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Abstract: The global shale gas resources are huge and have good development prospects, but shale
is mainly composed of nanoscale pores, which have the characteristics of low porosity and low
permeability. Horizontal drilling and volume fracturing techniques have become the effective means
for developing the shale reservoirs. However, a large amount of mining data indicate that the
fracturing fluid trapped in the reservoir will inevitably cause hydration interaction between water
and rock. On the one hand, the intrusion of fracturing fluid into the formation causes cracks to
expand, which is conducive to the formation of complex fracture networks; on the other hand,
the intrusion of fracturing fluid into the formation causes the volume expansion of clay minerals,
resulting in liquid-phase trap damage. At present, the determination of well closure time is mainly
based on experience without theoretical guidance. Therefore, how to effectively play the positive role
of shale hydration while minimizing its negative effects is the key to optimizing the well closure time
after fracturing. This paper first analyzes the shale pore characteristics of organic pores, clay pores,
and brittle mineral pores, and the multi-pore self-absorption model of shale is established. Then,
combined with the distribution characteristics of shale hydraulic fracturing fluid in the reservoir, the
calculation model of backflow rate and shut-in time is established. Finally, the model is validated and
applied with an experiment and example well. The research results show that the self-imbibition rate
increases with the increase in self-imbibition time, and the flowback rate decreases with the increase
in self-imbibition time. The self-imbibition of slick water is the maximum, the self-imbibition of
breaking fluid is the minimum, and the self-imbibition of mixed fluid is the middle, and the backflow
rates of these three liquids are in reverse order. It is recommended the shut-in time of Longmaxi
Formation shale is 17 days according to the hydration and infiltration model.

Keywords: shale; hydraulic fracturing; self-imbibition; flowback; shut-in time

1. Introduction

The characteristics of the pore space in shale rocks can be summarized as having various
features in terms of the extremely narrow pore throat, low porosity, high compactness, large
specific surface area, complex minerals and organic matter, multiple pores coexisting, and
natural cracks and weakly cemented surface development [1–3]. Consequently, conventional
depressurization methods cannot achieve commercial exploitation of shale gas. Nevertheless,
massive hydraulic fracturing has become a key technology for commercial exploitation of shale
gas [4–6], as the horizontal wells associated with massive hydraulic fracturing can connect
natural cracks to allow the form of flow channels for shale gas [7–9] through the bulk volume
of reservoirs near to the wells. Ten thousand cubic meters of water-based fracturing fluid can
be injected into shale formations during hydraulic fracturing [10]. Because of the differences
in geological characteristics, in crushed fracture areas, and in fracturing fluid performance, the
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fracturing fluid in shale reservoirs typically has high flowback rate, as shown in Table 1 [11,12].
Currently, it is widely recognized that there is a negative correlation between gas production
and flowback rate after hydraulic fracturing in shale [13–16].

Table 1. Flowback rate after fracturing in North America and China shale.

North America Flowback Rate (%) China Flowback Rate (%)

Barrnet/Marcelus [17] 50 Weiyuan 40.3
Horn River [18] 25~55 Yongchuan 34.3
Haynesville [17] 5 Changning 12.7
Eagle Ford [19] <20 Fuling 3.9

Average in North
America [20] 6~10 \ \

The control factors of low flowback rate of fracturing fluid primarily include sponta-
neous imbibition effect of shale [18,21,22], unstable displacement of gas–water two-phase
and gravity differentiation in fracturing fractures [23,24], and fracturing fluid retention
in secondary fractures [25]. The spontaneous imbibition effect is the major factor, which
is different from the conventional reservoir post-hydraulic fracturing [26]. Imbibition is
a process in which the porous medium spontaneously draws in wetting liquid under a
capillary pressure drop [27]. In addition to the capillary force, the imbibition in the shale
reservoir is also powered by the osmotic pressure [20,28].

The shale microstructure is complex and unique, especially when the clay content is
high, which is when pores and bedding in clay are developed. The traditional perspective
is that shale water absorption causes an increase in the water saturation, the clay expands to
fill the pores, and the permeability reduces in both matrix and fractures [29–31]. However,
recent studies have suggested that the swelling of the shale, the increase in the pore pressure,
and the weakening in mechanical strength of the rock can induce the micro-crack initiation,
consequently improving the permeability of shale [1,13,29,32,33].

As shale imbibition can increase reservoir permeability, many researchers have stud-
ied the effect of well shut-in on yield. They found that well shut-in can enhance shale
imbibition, which is favorable for the reduction in water saturation in the fractures, mean-
ing it can increase the initial production, but has no significant impact on long-term
production [13,14]. Simulating the effects of phase infiltration, capillary force, and effective
stress on well shut-in reveals that wells should be shut-in right after fracturing and kept
for a long period of time [34]. Well shut-in can increase gas and reduce water production;
unfortunately this effect does not last quite long [35]. According to the previous studies,
well shut-in can increase the production at early stage and for a short period. In practice,
however, the shut-in time after a hydraulic fracturing has a lack of theoretical interpretation
but just experimental understanding.

Due to the significant differences in pore shape, pore size, pore genesis, and wettability
among organic pores, brittle mineral pores, and clay pores, the imbibition depth and
imbibition amount of the three types of pores are significantly different. This article focuses
on the mechanism of imbibing water for shale, and conducts research from the aspects
of shale microstructure characteristics and imbibition force, establishing three imbibition
models for three types of pores, i.e., organic pores, brittle mineral pores, and clay pores.
A model is then introduced for calculating the shale shut-in time by combining with the
direction of fracturing fluid flow during shale fracturing, which is validated by comparing
with experimental data.

2. Shale Multiple-Pore Imbibition Model

Shale rock is a multi-porous medium; the pore type includes the organic pores, clay
pores, and brittle mineral pores, and because the origins of the different types of the pores
are different, the pore size, shape (Figure 1), and the distribution of the pore size have
significant differences (Figure 2).
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Figure 1. Types of pores in shale. (a) Organic pores, (b) brittle mineral pores, (c) clay pores.

Yuman et al. (2015) stated that the pores of shale can be subdivided into the clay pores,
brittle mineral pores, and organic pore, as expressed in Equation (1) [36]. Based on the
assumption, shale imbibition can then be decomposed into three types of pore imbibition
for organic pores, brittle mineral pores, and clay pores. However, the forces of imbibition
for three types of pores are different during the process of the imbibition. Thus, we establish
the shale multi-pore imbibition model based on the force of the imbibition for three types
of pores.

ϕ = ϕtb + ϕtc + ϕto (1)

where ϕ is the total porosity (%) of shale, and ϕtb, ϕtc, and ϕto are the porosities accounting
for brittle mineral pores, clay pores, and organic pores, respectively.
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2.1. Pore Imbibition Models

(1) Organic pores and brittle pores

It can be seen from Figure 2 that the pore shape of organic pores and brittle minerals
is similar to an ellipse, so the elliptical capillary fractal imbibition model can be used to
describe the imbibition in these pores. There are no significant differences in the microstruc-
ture and physical property parameters for the organic pores and brittle pores. Under the
condition of ignoring the influence of gravity on the imbibition of the water phase, the
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imbibition effect of the organic pores and brittle mineral pores is only controlled by the
force of the capillary. Therefore, we have the same imbibition models for ease of calculation,
as shown in Equation (2) [39].

Le =
〈σcos θb

D f −2
max (m + 1)

(
2 − D f

)
(bmax − bmin)

8µD f b1−DT
min (1 −∅)

n

∑
k=0

ωk

 b
DT−D f
k

[
mk2

b + 6(m + 1)Lsbk + 32Ls
]

(m2 + 1)kb + 4(m + 1)Ls

〉 1
2DT ·t

1
2DT (2)

bk =
bmax − bmin

2
tk +

bmax + bmin
2

(3)

where σ is interfacial tension between two phases, mN/m; ϕ porosity, %; θ is wetting
contact angle, ◦; Df is fractal dimension; DT is flexibility fractal dimension; bmin is minimum
pore diameter, nm; bmax is maximum pore diameter, nm; µ is aqueous phase viscosity,
mPa·s; Ls boundary slip length, nm; t is imbibition time, min; m is aspect ratio of elliptical
pores; n is the number of interval segments; ωk is weight coefficient; and tk is Gaussian
point determined by n.

If a four-point formula is chosen, tk = ±0.8611363, ±0.3399810, ωk = 0.3478548,
0.6521452.

(2) Clay minerals pores

It can be seen from Figure 2 that the shape of the clay pores is significantly different
from the shapes of the organic and brittle pores. The clay pores exhibit a slender shape.
Therefore, the model of the parallel fracture can be used to describe the imbibition phe-
nomenon in these pores. Moreover, the force of imbibition for the clay pores is significantly
different from the forces of imbibition of the organic pores and brittle mineral pores. It is
not only affected by the capillary force, but also by the osmotic pressure. In the effective
imbibition flow range of the reservoir, the influence of the gravity on the imbibition is very
small compared with the capillary force and the osmotic pressure, because the 10-m high
water column produces a gravity of 0.1 MPa, meaning the influence of the gravity can be
ignored. The fractal model of clay pore imbibition length (Lc) is expressed as follows:

Lc =

{
(DTc + D f c − 1)(2 − D f c)

D f cw1−DTc
min (1 − ϕ)

[
σ cos θc

3µ
(A2 + 6LscB2) +

pπ

6µ
(C2 + 6Lsc A2)

]} 1
2DTc

· t
1

2DTc , (4)

A2 =
wDTc

max(1 − β
2+DTc−D f c
c )

2 + DTc − D f c
; B2 =

wDTc−1
max (1 − β

1+DTc−D f c
c )

1 + DTc − D f c
; C2 =

w1+DTc
max (1 − β

1+DTc−D f c
c )

3 + DTc − D f c
; βc =

wmin

wmax
(5)

where wmax is the maximum clay pore width, nm; wmin is the minimum clay pore width,
nm; subscripts c represents clay pore; and pπ is osmotic pressure, and can be expressed
by [40]:

pπ = εEπ RT(Csh − C f ) (6)

where R is a gas constant of 0.08206 (L·KPa)/(mol·K), usually; T is temperature of formation,
K; Csh is molar concentration of solute in the original formation water, mol/L; Cf is molar
concentration of solute in fracturing fluid, mol/L; ε is number of ions after solute ionization
(example.g., NaCl value is 2) ; and Eπ is membrane efficiency, and can be expressed as
follows [40]:

Eπ = 1 − (Rca-w + 1)Ca/Cs

{Rca-w(Ca/Cc) + 1 + Ra-mw[Rca-m(Ca/Cc) + 1]}ϕc
(7)
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Cs =

1
2
(Cf + Csh) ≈

1
2

Csh

Ca = −1
2

ECECρclay(1 − ϕc) +
1
2

[
E2

CECρ2
clay(1 − ϕc)

2 + 4C2
s ϕ2

c

]1
2

Cc = Ca + ECECρclay(1 − ϕc)

(8)

where Cs is arithmetic mean of solute in solution on both sides of semi-permeable mem-
brane; Ca is the concentration of anions in the pores of the semi-permeable membrane;
ECEC is the cation exchange capacity of shale; ρclay is the density of clay minerals; Rca-m is
ratio of friction coefficient of anions to water; Rca-w is the ratio of the friction coefficient of
the anions to the membrane; and Ra-mw is the ratio of anion–semi-permeable membrane to
cation–water friction coefficient.

(3) Multiple pore self-imbibition model

According to the shale multi-porosity splitting model [36], the total porosity of shale
can be decomposed into organic porosity (ϕtb), brittle mineral porosity (ϕtc), and clay
porosity (ϕto). The cumulative imbibition volume Vim is, thus, the sum of the volumes
imbibed from organic pores, brittle mineral pores, and clay pores. The shale imbibition
model of multiple pores can be expressed as:

Vim = Vimo + Vimb + Vimc = A f ϕtoLo + A f ϕtbLb + A f ϕtcLc (9)

where Vim is total imbibition volume, m3; Vimo, Vimb, Vimc are imbibition volume of organic
pores, clay pores, and brittle mineral pores, m3, respectively; and Af is contact area of
fracturing fluid and shale, m2, which can be obtained using the pressure drop analysis
method in Equation (10).

Af = 2
Vinj − Vleak

wf
(10)

where Vleak is the fluid loss volume, m3, which can be obtained from pressure drop data [41];
Vinj is the volume injection fracturing fluid, shale reservoir filtration typically accounts for
10–40%, the Horn River shale is estimated at 30% [42]; and wf is the average fracture width,
which can be determined with pressure drop analysis method of Equation (11) [42].

f (wf) =
C2

f Lm

2DCsh∆t
dNw

dCf
, (11)

where ∆t is the backflow curve discrete element time; Nw is non-dimensional backflow of
fracturing fluid after fracturing (the ratio of the amount of phased reflux to the amount of
cumulative reflux).

According to Equation (11), the average fracture width can be obtained, and the
fracture area of each section can be calculated according to Equation (10).

2.2. Validation and Analysis

Experimental materials:

A shale core of the Longmaxi Formation in Sichuan Basin was chosen and the imbibed
fluid is distilled water. Other physical and chemical properties of the experimental materials
are shown in Table 2. In order to improve the accuracy of the data, the analytical scale
automatically weighs and measures. The range of the analytical scale is 220 g, and the
precision is 0.0001 g. The experimental setup is shown in Figure 3.
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Table 2. Shale sample and fluid essential parameters.

Parameters
Value

Organic Pore Brittle Pore Clay Pore

Wetting contact angle θ (◦) 80.40 16.20 11.50
Mineral porosity (%) 20.08 0.88 7.84

Aspect ratio of elliptical pores m
(dimensionless) 2.336 3.286 \

Boundary slip length Ls (nm) 4.41 1.56 1.53

Maximum pore diameter bmax (nm) 627 1020 461

Minimum pore diameter bmin (nm) 1.47 7.5 1.47

Fractal dimension Df 2.681 2.549 2.619

Flexibility fractal dimension DT 1.212 1.297 1.255

The porosity of the core ϕto/ϕtb/ϕtc (%) 1.534 0.676 1.600

Water–core contact area Af (cm2) 6.45

Viscosity of water µ (mPa·s) 1.00

Gas–water interfacial tension σ (mN/m) 74.10

Molar concentration of solute in the original
formation water Csh (mol/L) 0.525

Molar concentration of solute in fracturing
fluid Cf (mol/L) 0.017

Test temperature T (K) 293.15

The cation exchange capacity of shale ECEC 3.7

Ratio of friction coefficient between anions
and water Rca-m

1.8

The ratio of the friction coefficient between
the anions and the membrane Rca-w

1.63

The ratio of anion–semi-permeable membrane
to cation–water friction coefficient Ra-mw
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Experimental procedures:

(1) Prepare a standard shale core of 5.0 cm in length and measures the basic parameters
of the core and fluid. The test results are shown in Table 2;

(2) Dry the core by place the core in an oven for more than 10 h, to weigh, and to wrap
the core surface with a heat shrinkable tube, as shown in Figure 3;

(3) Monitor the change in imbibition weight over time using a scale, and carry out the
same drying treatment in the end of the experiment.

It can be seen from Figure 4 that the calculation results are close to the experimental
results, which proves that the imbibition model is accurate and reliable. When the shale
imbibes for 70 min, the imbibition volume increases first and then decreases with the
imbibition time passing. We can find that test results are 10~20% higher than calculation
results in the second stage because the induced fractures promote shale imbibition (Fig-
ure 4). In the third stage, test results are lower than the calculated results due to core
size effect and shale tending to be saturated resulting in reduced imbibition speed. Shale
imbibition is a coupling process between liquid-phase flow and the dynamic change in
shale microstructure; by contrast, the microstructure of traditional tight sandstone does
not change during the imbibition process. In this work, we mainly study the imbibition in
shale multi-porosity microstructures, and the dynamic changes in microscopic structure
are not considered in the multiple-pore imbibition model.
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3. Determination of Shut-In Time Model

Shale gas horizontal well staged fracturing has the characteristics of more fracturing
segments and longer operation time. This results in a larger time interval between the
end and toe fracturing segments, and the imbibition volume calculation needs to take
into account the time difference. The imbibition process during fracturing can be divided
into two steps/periods. The first step is operation, when the imbibition time of various
segments is distinct. The second step is well shut-in, during which all segments have the
same imbibition time. During the operation stage, each segment is separated by the bridge
plug. Therefore, the imbibition of each segment is independent, and the total imbibition
volume during operation stage (Vim1) can be expressed as follows:

Vim1 =
n

∑
i=1

Vim f ,i =
n

∑
i=1

A f

(
ϕtoCimotmo

f ,i + ϕtbCimbtmb
f ,i + ϕtcCimctmc

f ,i

)
(12)
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During the shut-in well stage, the bridge plug between the segments has been drilled
through, thus, the imbibition volume can be given by:

Vim2 = nA f (ϕtoCimo + ϕtbCimb + ϕtcCimc)tshut (13)

where Vimf,i, Vim1, Vim2 are the imbibition volume contributed by the I segment during the
operation stage, the total imbibition volume during the operation, and the total imbibition
volume of the shut-in stage, m3; t f ,i is imbibition time of operation the i, s; tshut is shut-in
time, s; n is the total fracturing segments of whole well. Cimo, Cimb, Cimc are the coefficients
of Equations (2), (3), and (5), and they are expressed as follows:

Cimo =

〈
σ cos θob

D f o−2
maxo (mo + 1)(2 − D f o)

(
DTo + D f o − 1

)
(bmaxo − bmino)

8µD f ob1−DT
mino (1 − ϕ)

n

∑
k=0

ωk

 b
DTo−D f o
ko

[
mob2

ko + 6(mo + 1)Lsobko + 32Lso
2]

(m2
o + 1)bko + 4(mo + 1)Ls


〉 1

2DTo

(14)

Cimb =

〈
σ cos θbb

D f b−2
maxb (mb + 1)(2 − D f b)

(
DTb + D f b − 1

)
(bmaxb − bminb)

8µD f bb1−DT
minb (1 − ϕ)

n

∑
k=0

ωk

 b
DTb−D f b
kb

[
mbb2

kb + 6(mb + 1)Lsbbkb + 32Lsb
2](

m2
b + 1

)
bkb + 4(mb + 1)Ls


〉 1

2DTb

(15)

Cimc =

{
(DTc + D f c − 1)(2 − D f c)

D f cw1−DTc
min (1 − ϕ)

[
σ cos θc

3µ
(A2 + 6LscB2) +

pπ

6µ
(C2 + 6Lsc A2)

]} 1
2DTc

(16)

The imbibition rate is defined as the ratio of the imbibition volume to the volume of
liquid that effectively creates the fractures. The expression is as follows:

Nloss =
Vim

Vinj − Vleak
(17)

Suppose that the water phase is in a bound state after self-imbibition and there is no
discharge, the expression of fracturing fluid backflow rate is as follows:

Nfb =
Vinj − Vim

Vinj
(18)

When then imbibition rate reaches 100%, it indicates that the fracturing fluid in the
fractures is completely imbibed into the shale matrix. At this time, there is no fracturing
fluid remaining in the fractures, and there is no two-phase flow in the crack during produc-
tion to reduce the permeability of crack [13,14]. The imbibition time of water phase minus
the fracturing operation time is the shut-in time.

tshut =
Vinj − Vleak − Vim1

nA f (ϕtoCimo + ϕtbCimb + ϕtcCimc)
(19)

4. Model Application Analysis

(1) Basic parameters of reservoir and fracturing

Take a well, named as W1, of the shale reservoir in Sichuan Basin as an example.
Table 2 lists basic formation parameters while Table 3 reveals fracturing parameters. The
main ionic composition of the backflow solution is NaCl, so the value of the ionic diffusion
coefficient of the backflow solution approximate is 1.484 × 10−9 m2/s [15]. The fracturing
liquid properties of sliding water, breaking fluid, and linear glue are shown in Table 4.
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Table 3. Fracturing parameters.

Parameters Value Parameters Value

Fracturing segments 16 Fracturing time t (d) 16

Injection fluid volume Vinj (m3) 27,740 Average fluid volume per segment Vinjfr (m3) 1733.75

Slippage and linear gel ratio 7: 3 Matrix Cl- salinity 15,291.8

Discrete element time ∆t (d) 1 Diffusion coefficient (m2/s) 1.484 × 10−9

Table 4. Performance parameters of different types of liquids.

Liquid Type Contact Angle (◦) Viscosity (mPa·s) Surface Tension
(mN/m) Salinity (mol/L) Density (g/cm3)

Slick water 42.4 7 35.34 0 1

Breaking fluid 42.8 14 25.32 0 1.004

(2) Shut-in time calculation

Figure 5 shows the backflow rate under different self-imbibition rate and time with
different fracturing fluid; it reveals that increasing the shut-in time, namely, increasing the
self-imbibition time, causes a rise in the self-imbibition rate at the beginning and when
decreasing the flowback rate thereafter, the self-imbibition of slick water reaches to its
maximum, meanwhile the self-imbibition of breaking fluid achieves its minimum, and,
furthermore, the self-imbibition of mixed fluid (the ratio of slick water to linear glue is 7:3)
arrive at the middle. The backflow rates of these three liquids are in reverse order.
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Figure 6 is the self-absorption of each fracturing section during fracturing operation.
The total self-imbibition is 7811.7 m3 with a total inject fluid of 27,740 m3, so the average
self-imbibition fluid is 488.23 m3 per single stage during the shut-in time; in other words,
the needed self-imbibition rate is 85.4%. According to Figure 4 or Equation (19), the shut-in
time can be determined to be 17 days.
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(3) Analysis of the flowback fluid data

Well W1 was actually closed for 7 days after fracturing operation, and then flowback
was performed. According to the time of chlorine balance in the flowback fluid, the initial
equilibrium of W1 was reached in 17–18 days, which was consistent with the calculated
results by the proposed model. However, the shut-in of W1 lasted for 70 days, and after
the long-time shut-in, the concentration of chlorine increased significantly (Figure 7). This
indicates that ion exchange between fracturing fluid and formation fluid and the dissolution
of shale matrix are still taking place during the shut-in after the initial equilibrium.
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(4) Production dynamic analysis

From the production dynamic curve during the flowback process (Figure 8), it can
be seen that the production of the water decreases rapidly after well W1 is shut-in, the
trend of decrease is almost vertical, the production of the water almost decreases to 0 in a
short period of time, indicating that the shut-in process increases the time of the imbibition.
This results in a significant increase in cumulative imbibition. After 70 days, the W1 still
produced a certain degree of water, and it indicates that the ability of displacing oil is
limited and only relies on the imbibition, and other methods of increasing the production
need to be combined to improve the production of the well.
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5. Conclusions

(1) This article establishes a shale multi-pore imbibition model based on the assumption
that the shale pores can be divided into the organic pores, brittle mineral pores, and
the clay pores. The model can effectively simulate the early spontaneous infiltration
and absorption process of shale;

(2) The volume of the imbibition gradually increases with the hydration time: slick water
> mixed liquid > gel-breaking liquid, while the infiltration rate gradually decreases.
During the backflow process, the backflow rate and water imbibition of the three
liquids show an opposite trend;

(3) According to the self-imbibition of each fracturing period during fracturing operation,
the total self-imbibition amount is 7811.7 m3 with a total inject fluid volume of
27,740 m3, so the average self-imbibition fluid volume is 488.23 m3 per single stage
during the shut-in time. According to the shale multi-pore self-imbibition model
established in this article, the shut-in time can be determined to be 17 days;

(4) According to the flowback data, the concentration of the chloride ions in the flowback
fluid reaches initial equilibrium within 17–18 days, which is consistent with the results
of the model calculation. However, the closure time of W1 lasted for 70 days, and
the prolonged closure significantly increases the concentration of the chloride ions
in the flowback fluid, indicating that there is still exchange of the ions between the
fracturing fluid and the formation fluid during the initial ion equilibrium process of
the shut-in;

(5) It can be seen from the field production data that after the water productivity of W1
decreases rapidly, the trend of the declining is almost vertical. The production of the
water almost decreases to 0 in a short period of the time, indicating that the process
of the shut-in increases the time for imbibition. This leads to a significant increase
in cumulative imbibition. After 70 days, well W1 still produced a certain amount
of the water, indicating that the ability of displacing oil is limited and relies only on
the imbibition. Other methods for increasing the production need to be combined to
achieve this.
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