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Abstract: Model uncertainty creates a largely open challenge for industrial process control, which
causes a trade-off between robustness and performance optimality. In such a case, we propose a
generalized conditional feedback (GCF) system to largely eliminate conflicts between robustness and
performance optimality. This approach leverages a nominal model to design an optimal control in
the virtual domain and defines an ancillary feedback controller to drive the physical process to track
the trajectory of the virtual domain. The effectiveness of the proposed GCF scheme is demonstrated
in a simulation for six typical industrial processes and three model-based control methods, and in a
half-quadrotor system control test. Furthermore, the GCF scheme is open to existing optimal control
and robust control theories.
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1. Introduction

An article [1] published in Nature last year successfully applied deep reinforcement
learning to magnetic control of tokamak plasmas, which causes a sensation. Of course, this
achievement requires overcoming gaps in capability and infrastructure through scientific
and engineering advances; for example, an informed trade-off between simulation accuracy
and computational complexity, a highly data-efficient RL algorithm that scales to high-
dimensional problems, but not the least of which is an accurate and numerically robust
simulator. Unfortunately, such an authentic simulator may not be available in the design
process of any industrial control system [2], considering cost and efficiency, in addition to
ubiquitous uncertainties in models. Model uncertainty is an inevitable aspect of industrial
process control [3].

Generally, model uncertainty may be induced by (1) the neglected nonlinearities,
(2) the unmodeled dynamics, (3) the neglected or incorrectly modeled external disturbances,
and (4) the inescapable measurement error [4]. Without process uncertainties, there is no
need for feedback [5]. In contrast, we can design an optimal open-loop control law if
a precise mathematical model is available. Uncertainties are a key ingredient in process
control, so the robustness of a control system is a fundamental requirement in designing any
feedback control system. This property reflects an ability to maintain adequate performance
and in particular, stability in the face of uncertainties [6].

One significant and fundamental challenge in process control is the trade-off between
the robustness and the performance of the closed-loop system. In particular, the pre-
dominant proportional-integral-derivative (PID) is a compromise in the industry process
control [7], which has limited performance and passable robustness [8]. It gradually cannot
satisfy industrial control demands, because of increasingly difficult control tasks and its
tuning dilemma [9]. Contrarily, model-based systematic control theories provide perfect
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closed-loop performance. For example, in the case of linear systems with full-state informa-
tion, the full-state feedback control (FSFC) achieves the desired closed-loop system [10], and
the linear quadratic regulator (LQR) approach gives a useful and quantitative optimization
solution [11]. Additionally, the model predictive control (MPC) algorithm is a powerful
framework for addressing constrained optimal control problems [12,13]. However, the
above model-based optimal control techniques suffer from robustness deficiency to model
uncertainty [2,14]. They are shaky in the industrial uncertain environment, due to their
reliance on the absolute fidelity of the model used for control design.

Adaptive control [15–17] and robust control [18–20] are two important schools of
thought to deal with model uncertainty. The goal of adaptive control is real-time control
of uncertain parameter systems through an adaptation algorithm online [21]. However,
the adaptive control has a severe lack of robustness in the presence of unmodeled dynam-
ics [22]. H∞ control and µ-synthesis are the mainstays of robust control methods. They
minimize norm-based sensitivity functions to deal with various uncertainties, and give
simple and systematic state-space solutions [23]. But a key issue, which precludes the
industrial application of robust control, is that mainstays like H∞ and µ-synthesis gen-
erally require accurate prior assumptions about uncertainty structure and size, but hard
to know in real time in industrial situations [24]. Moreover, a severe compromise in the
closed-loop performance is needed as a result of conflicts between the robustness and
the performance of the closed-loop system. Such conflicts are inherent to the traditional
feedback control structure because of the intimate relationship between robustness and
closed-loop performance.

There is, in addition, one notable point to make: from an engineering perspective,
probabilistic robustness control [25–28] is developed, using random analysis and Monte
Carlo trial. This method aims to meet the robustness requirement of industrial process
control in probability, thus partly reducing the practice difficulty and conservatism of
H∞ control. However, it does not eliminate the inherent conflict and still is a trade-off of
aggressiveness versus robustness.

As previously mentioned, model uncertainties of practical industrial processes can
severely compromise the resulting control design. Generally, model-based control is rarely
utilized in industrial process control because it only satisfies specified closed-loop perfor-
mance, but no guarantees on robustness are provided. Robust control sacrifices closed-loop
performance to overcome the robustness challenges. Thus, this article explores an effective
control scheme that simultaneously guarantees closed-loop performance and robustness.

Statement of Contributions: In this article, we present a generalized conditional feedback
(GCF) system for controlling industrial processes with model uncertainty. The proposed
GCF scheme is defined by a control problem that leverages a nominal model and an
ancillary feedback controller. Theoretical guarantees on the performance robustness of the
closed-loop system and its relationship with conditional feedback (CF) are analyzed. An
effective practice procedure is also provided. Furthermore, simulation experiments on six
typical industrial processes and a physical half-quadrotor system control test are carried
out. The main contributions are summarized as follows:

(1) A GCF scheme is proposed to control industrial processes with model uncertainty
that simultaneously guarantees closed-loop performance and robustness.

(2) The effectiveness of the proposed GCF scheme is validated by case studies and a
half-quadrotor system control test.

Organization: In Section 2, the control problem is defined. Section 3 introduces the
basic idea and structure of the proposed GCF scheme, and then theoretical guarantees
on the performance robustness of the closed-loop system and its relationship with CF
are analyzed. An effective practice procedure is also provided. Section 4 is dedicated to
demonstrating the effectiveness of the GCF scheme through case studies of six processes
and three model-based control methods. In addition, a half-quadrotor system control
experiment is presented in Section 5. Finally, Section 6 concludes this article.
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2. Problem Formulation

This section defines the model uncertainty, the mathematical formulation for the
control problem, and the nominal model used to design the GCF scheme.

2.1. Model Uncertainty

Generally, model uncertainty can be roughly classified as parameter uncertainty and
dynamic uncertainty. Parameter uncertainty, denoting the perturbation of the model
parameters, affects the transmission of low and middle-frequency signals in the system.
Dynamic uncertainty, which refers to the change in the model structure, mainly affects the
high-frequency characteristics of the system [29].

Because signals in industrial processes are almost low and middle-frequency, this
article considers a single-input and single-output (SISO) process with norm-bounded
time-varying parameter uncertainty, depicted as{ .

x = [A0 + ∆A(q)]x + [B0 + ∆B(q)]u
y = [C0 + ∆C(q)]x + [D0 + ∆D(q)]u

, (1)

where x ∈ Rn is the state, u ∈ R is the control input, y ∈ R is the measured output,
∑(A0 ∈ Rn*n, B0 ∈ Rn*1, C0 ∈ R1*n, D0 ∈ R) is the known nominal model (NM), {∆A(·),
∆B(·), ∆C(·), ∆D(·)} are the continuous real-matrix functions with suitable dimensions, and
q ∈ Rk is the time-varying vector of uncertain parameters.

Assumption 1. q(t) is Lebesgue measurable and satisfies the bound [6]

qTq ≤ I. (2)

This assumption guarantees the model uncertainty of (1) is norm-bounded.

2.2. Control Problem

Performance constraints can be defined by{
z = F(y, u, t)
z ∈ Z

, (3)

where z is the performance variable, F(·) denotes the performance function, and Z: = {z|F(y,
u, t) ≤ bz} is the performance constraint set with the bound bz. In industrial processes, Z
usually is assigned as [30]

σ ≤ σ0, Ts ≤ T0, e∞ ≤ e0, ul ≤ u ≤ uu, (4)

where σ is the relative overshoot, Ts is the settling time, e∞ is the steady-state error, and the
subscript ‘0′ denotes the acceptable bound. u, ul, and uu are the control input, its low limit,
and upper limit, respectively.

The control problem is to find a general control scheme that guarantees that the
uncertain model (1) satisfies the performance constraints (4). That is to say, the issue of how
to improve the performance robustness of the model-based control method is raised.

2.3. Nominal Model

With an uncertain model (1), the resulting control design may be severely compro-
mised. An alternative is to use a nominal model (NM) to design an optimal control system.
NM is a key element in the design and analysis of a control system, which is quantitative
and has a certain fidelity [10].

In this work, we consider a wide range of NMs, such as transfer functions, state–space
equations, differential equations, or even neural network structures. They can be derived
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using mechanism analysis, typical system identification theories, and data-driven methods.
Nevertheless, for clarity, the NM is defined, corresponding to (1), as{ .

x0 = A0x0 + B0u0
y0 = C0x0 + D0u0

, (5)

where x0 ∈ Rn, u0 ∈ R, and y0 ∈ R are the state, the control input, and the output of NM.
∑(A0 ∈ Rn*n, B0 ∈ Rn*1, C0 ∈ R1*n, D0 ∈ R) are the dynamic matrices of NM.

Assumption 2. The pair (A0, B0) is controllable and the pair (A0, C0) is observable.

This assumption is required to guarantee the performance optimality of the proposed
control scheme.

3. Generalized Conditional Feedback

In this work, the NM (5) is leveraged, not only in the simulation design stage (offline)
but also in the industrial application stage (online), to design an efficient generalized condi-
tional feedback (GCF) scheme that can simultaneously guarantee closed-loop performance
and robustness.

3.1. Control Algorithm

The GCF scheme consists of the virtual domain and the deviation correction part. In
the virtual domain, a primary controller is designed to optimize the trajectory of the virtual
NM, depicted as,

design K0
u0 = K0(r, y0, u0)

subject to{ .
x0 = A0x0 + B0u0
y0 = C0x0 + D0u0{
z0 = F(y0, u0, t0)
z0 ∈ Z0

(6)

where K0 denotes the controller designed in the virtual domain, and the constraint set Z0 is a
tightened version of the original constraint set (3) such that Z0 ⊆ Z. The tightened constraint
is used to ensure performance robustness and is defined in Section 3.3. Assumption 2
guarantees the performance of the controller K0.

In the deviation correction part, another ancillary controller is designed to drive the
physical process to track the trajectory of the virtual domain, depicted as,

design K1
u1 = K1(y0, y, u0, u1)
u = u0 + u1

subject to{ .
x = [A0 + ∆A(q)]x + [B0 + ∆B(q)]u
y = [C0 + ∆C(q)]x + [D0 + ∆D(q)]u

e = y0 − y = 0 for t > ts

(7)

where K1 denotes the ancillary correction controller, also designed based on the only known
NM, and ts is the specified time scale, such that the deviation correction controller efficiently
drives the physical process to track the trajectory of the virtual domain. Assumption 1
guarantees that such an ancillary correction controller K1 can be designed.

For additional clarity, the architecture of the proposed GCF control scheme is shown
in Figure 1. This diagram highlights the following facts:

I. There are two systems being controlled: the NM (5) is virtual, and the controlled
process (1) is physical.
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II. In the virtual domain, the trajectory of the virtual NM is optimized to be the desired
state of the physical process.

III. The two systems are connected only by the deviation correction controller, which
essentially tries to drive the physical process to track the desired trajectory coming
from the virtual domain.
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Figure 1. Block diagram of the proposed GCF scheme, which shows the connection between the
virtual NM (5) and the controlled process (1).

Moreover, comprehensive explanations of the GCF scheme are summarized below:

I. The controller in the virtual domain can be any feasible control strategy that is capable
of optimizing NM to a specified state.

II. The deviation correction controller (e.g., PID, PIDD2 [31], DDE [32], ADRC [33])
should have strong performance robustness to efficiently drive the uncertain process
to track the trajectory of the virtual domain.

III. The stability and the optimization are unified. The controller in the virtual domain
ensures optimization and the ancillary correction controller guarantees stability.

3.2. Conditional Feedback

Conditional feedback (CF) is proposed to enable a decoupled input–output response
and disturbance–output response [34]. A basic configuration for a linear CF system is
shown in Figure 2, where Gp denotes the controlled process, GT denotes the tracking
controller, GD denotes the disturbance rejection controller, and r, d, and y are the setpoint,
the external disturbances, and the process output, respectively. From the system shown, we
learn that the accurate model is needed for CF system design, and the Laplace transform Y
of the output y is

Y = GTGpR +
Gp

1 + GDGp H
D, (8)

which shows that the input–output response is completely determined by the tracking
controller GT, and the feedback controller GD acts solely to reject disturbance.
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The block diagram of the proposed GCF scheme is similar to that of CF. In the
uncertainty-free case where q = {0}, the optimal controller in the virtual domain of GCF
can be designed as K0 = GT Gp

−1, such that GCF also permits designing an input–output
response and disturbance–output response independently. In the view of improving
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performance robustness, CF can be regarded as an example of GCF acting for inverse
system control.

However, their original intentions are different. GCF aims to simultaneously guar-
antee closed-loop performance and robustness for industrial processes with model un-
certainty, while CF focuses on removing conflict between the input–output response and
disturbance–output response under the assumption of no model uncertainty. Moreover,
CF was proposed based on the classical transfer function method, but GCF is open to the
well-developed modern control theory and booming artificial intelligence trend.

3.3. Closed-loop Performance Robustness

In the context of this work, a property is considered performance robustness if it
holds control constraints (3) in the presence of norm-bounded model uncertainty. Recall
that the virtual domain optimizes the trajectory of the simulated NM under the constraint
z0 ∈ Z0. The deviation correction controller then drives the physical process to track this
trajectory. Unfortunately, perfect tracking is impossible because of model uncertainty. Thus,
choosing Z0 = Z will not guarantee performance constraint satisfaction for the physical
process. In industrial practice, a tightened version of the original constraint (3) is chosen, as
represented in Figure 3.
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Of particular interest is how we set Z0 to guarantee performance constraint satisfaction.
Defining the error δy = y − y0 and δu = u − u0, it follows that

z ∈ Z ⇔ F
(
y0 + δy, u0 + δu, t

)
≤ bz. (9)

A performance error is defined as

δz = H
(
δy, δu, t

)
= F

(
y0 + δy, u0 + δu, t

)
− F(y0, u0, t),

(10)

where H(·) is the defined performance error function that denotes the performance variable
of the deviation correction controller driving the uncertain process.

Since the considered model is norm-bounded, it follows that

δz ≤ ∆z, (11)

which means the performance error is bounded by the worst-case bound ∆z. The value
of ∆z depends on the performance robustness of the deviation correction controller and
model uncertainty. Then, the constraint set Z0 of the virtual domain can be designed as

Z0 := {z0|F(y0, u0, t0) ≤ bz − ∆z}, (12)

which is a tightened version of Z. With this tightened performance constraint set, the
nominal trajectory optimized by the virtual domain will account for the tracking error and
ensure performance constraint satisfaction.

Performance Robustness. Suppose that the deviation correction controller is performance robust.
Then, under the proposed control structure (GCF), the uncertain process (1) will robustly satisfy
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the performance constraints (3). The closed-loop performance robustness of GCF depends on the
performance robustness of the deviation correction controller.

The requirement that the deviation correction controller is performance robust is
natural and is satisfied by properly choosing and tuning a non-model-based controller.

3.4. Practice Procedure

The practice procedure of the GCF scheme is now summarized as Algorithm 1. In the
online portion, it is suggested that the deviation correction controller is used as a “startup”
controller to satisfy basic requirements (e.g., stability, safety). Then, GCF takes over to drive
the physical process to guarantee performance constraint satisfaction.

Algorithm 1: Practice procedure of the GCF scheme.

1: system identification (offline)
get a nominal model

2: simulation design (offline)
K0 ← Equation (6)
K1 ← Equation (7)

3: practice (online)
startup control

u← K1 (r, y, u)
u0 ← u

then
u0 ← K0 (r, y0, u0)
u1 ← K1 (y, y0, u0, u1)
u← u0 + u1

Additionally, when the “startup” controller is applied to the physical process, the
virtual domain is in a tracking stage, such that the simulated NM is controlled by

u0 = u = K1(r, y, u), (13)

which ensures a reasonable initial condition when the GCF scheme takes control of the
physical process.

4. Simulation Illustration

In this section, several model-based control methods are computed as illustrative
examples, based on MATLAB R2023a. Please note that PID control tuned by the Skogestad
internal model control (SIMC-PID) [35] is selected as the deviation correction controller in
all simulation experiments, expressed as

K1 = Kp + Ki
1
s
+ Kds (14)

Six typical industrial processes are depicted in Table 1 [27] and three model-based
control methods, namely full-state feedback control (FSFC), linear quadratic regulator
(LQR), and model prediction control (MPC), are simulated to illustrate the effectiveness of
the proposed GCF scheme.

The concern of simulation experiments is the tracking performance robustness. First,
norm-bounded model uncertainties of six typical industrial processes in the simulation
experiments are assumed in Table 2. All tuned controller parameters are listed in Table 3.
In particular, the details of the controller design are explained as follows:

I. State observers are designed when FSFC and LRQ are applied to uncertain models.
The observer estimation speed is selected to be 3~5 times the closed-loop response.

II. For processes, G1(s)~G4(s), the state-space models are all expressed as the second
controllable canonical form.
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III. The pole placements and the cost functions are listed in Table 4.
IV. For the time-delay process, G5(s), the standard Smith predictor [36] is used.

Table 1. Six typical industrial processes as a benchmark test set.

Process Types Process Models

High-order process G1(s) = 1
(s+1)4

Integral process G2(s) = 1
s(s+6)(s+12)

Low-order process G3(s) = 1
(s+1)(0.2s+1)

Unstable process G4(s) = 1
s(s−1)

Time-delay process G5(s) = 1
(20s+1)(2s+1) e−s

Nonminimum-phase process G6(s) = −2s+1
(s+1)3

Table 2. Model uncertainties of six typical industrial processes, where the model uncertainty matrix
denotes the limit of model parameters varying near nominal values defined in Table 1, i.e., ∆a1

denotes a1∈[a10 − ∆a1, a10 + ∆a1], where a10 is the nominal value of a1 in Table 1.

Process Models Model Uncertainties [∆a1 ∆a2, . . .]

G1(s) = 1
s4+a4s3+a3s2+a2s+a1

[0.25 0.25 0.25 0.25]
G2(s) = a1

s(s+a2)(s+a3)
[0.25 1.5 3]

G3(s) = a1
s2+a2s+a3

[1 1 1]
G4(s) =

a1
s(a2s−1) [0.25 0.25]

G5(s) = a1
(a2s+1)(a3s+1) e−a4s [0.5 2.5 1 0.5]

G6(s) = a1s+1
(a2s+1)3 [0.5 0.4]

Table 3. Tuned controller parameters.

Control
Methods

Processes
Parameters

Virtual Domain {Kp, Ki, Kd} State Observer

FSFC
G1(s) [3 6 4 1] {5/6, 1/3, 0.5} [6 10 0 −21]
G2(s) [740 142 6] {1404, 2592, 180} [27 217 −975]

LQR
G3(s) [13.1774 2.8879] {5.5, 55/8, 0} [10 15]
G4(s) [14.1421 7.2677] {12.5, 4.8, 7.8} [21 146]

MPC
G5(s) Ts = 0.2 s, p = 50, m = 2 {12.5, 1.25, 20} -
G6(s) Ts = 0.1 s, p = 50, m = 2 {0.5, 0.2, 0.3} -

Table 4. Placed poles and cost functions.

Control
Methods

Processes
Placed Poles

Closed-Loop State Observer

FSFC
G1(s) [−1+j, −1−j, −1 −2] [−2+2j, −2−2j, −2 −4]
G2(s) [−7+5j, −7−5j, −10] [−15+10j, −15−10j, −15]

LQR
G3(s) Cost function:

J =
∫ ∞

0
(
20x2

1 + x2
2 + 0.1u2)dt

[−8+4j, −8−4j]
G4(s) [−10+5j, −10−5j]

Tracking responses and Monte Carlo trials [37] are carried out to quantify the perfor-
mance robustness of original control methods and GCF schemes. The statistical results are
summarized in Table 5. Obviously, the control scheme, designed based on NM, cannot
make the uncertain process behave as expected. Nevertheless, the orange part is closer to
the red line than the cyanic part, which means the GCF schemes try to buffer the actual
response against model uncertainties. Moreover, in the Monte Carlo trials, the performance



Processes 2024, 12, 65 9 of 15

indices of GCFs are more clustered and closer to zero than those of the original control
methods. It also statistically proves the improvement of the performance robustness with
the proposed GCF scheme. Consequently, the effectiveness of the proposed GCF scheme is
illustrated for model uncertainty.

Table 5. Statistical results of the tracking response and the Monte Carlo trial, where the dotted black
line is the setpoint, the dotted red line is the closed-loop response of the nominal model, the orange
part represents GCF, and the cyanic part represents the original control method.

Processes Tracking Responses (N = 100) Monte Carlo Trials (N = 1000)
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Table 5. Cont.

Processes Tracking Responses (N = 100) Monte Carlo Trials (N = 1000)

G6(s)
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where Jy and Dy are the total moment of inertia and the viscous damping coefficient about 

the yaw axis, τy is the total torque acting on the yaw axis, Kyp, Kyy, Vp, and Vy are the torque-

thrust gain acting on the yaw axis from the right rotor and the left rotor, the voltage ap-

plied to the right rotor and the left rotor, respectively. The unmodeled nonlinearity, such 

as external disturbances and uncertain parameters, is regarded as the model uncertainty. 

Voltages with the same magnitude and opposite direction are applied to the two mo-

tors. The transfer function between the voltage and the yaw angle is a first-order integral 

system with inertia, depicted as, 

( )
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=
+

( )
.

( )

yp yy

y y

K Ks

V s s J s D
 (16) 

The Quanser Aero Laboratory Guide gives the total moment of inertia, Jy = 0.0220 kg-

m2. The viscous damping coefficient, Dy, and the total torque-thrust gain, Kyp + Kyy, are 

identified by an open-loop step test. In this test, a step voltage of 20 V is added at 1 s, and 
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5. Experiment Validation on a Half-Quadrotor System

The proposed methodology is validated on a half-quadrotor system, whose control
has been studied by worldwide researchers [38,39]. LQR is chosen in this section.

5.1. System Model

The half-quadrotor system and its free-body diagram are presented in Figure 4. The
left propeller is perpendicular to the ground and the right propeller is horizontal. The
pitch-axis is locked and only the yaw motion is considered. The yaw angle increases
positively, caused by both propellers when the body rotates counter-clockwise about the
Z axis.
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A simple linear model is developed to represent the motion of the half-quadrotor
system about the yaw axis, depicted as{

Jy
..
ψ + Dy

.
ψ = τy

τy = KypVp + KyyVy
, (15)

where Jy and Dy are the total moment of inertia and the viscous damping coefficient about
the yaw axis, τy is the total torque acting on the yaw axis, Kyp, Kyy, Vp, and Vy are the
torque-thrust gain acting on the yaw axis from the right rotor and the left rotor, the voltage
applied to the right rotor and the left rotor, respectively. The unmodeled nonlinearity, such
as external disturbances and uncertain parameters, is regarded as the model uncertainty.

Voltages with the same magnitude and opposite direction are applied to the two
motors. The transfer function between the voltage and the yaw angle is a first-order
integral system with inertia, depicted as,

ψ(s)
V(s)

=
Kyp + Kyy

s
(

Jys + Dy
) . (16)

The Quanser Aero Laboratory Guide gives the total moment of inertia, Jy = 0.0220 kg-m2. The
viscous damping coefficient, Dy, and the total torque-thrust gain, Kyp + Kyy, are identified
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by an open-loop step test. In this test, a step voltage of 20 V is added at 1 s, and a genetic
algorithm (GA) [40] is used for parameter optimization. Figure 5 shows the results of the
identification test. Finally, the transfer function between the voltage and the yaw angle is
expressed as

ψ(s)
V(s)

=
1.925× 10−3

s(0.0220s + 0.0177)
. (17)
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5.2. Control Structure

The half-quadrotor system directly interacts with the PC via a USB link, and the
schematic control structure is shown in Figure 6. LQRs and LQR-based GCF schemes are
implemented in MATLAB R2021b. Please note that the nominal model (17) is expressed as
the second controllable canonical form for LQR design, and the state observer is designed
to be a second-order low-pass filter.
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Figure 6. The schematic control structure of the half-quadrotor system.

5.3. Experiment Results

All control parameters, tuned based on (17), are listed in Table 6. The desired yaw
angle is a rectangular wave with an amplitude of 45 deg and a frequency of 0.05 Hz, and
the control voltage range is between ±24 V.
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Table 6. Tuned controller parameters.

Control Schemes Parameters

LQR ωc = 45, ξ = 0.8 Q = diag ([100 0]), R = 0.1
K = [31.6228 19.2195]GCF-LQR Kp = 8.5, Ki = 2.0, Kd = 6.4

Please note that the ωc and ξ are the cut-off frequency (rad/s) and the damping ratio of the second-order low-pass
filter, respectively.

The closed-loop response performance is specified as

a. Steady-state error: ess ≤ 2 deg.
b. Peak time: tp ≤ 3 s.
c. Percent Overshoot: PO ≤ 2%.

5.3.1. Experiment 1: Standard System

In this experiment, the half-quadrotor system is standard, as seen in Figure 6. The
model uncertainty mainly comes from modeling errors. The experiment results are pre-
sented in Figure 7, and the closed-loop response average performance indices are calculated
and compared in Figure 10.
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From Figures 7 and 10, we can learn that LQR-based GCF has a better closed-loop
response than LQR, especially in the steady-state error. Model-based LQR has an intolerable
steady-state error, while the GCF scheme satisfies the closed-loop response specifications.
In conclusion, the experiment results verify the effectiveness of the proposed GCF scheme
preliminarily. In addition, the reason LQR-based GCF (orange line) cannot perfectly track
the virtual trajectory (dotted red line) is that the deviation correction controller (PID)
behaves conservatively to avoid the control voltage saturation.

5.3.2. Experiment 2: Changing the Propeller

In this part, we remove the guard cap of the right propeller and insert a small hex
key in the right propeller hub to further validate the effectiveness of the proposed GCF
scheme, as shown in Figure 8. In this case, the model error is larger, which means there
is a larger model uncertainty. This setup is natural and can simulate equipment failure in
industrial processes.
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Figure 8. Diagram of changing the right propeller.

The experiment results and average performance indices are presented in
Figures 9 and 10. Obviously, for the changed half-quadrotor system, LQR behaves disas-
trously in the steady-state error. Nevertheless, GCF can still work and achieve satisfactory
closed-loop responses. Consequently, the effectiveness of the proposed GCF scheme for
model uncertainty is demonstrated.

Processes 2024, 12, x FOR PEER REVIEW 14 of 16 
 

 

 

Figure 8. Diagram of changing the right propeller. 

The experiment results and average performance indices are presented in Figures 9 

and 10. Obviously, for the changed half-quadrotor system, LQR behaves disastrously in 

the steady-state error. Nevertheless, GCF can still work and achieve satisfactory closed-

loop responses. Consequently, the effectiveness of the proposed GCF scheme for model 

uncertainty is demonstrated. 

 

 

Figure 9. Experiment results of the changed half-quadrotor system. 

3.95

2.97

0.47

4.49

2.92

0.67
0.33

2.82

0.53
0.75

2.98

0.39

0

1

2

3

4

5
   LQR for the standard system

   LQR for the changed system

   GCF-LQR for the standard system

   GCF-LQR for the changed system

ess (deg) tp (s) PO (%)  

Figure 10. Closed-loop response average performance indices. 

Figure 9. Experiment results of the changed half-quadrotor system.

Processes 2024, 12, x FOR PEER REVIEW 14 of 16 
 

 

 

Figure 8. Diagram of changing the right propeller. 

The experiment results and average performance indices are presented in Figures 9 

and 10. Obviously, for the changed half-quadrotor system, LQR behaves disastrously in 

the steady-state error. Nevertheless, GCF can still work and achieve satisfactory closed-

loop responses. Consequently, the effectiveness of the proposed GCF scheme for model 

uncertainty is demonstrated. 

 

 

Figure 9. Experiment results of the changed half-quadrotor system. 

3.95

2.97

0.47

4.49

2.92

0.67
0.33

2.82

0.53
0.75

2.98

0.39

0

1

2

3

4

5
   LQR for the standard system

   LQR for the changed system

   GCF-LQR for the standard system

   GCF-LQR for the changed system

ess (deg) tp (s) PO (%)  

Figure 10. Closed-loop response average performance indices. Figure 10. Closed-loop response average performance indices.

There is, in addition, one further point to make: the half-quadrotor system is insensitive
to a low control voltage, which means the system has no integration effect on the low
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voltage. This causes LQR-based GCF to still have a steady-state error in the presence of an
integral correction function.

6. Conclusions

In this article, a GCF scheme is proposed for controlling industrial processes with
model uncertainties. Its basic concept and practical implications are elaborated. The ap-
proach leverages nominal models and defines an ancillary feedback controller to guarantee
closed-loop performance constraints and robustness simultaneously. This scheme is open,
such that based on a nominal model, any existing optimal control theory can be designed
in the virtual domain, and any robust control algorithm is used as an ancillary feedback
controller to drive the physical process to track the trajectory of the virtual domain. The
effectiveness of the proposed GCF scheme is validated by numerous case studies and a
half-quadrotor system control test.

Future work: There are some additional considerations in terms of both theoretical and
practical significance related to this work. First, a further theoretical analysis is necessary.
Second, the optimality of an ancillary feedback controller and uncertainty size could be
considered. Third, under physical constraints, such as actuator constraints, the limit of the
controller in the virtual domain should be considered. Fourth, extensions to reinforcement
learning control or digital-twin-enabled smart control are of significant interest.
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