slack variables of input and output indicators.

Slack Variables Refrigerator 1
(δ = 1)

Refrigerator 2
(δ = 0.9733)

Refrigerator 3
(δ = 0.9867)

ρ−

CFCs 0 0 0
Carbon dioxide 0 0 0
Sulfur dioxide 0 0 0.0197
Phosphorus 0 097 099
Suspended solids 0 2.0440 1.3813
Solid waste pollution 20 19.4667 0
Energy efficiency ratio 0.0400 0 0.1085
Toxic material rate 0 0.8273 1.2531
Hazardous material rate 0 0.9636 0.8189
User usage cost 0 1.4600 1.4800
Social environmental cost 0 0.8760 0

ρ+

Energy utilization rate 0 0.1103 0.1301
Energy recycling rate 0 073 0.0187
Material utilization rate 0 0.3411 0.1105
Material recycling rate 0 0.0191 0.0245
Factory satisfaction 0 0.0247 0.1313
Outside the factory
satisfaction 0 0 0
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By analyzing the improved values of the products, we can provide the specific values
of improvement in the products, and the sustainability of refrigerators can be improved by
upgrading the production technologies. Here, we take the input indicator sulfur dioxide
as an example. The improved value of Refrigerator 3 accounts for the biggest percentage,
indicating that the input is too much, and the emission of sulfur dioxide is the highest. For
the purpose of better sustainability of Refrigerator 3, the air pollution caused by sulfur
dioxide must be reduced, and according to the improved value, this indicator must be
reduced by 0.0197 µg/m3. As for the output indicator of material recycling, the improved
value of Refrigerator 3 accounts for the highest percentage, indicating that the output is too
small and material recycling is at a low level. For the purpose of better sustainability of
Refrigerator 3, it is necessary to increase material recycling. According to the improved
value, this indicator should be increased by 6.45%. The analysis of other indicators is
the same.
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3.6. Product Improvement Suggestion

Using the CCR model with non-Archimedes infinitesimal ε in the DEA method and
the projection theorem of the decision unit on the production relative effective surface,
the projection of each refrigerator on the production relatively effective surface can be
calculated. Through the calculation of the projected value, the specific improvement
direction of each indicator in the entire life cycle of the product can be determined.

Using the CCR model with non-Archimedes infinitesimal ε, we can calculate the
optimal solution of the DMUi0, ξ0 = (ξ0

1, ξ0
1, · · · , ξ0

n), ρ−0, ρ+0, and δ. Then, according to
the projection theorem, the projection of each product on the relative effective surface of
DEA production is calculated, so as to determine the production improvement direction
to improve the green property of the product. The input and output of the product are
determined according to the projection of the product on its DEA production effective
surface. The sustainability of the product fabricated according to such an improvement
direction will definitely be improved.

Due to δ = 1, Refrigerator 1 was a weakly DEA-effective DMU. A weakly DEA-
effective DMU means that the quantity of each input cannot be reduced proportionally
unless the quantity of output is decreased; the quantity of each output cannot be increased
proportionally unless the quantity of input is increased. In this scenario, the inputs cannot
be reduced or the outputs increased proportionally. However, it is possible to decrease
one or several (but not all) inputs, or increase one or several (but not all) outputs. From
the perspective of production theory, this is considered technically efficient rather than
scale-efficient. As depicted in Table 14, the projected values for Refrigerator 1 are identical
to the virtual optimal values after projection.

Table 14. Projected target improved values by refrigerator.

Refrigerator 1
(δ = 1)

Refrigerator 2
(δ = 0.9733)

Refrigerator 3
(δ = 0.9867)

Actual
Value

Projection
Value

Actual
Value

Projection
Value

Actual
Value

Projection
Value

Input indicators

CFCs 0 0 0 0 0 0
Carbon dioxide 2.80 2.80 2.80 2.80 2.80 2.80
Sulfur dioxide 0.11 0.11 0.11 0.11 0.13 0.1103
Phosphorus 0.08 0.08 0.09 0.08 0.09 0.08
Suspended solids 5.70 5.70 7.80 5.76 7.10 5.72
Solid waste pollution 100 80.0 100 80.5 80.0 80.0
Energy efficiency ratio 0.88 0.84 0.84 0.84 0.95 0.84
Toxic material rate 1.01 1.01 1.86 1.03 2.28 1.03
Hazardous material rate 1.51 1.51 2.50 1.54 2.34 1.52
User usage cost 6.50 6.50 8.00 6.54 8.00 6.52
Social environmental cost 1.40 1.40 2.30 1.42 1.40 1.40

Output indicators

Energy utilization rate 0.74 0.74 0.61 0.72 0.60 0.73
Energy recycling rate 0.10 0.10 0.090 0.097 0.080 099
Material utilization rate 0.71 0.71 0.35 0.69 0.59 0.70
Material recycling rate 0.41 0.41 0.38 0.40 0.38 0.40
Factory satisfaction 0.950 0.950 0.900 0.925 0.806 0.937
Outside the factory satisfaction 0.75 0.75 0.73 0.73 0.74 0.74

According to the above analysis, the sustainable attribute of each refrigerator and its
projection value on the production relative effective surface are calculated as shown in
Table 14.

4. Conclusions

In the era of Industry 4.0, the ubiquitous networks and sensors open new doors
for the quantification of the environmental footprint of green products. Also, the mass
customization production mode and the customers’ needs are full of individuation and
diversification [61]. The results led by climate change become more serious, and the theme
of sustainability is becoming increasingly pressing. Strategically synthesizing sustainability
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and Industry 5.0 creates potential for companies to build new and resilient value creation
networks or to even achieve sustainable platform-based business models [62]. Clearly, as a
highly cross-cutting issue, the “truth” of design for sustainability is an evolving process
rather than one thing, and will depend on the thinking and acting stakeholders carry
out now [63]. To this end, this work presented a data-driven quantitative method for
the sustainability assessment of a product–service system by integrating AHP and DEA
to measure the product sustainability and promote the Industry 5.0-enabled sustainable
product–service system practice. This method attempts to translate the sustainability
assessment into a multi-criteria decision-making problem, to find a solution that meets
the most important criteria while minimizing trade-offs between conflicting criteria, such
as individual preferences or needs and the product life cycle sustainability. This method
also can fulfill the complex coupled assessment of technology-driven product solutions
and value-driven human-centric goals. However, the presented method cannot cover all
the concerns of Industry 5.0, and some limitations of the current work also indicate future
research opportunities.

As one further step, the proposed Industry 5.0-enabled sustainable product–service
system logic and framework should organically be fused with the configuration representa-
tion of the as-designed product in the three-dimensional design environment, and even in
the digital twin environment [64]. With the help of the digital-twin-driven design method,
ensuring the recyclability and disassembly of customized products, as well as implement-
ing effective recycling programs, becomes possible and accessible to reduce waste and
environmental impact. DT also helps to enable transparency of the manufacturing chains of
products, balance customization with the energy efficiency standard, and provide a holistic
approach to understand the overall efforts of sustainability. As such, the design paradigm
for sustainability will become more proactive, accessible, and intelligent, to bring out
ahead-of-production responsible decisions. Encouraging informed decision making and
responsible use of personalized refrigerators can contribute to overall sustainability efforts.

In addition, owing to the inherent complex interconnections of the TBL dimensions of
sustainability, the practice effects of the proposed method cannot do without the data quality
assessment and the benchmark and classes of the environmental performance. The Product
Environmental Footprint (PEF) method that was launched by the European Commission
can provide the beneficial reference to improve this point [65]. Furthermore, the intelligent
and systematic level of the current scheme should be enhanced by introducing deep
learning, big data analytics, and more open architectures that cover different enterprise
layers (strategy, business, data, application, and technology) [66]. In particular, mass
personalization may introduce complexity into the supply chain, as manufacturers need
to manage a wider variety of components, configurations, and production processes to
accommodate individualized products. This complexity can cause inefficiencies, longer
lead times, and increased transportation emissions, impacting the overall sustainability
and resilience of the supply chain. Industry 5.0 and Society 5.0 also highlight the circular
economy and sharing economy principles [67]; hence, designing products for disassembly,
utilizing recycled materials, and establishing reverse logistics systems for component
recovery can contribute to a more sustainable product life cycle [68,69].
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Nomenclature

AHP Analytic Hierarchy Process
AI Artificial Intelligence
CCR Charnes, Cooper, and Rhodes
CFCs Chlorofluorocarbons
DEA Data Envelopment Analysis
DfE Design for Environment
DfS Design for Sustainability
DMU Decision-Making Unit
DT Digital Twin
EoL End of Life
GWP Global Warming Potential
iDEA Improved Data Envelopment Analysis
Industry 4.0 The Fourth Industrial Revolution
IoT Internet of Things
LCA Life Cycle Assessment
MCDM Multi-Criteria Decision Making
MRIO Multi-Regional Input–Output Model
PEF Product Environmental Footprint
PET Polyethylene Terephthalate
PLC Product Life Cycle
PSS Product–Service System
SDGs United Nations Sustainable Development Goals
SI Sustainability Indicator
SPSS Sustainable Product–Service System
TBL Triple-Bottom-Line
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