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Abstract: Energy consumption forecasting plays an important role in energy management, conserva-
tion, and optimization in manufacturing companies. Aiming at the tin smelting process with multiple
types of energy consumption and a strong coupling with energy consumption, the traditional predic-
tion model cannot be applied to the multi-output problem. Moreover, the data collection frequency of
different processes is inconsistent, resulting in few effective data samples and strong nonlinearity. In
this paper, we propose a multi-kernel multi-output support vector regression model optimized based
on a differential evolutionary algorithm for the prediction of multiple types of energy consumption
in tin smelting. Redundant feature variables are eliminated using the distance correlation coefficient
method, multi-kernel learning is introduced to improve the multi-output support vector regression
model, and a differential evolutionary algorithm is used to optimize the model hyperparameters.
The validity and superiority of the model was verified using the energy consumption data of a non-
ferrous metal producer in Southwest China. The experimental results show that the proposed model
outperformed multi-output Gaussian process regression (MGPR) and a multi-layer perceptron neural
network (MLPNN) in terms of measurement capability. Finally, this paper uses a grey correlation
analysis model to discuss the influencing factors on the integrated energy consumption of the tin
smelting process and gives corresponding energy-saving suggestions.

Keywords: multi-kernel learning; multi-output support vector regression; differential evolutionary
algorithm; energy consumption prediction

1. Introduction

The rapid development of society has been accompanied by an increasing demand
for energy, and the problem of energy consumption has become increasingly serious. Ac-
cording to the World Energy Outlook 2022 published by the International Energy Agency
(IEA), the industrial sector accounts for about 38% of the total global energy consump-
tion and 45% of the total global CO2 emissions, and improving energy efficiency in the
industrial sector is of great significance for low-carbon sustainable development of in-
dustry [1]. In China, industrial energy consumption accounts for 67% of the total energy
consumption, and the energy consumption of metal smelting accounts for more than 27%
of the energy consumption of the entire manufacturing industry [2]. As a high-emission,
high-energy-consumption industry, decarbonization of non-ferrous metal smelting is key
to its sustainable development, and this is one of the key industries in China’s efforts to
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achieve the 2030 carbon peak target. Non-ferrous metals in the smelting process consume a
large amount of coal, ore, and other natural mineral resources, and energy consumption is
one of the most important costs in the enterprise, where energy consumption prediction to
tap the potential for energy saving has a very important role [3]. In recent years, people
have become more and more interested in the study of energy consumption prediction [4].
There are also many research methods in the field of energy consumption prediction, which
can be broadly classified into mechanistic modelling, data-driven modelling, and hybrid
modelling (combining mechanistic analysis and data-driven modelling).

Mechanism-based modelling methods, mostly for domain experts with a wealth of
domain knowledge, are based on the reaction operation mechanism within the object
process, using the laws involved in the process such as the laws of chemical reaction,
thermodynamics, hydrodynamics, the law of conservation of energy and mass, etc., to
establish a process model method [5]. This method is generally complex, and the accuracy
of the model is high once the model is built correctly. At the same time, the mechanism
modelling calculation process is clear, the physical meaning of the results obtained is clear,
and the model is highly interpretable. K. Liddell et al. [6] conducted simulation experiments
on a metal smelting process using IDEAS simulation software. Their chemical reactions
were modelled through thermodynamic and chemical analyses, and the consumption of
water, steam, fuel, and electricity throughout the metallurgical process was estimated on
the basis of energy balance and mass balance. Umit Unver et al. [7] used AMPL software
to simulate the overall production of a high steel forging plant, to calculate its minimum
production energy consumption. Peng Jin et al. [8] analyzed the energy consumption as
well as the carbon emissions of a steel mill roof gas recovery oxygen blast furnace based
on material and energy flows. Hongming Na et al. [9] analyzed the energy consumption
and carbon emission of a typical steel production process with the constraints on material
parameters, process parameters, and reaction conditions of the steel production process,
and with the optimization objective of maximum energy efficiency. Wenjing Wei et al. [10]
analyzed the primary energy consumption and greenhouse gas emissions of nickel smelting
products using a process model based on mass and energy balances. P. Coursol et al. [11]
calculated the energy consumption of the smelting process of copper sulfide concentrates
using thermochemical modelling and industrial data. Lei Zhang et al. [12] obtained the
minimum fire loss, as well as the corresponding production cost and fire efficiency, by
developing an optimization model based on the material balance, thermodynamic law, and
reaction mechanism of a steel manufacturing process. However, most of the modelling
work carried out by domain experts on this process has only addressed parts of the system
and established local relationships between variables. These models can help to a certain
extent to make qualitative judgements, whereas quantitative analysis is difficult to achieve.
In the face of the high temperatures and dust in the tin smelting process, which involves
complex physicochemical reactions and energy–mass conversion of multiphase flows,
the key state parameters of the smelting process cannot be accurately sensed, and the
establishment of a global model throughout the process, in order to achieve the provision
of more valuable information for the production process, is still difficult with a mechanism-
based modelling approach.

Data-driven approaches do not need to be overly reliant on process mechanisms and
knowledge, and they only require an understanding of the system and data characteristics,
in order to use the high-value data accumulated in the process for process modelling. In
recent years, with the development of sensor and computer technologies, data-driven energy
consumption prediction models have been widely used in power grids, buildings, metal
smelting, and other fields. For example, in the field of power grids, A. Di Piazza et al. [13]
proposed an artificial neural network-based energy prediction model for grid management,
to be used for predicting hourly wind speed, solar radiation, and power demand. And
their simulation analysis proved that the method had good prediction performance in the
short-term time periods. Nada Mounir et al. [14] combined a modal decomposition algo-
rithm with a bidirectional long and short-term memory network model to achieve short-term
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power load forecasting for smart grid energy management systems. The superiority of the
model’s prediction performance was experimentally verified. Wang Yi et al. [15] used an
integrated learning approach to achieve short-term nodal voltage prediction for the grid.
A case study was conducted on a real distribution network to verify the effectiveness of the
proposed method. In the field of buildings, Zengxi Feng et al. [16] proposed a combined
prediction model for energy consumption prediction in office buildings and verified the
superiority of the model with building data. Lucia Cascone et al. [17] combined short-term
memory with convolutional neural networks to predict household electricity consumption
using data read from smart meters. Aseel Hussien et al. [18] used the random forest algo-
rithm to predict the thermal energy consumption of building envelope materials, which was
shown using a large number of simulation results to outperform other traditional methods.
In the field of metal smelting, Yang Hongtao et al. [19] proposed a dual-wavelet neural-
network-based energy consumption prediction model for manganese-silicon alloy smelting
and used real data to predict the electricity consumption of the smelting process. Experi-
ments showed that the model had a higher accuracy in electricity consumption prediction.
Zhaoke Huang et al. [20] proposed a hybrid support vector regression model with an adap-
tive state transition algorithm for predicting energy consumption in the non-ferrous metal
industry. Experiments showed that this method outperformed other energy consumption
prediction models. Zhen Cheng et al. [21] proposed a back propagation neural network
based on genetic algorithm optimization for oxygen demand prediction model of iron and
steel enterprises, and experimentally proved that the prediction accuracy of the model was
better than that of the ARIMA model. Shenglong Jiang et al. [22] proposed a hybrid model
integrating multivariate linear regression and Gaussian process regression for the prediction
of oxygen consumption in the converter steel training process, and verified the accuracy
of the model with real data. Experiments showed that the model not only achieved point
prediction, but could also accurately estimate the probability interval. Zhang Qi et al. [23]
proposed an artificial-neural-network-based prediction model for the supply and demand
of blast furnace gas in iron and steel mills. The results showed that the established predic-
tion model had high accuracy and small error, and it could effectively solve the prediction
problem of blast furnace gas in actual production. Xiao Xiong et al. [24] proposed a ran-
dom forest prediction model based on principal component degradation and artificial bee
colony dynamic search fusion for the prediction of the power loss of multi-size locomotives
in the control section of a strip steel hot finishing mill. The feasibility of the method was
verified using real-time data at the mill level, and the experimental results showed that the
method could accurately predict the power loss of multi-size rolling pieces, with a short
calculation time and high prediction accuracy. Angelika Morgoeva et al. [25] proposed a
machine-learning-based energy consumption prediction model. Experiments on electric-
ity consumption prediction in metallurgical companies showed that the gradient boosting
model based on the CatBoost library predicted the best results. Their data-driven modelling
approach did not rely excessively on the mechanistic knowledge of the reaction process, and
the energy consumption prediction model was built by analyzing the process characteristics
and data features, which had high precision and fast response, but the method suffered from
poor interpretability and the performance of the model was also dependent on the quality of
the collected data [26]. The parameters of a data-driven model have a significant impact on
the model’s predictive performance; hence, optimization algorithms are often combined with
the model in the modelling process to improve the model’s predictions. Xu Yuanjin et al. [27]
explored the effectiveness of various optimization algorithms to optimize the parameters of
a multilayer perceptron model and to predict the cooling and heating loads of a building.
The experimental results showed that a biogeography-based optimization (BBO) algorithm
was the most applicable. In addition, multi-kernel learning is often applied to data-driven
models, in order to better describe the complex patterns of data. Xian Huafeng et al. [28]
proposed a multi-kernel support vector machine integration model based on unified op-
timization and whale optimization algorithms, and they confirmed the superiority of the
model with real data. Zhang Yingda et al. [29] proposed a multi-kernel extreme learning
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machine model integrating radial-based kernels and polynomial kernels, and combined this
with an optimization algorithm to optimize the model parameters and finally successfully
applied the model to the life prediction of batteries.

By introducing a priori knowledge into the modelling and analysis process, mechanism and
data-driven hybrid models can, not only greatly improve the efficiency of modelling optimization,
but also solve the problem of poor model generalization. Chengzhu Wang et al. [30] proposed a
digital twin for a zinc roaster based on knowledge-guided variable mass thermodynamics. Based
on the mechanism analysis of mass and energy balance, a particle swarm optimization algorithm
was introduced to optimize the parameters, from which the digital twin of the roaster was
constructed, and then the control strategy of the roaster was optimized. Pourya Azadi et al. [31]
developed a hybrid dynamic model for the prediction of iron silica content and slag alkalinity
in the blast furnace process by analyzing the principles of the blast furnace operation process.
Wu Zhiwei et al. [32] proposed an energy consumption prediction model for electrofused mag-
nesia products, consisting of a single tonne energy consumption master model for mechanistic
analysis and a neural-network-based compensation model. Jie Yang et al. [33] combined a
mechanistic model with a data-driven approach to achieve power demand forecasting for the
electrofusion magnesium smelting process. Simulation and industrial application results showed
that the effectiveness of the proposed intelligent demand forecasting method was validated.

In the face of the high temperature and dust levels in the tin smelting process, which
involves complex physicochemical reactions and energy–mass conversion of multiphase
flows, it is difficult to use mechanistic analysis modelling when the key state parameters of
the smelting process cannot be accurately sensed, and the selection of data-driven modelling
methods is more suitable for the analysis of the energy consumption of the whole process
in tin smelting. Despite the limitations of data-driven modelling, these models have been
heavily researched in recent years and can achieve satisfactory accuracy. Many current
energy forecasting models only analyze a production process or a single energy source, but
a single model cannot meet the demand for multi-output forecasting. The non-ferrous metal
smelting process is accompanied by multiple types of energy consumption, and the smelting
process has many processes and couplings between the energy consumption of each process;
if a single model is used for prediction, potential cross-correlations between multiple
outputs will be ignored. Based on this, this paper proposes a multi-kernel multi-output
support vector regression prediction model optimized based on a differential evolutionary
algorithm for solving the problem of predicting multiple types of energy consumption for
multi-process production using a small sample dataset for the tin smelting process. Due to
the limited processing power of the model algorithm, redundant variable information will
affect the model performance, so a distance correlation coefficient matrix is introduced to
remove redundant feature variables. The collected data are multidimensional and highly
nonlinear, multi-kernel learning is combined with multi-output support vector regression to
improve the model fit, and a differential evolutionary algorithm is used to find the optimal
model hyperparameters. Finally, a grey correlation analysis model is applied to analyze the
contribution of each energy consumption influencing factor and the comprehensive energy
consumption in the tin smelting process, and corresponding energy-saving suggestions
are put forward for the tin smelting process. The innovations of this study are as follows:
(1) Metal smelting, as a high-energy consumption industry, consumes different types of
energy, while strong coupling effects exist during the process; production data collection is
also challenging due to the high-temperature environment, which results in a relatively
small amount of data that is also highly non-linear. This paper proposes a multi-output
support vector regression model for energy consumption prediction based on optimized
multi-kernel learning and a differential evolutionary algorithm. The model overcomes the
shortcoming of traditional models that only predict a single type of energy consumption.
(2) By introducing multi-kernel learning into a multi-output support vector regression
model, the improved model is able to maintain a satisfying prediction performance even
with a small data volume. The model was validated with the production data of a tin
smelting enterprise in Southwest China, and the experiment results showed that the energy
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consumption prediction model proposed in this paper achieved a high prediction accuracy,
as well as satisfying performance stability. This study also provides targeted guidance,
according to the research conclusions, on energy planning and adjustment for enterprises.

2. Methodological and Theoretical Foundations
2.1. Data Preprocessing

Data preprocessing is the removal of outliers, missing values, and data dimension-
lessness from a dataset. Missing values or outliers affect the performance of predictive
models [34]. A boxplot is a commonly used method of outlier detection, which was pro-
posed by the American statistician John Tukey in 1977 as a statistical method for displaying
the characteristics of a data distribution, and outlier detection does not require the data
to obey a specific distribution. When outliers or missing values are present in a dataset,
common treatments include mean replacement, Lagrange interpolation, and random forest
filling [35,36].

In this paper, Lagrange interpolation is chosen to fill the outliers and missing values. For
a certain polynomial function, known to have given k + 1 values (x0, y0), (x1, y1), · · · (xk, yk),
and assuming that any two distinct values are mutually exclusive, the polynomial obtained
by applying the Lagrange interpolation formula is

L(x) =
k

∑
j=0

yjlj(x) (1)

lj(x) =
k

∏
i=0,i 6=j

x− xi
xj − xi

(2)

where yj denotes the value of the jth independent variable position, and lj(x) denotes the
interpolation function.

As different input features have different dimensions, standardization is required
to remove the effect of dimensionality. In addition, singular sample data in the sample
may increase the computational complexity of the model; moreover, the role of features
with smaller variations in a predictive model may be overwhelmed by features with larger
variations [37]. Data standardization is the transformation of data into a standard state
distribution with a mean of 0 and variance of 1. The transformation function is as follows:

x =
(x− µ)

σ
(3)

where µ in the formula denotes the mean and σ denotes the standard deviation.

2.2. Distance Correlation Coefficient Based Feature Dimensionality Reduction Method

The high dimensionality of the features leads to a more computationally intensive
model, and redundant features lead to a lower prediction accuracy of the model [38]. The
Pearson correlation coefficient method [39] is one of the commonly used feature selection
methods, but this method can only be applied to data obeying a normal distribution and
requires that the variables are linearly correlated. The distance correlation coefficient
method [40] precisely compensates for the shortcomings of Pearson’s algorithm and can be
used to assess the correlation between linear variables, as well as the correlation between
non-linear variables [41]. It is calculated as follows:

R2(x, y) =
c2(x, y)√

c2(x, x)c2(y, y)
(4)

c2(x, y) =
1
n2

n

∑
i,j=1

Mi,jNi,j (5)
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Mi,j = ‖xi − xj‖2 −
1
n

n

∑
k=1
‖xk − xj‖2 −

1
n

n

∑
l=1
‖xi − xl‖2 +

1
n2

n

∑
k,l=1
‖xk − xl‖2 (6)

Ni,j = ‖yi − yj‖2 −
1
n

n

∑
k=1
‖yk − yj‖2 −

1
n

n

∑
l=1
‖yi − yl‖2 +

1
n2

n

∑
k,l=1
‖yk − yl‖2 (7)

where x,y denote variables; n denotes the total number of samples.
The distance correlation method allows the calculation of the ratio of distance correla-

tion coefficients for each feature; a larger coefficient ratio indicates a stronger correlation
between the variables, while a coefficient ratio of 0 indicates that the two variables are
independent of each other.

2.3. Multi-Kernel Support Vector Regression

When training data using multi-output support vector regression, the kernel function
makes it easier to fit the mathematical model, but in the face of multi-dimensional, non-
linear, and strongly coupled data structures, a single kernel function cannot satisfy this
demand [42]. In order to fit the data better and obtain more accurate predictive values,
researchers combined the existing kernel functions to obtain multi-kernel support vector
regression. The main multi-kernel learning methods include infinite kernel, multiscale
kernel, and synthesis kernel methods [43]. In this paper, we use a multiple kernel linear
combination synthesis method in synthetic kernels, where multiple kernel matrices are
given respective weights [44]. All the weighting coefficients are summed to get 1. The
principle of composition is shown in Figure 1.
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The multi-kernel function is constructed as follows:

κ∗(xi, xj) =
L
∑

i=1
βiκ(xi, xj)

s.t.


βi ≥ 0

L
∑

i=1
βi = 1

(8)

where κ∗(xi, xj) denotes the combined multiplicative kernel function and βi denotes the
weight of each kernel function.

There are four commonly used kernel functions, as shown below. The basic idea of the
linear kernel function is to classify and fit the data by directly calculating the inner product
of the two input parameters; the linear kernel function is simple and convenient, but
only applies to linear relationships. The polynomial kernel function has more parameters
than the other kernel functions for mapping data to a higher dimensional space with a
polynomial function. Radial basis kernel functions are easier to compute than polynomial
kernel functions but are prone to overfitting. The sigmoid kernel function is a kernel
function similar to that of a multilayer perceptual neural network, whose individual layers
are determined automatically in the computation.
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Linear kernel function:
κ(xi, xj) = xi · xj (9)

Polynomial kernel function:

κ(xi, xj) = ((xi, xj) + c)d, c ≥ 0, d ∈ X+ (10)

Radial basis kernel function:

κ(xi, xj) = exp

(
−‖xi − xj‖2

2σ2

)
(11)

Sigmoid kernel function:

κ(xi, xj) = tanh(v · (xi, xj) + c), v > 0, c < 0 (12)

In order to reduce the dependence of the multi-kernel function on the individual base
kernel functions and to reduce the computational complexity of the base kernel weights
βi, the value of the weights for each base kernel function can be determined based on the
magnitude of the root mean square error (RMSE) obtained from modelling each base kernel
function. This means that a basis kernel function with a smaller root mean square error
will receive larger weights. The specific calculation formula is as follows:

µRMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (13)

where n is the amount of original training sample data, yi denotes the i-th true value, and
ŷi denotes the i-th predicted value.

βi =

L
∑

i=1
µL − µi

(L− 1)
M
∑

i=1
µL

(14)

where µi denotes the RMSE predicted by the i-th kernel;
L
∑

i=1
µL denotes the sum of the

RMSEs obtained from modelling all the base kernel functions.

2.4. Multi-Output Support Vector Regression

Multi-output regression aims to learn the mapping from a multivariate input feature
space to a multivariate output space [45]. The multi-output support vector regression
algorithm is a new SVM algorithm proposed for the system function, whose output y is
a multi-dimensional vector [46]. For a function fitting problem with input dimension M
and output dimension N, let the training samples be S = {(xi, yi), i = 1, 2, 3, · · · L}, where
xi ∈ RM, yi ∈ RN . Construct the regression function as follows:

F(x) =

 f1(x)
...

fN(x)

 =

 w1Φ(x) + b1

...
wNΦ(x) + bN

 = WΦ(x)T + B (15)

where Φ(·) is a nonlinear mapping in higher-dimensional space; W, B are regression
coefficients. W = [w1, w2, · · · , w

N
], B = [b1, b2, · · · , bN ].
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Based on the structural risk minimization principle, the regression problem is equated
to the following constrained optimization problem:

minL(W, B) =
1
2

N

∑
i=1
‖wj‖2

+ C
L

∑
i=1

L(ui) (16)

where L(u) is the loss function defined on the hypersphere with the expression:

L(u) =
{

0, u < ε
u2 − 2uε + ε2, u > ε

(17)

where ui = ‖ei‖ =
√

eT
i ei,eT

i = yT
i −WΦT(xi)− B, ε is the hyperspherical insensitivity

domain. When ε = 0, this is a least squares regression for each output component. When
ε 6= 0, each of the regressors wj and bj will be solved taking into account the fit of the other
output components, so that the resulting solution will be the overall best-fitting solution.

Based on the objective function and constraints, the following Lagrangian function
can be obtained:

L(W, B) =
1
2

N

∑
i=1
‖wj‖2

+ C
L

∑
i=1

L(ui)−
L

∑
i=1

αi(u2
i − ‖yi −WΦ(xi)

T − B‖
2
) (18)

At the extreme points of the function, for the variables wj, bj, ui, ai, the partial deriva-
tives are 0, and so it follows:[

ΦT DαΦ + I ΦTα

αTΦ ITα

][
wj

bj

]
=

[
ΦT Dαyj

αTyj

]
(19)

where Φ = [(φ(x1), · · · , φ(xn)]
T , Dα = diag{α1, α2, · · · , αn}, α = [α1, · · · , αn]

T ,
I = (1, 1 · · · , 1)T

Denoting wj as a linear combination of the feature space and setting
wj = ∑ iφ(xi)βj = ΦT βj, Equation (19) can be expressed as[

K + D−1
α I

αTK ITα

][
βj

bj

]
=

[
yj

αTyj

]
(20)

where K = κ(xi, xj) = φT(xi)φ(xj).
If βj is solved, for each x one obtains yj = φT(xi)φ(xj)βj. Defining β = [β1, β2, · · · , βN ],

the N outputs can be expressed as

y = φT(x)φ(x)β = Kxβ (21)

2.5. Differential Evolutionary Algorithm

Differential evolutionary algorithms are optimization algorithms based on the theory
of group intelligence and are intelligent optimization search algorithms that arise through
cooperation and competition between individuals within a group [47]. These algorithms are
very similar to genetic algorithms, in that they include mutation, crossover, and selection
operations, but these operations are defined differently, and this reduces the complexity of
the evolutionary computational operations using real-number coding, simple difference-
based mutation operations, and a “one-to-one” competitive survival strategy [48]. The flow
of a differential evolution algorithm is shown in Figure 2, which mainly includes four parts:
population initialization, mutation, crossover, and selection.
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2.5.1. Population Initialization

The population initialization process is represented by Equation (22), which generally
initializes individual attribute values set as random numbers between the upper and
lower bounds.

xij,0 = rand[0, 1]× (xU
j − xL

j ) + xL
j (22)

where i denotes the number of individuals in the population; j denotes the number of
individual attributes; Np denotes population size; D denotes the individual dimension;
xU

j denotes the upper bound of j-th variable; and xL
j denotes the lower bound of the

j-th variable.

2.5.2. Variation

Mutation is the operation of generating new individuals from the original individuals,
and the new vector of variables is generated using the following equation:

vi,G+1 = xr1,G + F× (xr2,G − xr3,G) (23)

where r1,r2,r3 denote the random individual ordinal number, which are all different; F
denotes the variation operator, taking the value in the range of [0, 2]; and G denotes the
number of evolutionary generations.

2.5.3. Cross-Cutting

This is the operation of generating new individuals from mutated and current individ-
uals according to certain rules, mainly to increase the diversity of interference parameter
vectors. The operation process is as follows:

uji,G+1 =

{
vji,G+1, rand(j) ≤ CR or j = rnbr(i)
xji,G+1, rand(j) ≥ CR or j 6= rnbr(i)

(24)

where rand(j) denotes the j-th estimate of a random number generator producing a random
number between [0, 1]; rnbr(i) denotes a randomly selected sequence; and CR denotes the
crossover operator, which takes values in the range [0, 1].
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2.5.4. Option

The selection operation focuses on screening the new individuals generated by the
crossover operation, to select those that will go into the next generation. In this algorithm,
the value of the optimization function is referred to as the adaptation value, and the
screening rule functions by comparing the adaptation value of the new individual with
that of the current individual, and the individual with the smallest adaptation value enters
into the next generation, which ensures that the adaptation value of the individual is
continuously and iteratively reduced.

2.6. Grey Correlation Analysis

Grey correlation analysis is a method of multi-factor statistical analysis. The grey cor-
relation method is often used when the amount of data for the research object is small [49].
This method makes it possible to determine the degree of influence of each factor on the
results. The specific calculation process is as follows:

Dimensionless processing of data. Due to the different physical significance of the
selected influencing factors, it is not convenient and can be difficult to compare them when
performing grey correlation analysis [50]. Thus, it is necessary to perform dimensionless
processing first, and there are many ways to deal with dimensionless data. In this paper,
we use the homogenization of each column of the data, and the calculation formula is
as follows:

x′i =
xi
xi

(25)

where xi denotes the value of the ith data and xi denotes the mean value.
Solving Absolute Difference Sequences. Let ∆i(k) represent the absolute difference be-

tween the respective sequence of variables and the dependent variable, which is calculated as

∆i(k) = |Y′(k)− x′i(k)| (26)

Solving the sequence of correlation coefficients. Let ξi(k) denote the relative difference
between the observed values in each period of the series of the independent variable and
the observed values in the dependent variable, and the correlation coefficient is calculated
as follows:

ξi(k) =
min(min∆i(k)) + ρmax(max∆i(k))

ρmax(max(∆i(k))) + ∆i
(27)

where ρ denotes the resolution coefficient, the value range is (0, 1), in general ρ = 0.5.
Solving for correlation. The degree of association at different moments in the sequence

of correlation coefficients is concentrated into a single value by averaging. The formula is
as follows:

ri =
1
n

n

∑
i=1

ξi(k) (28)

The correlation degree indicates the degree of similarity and association between each
evaluation item and the “reference value” (parent series), and the value of correlation
degree ranges from 0 to 1. The larger the value is, the stronger the correlation between the
evaluation item and the “reference value”; with a higher correlation degree, this means that
the relationship between the evaluation item and the “reference value” is closer, and thus
the higher the evaluation of the evaluation item [51].

2.7. Sensitivity Analysis

The Sobol sensitivity analysis method is a quantitative global sensitivity analysis
method based on Monte Carlo sampling and model decomposition technology. This
method can easily calculate and analyze the first-order, high-order sensitivity coefficients
and total sensitivity coefficients of each input parameter on the output result, and distin-
guish the effects of parameter independence and parameter interaction on the output result.
The calculation steps are as follows:
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1. Using the Sobol sequence sampling principle, select the number of samples N and the
number of independent variables D.

2. Generate an N × 2D sample matrix, set the first D columns of the matrix to matrix A,
and set the last D columns to matrix B.

3. Construct an N × D matrix ABi (i = 1, 2, . . .D), and replace the j-th column in matrix
A with the i-th column in matrix B. Bring the constructed set of input data into the
trained model to obtain the corresponding output matrix Y.

4. Calculate the first-order sensitivity coefficient Si and the total sensitivity coefficient
STi according to the following formula:

Var(Y) =
1

N − 1

n

∑
i=1

(Xi − X) (29)

where N represents the number of variables; Xi represents the elements in the Y
matrix; and X represents the mean of the elements Xi.

VarXi [EX∼i(Y|Xi)] ≈
1
N

N

∑
j=1

{
f (B)j

[
f (ABi)j − f (A)j

]}
(30)

where f (X)j represents the value obtained by bringing the X matrix into the model.
The trained model can be regarded as a “function” between input and output.

EX∼i[VarXi (Y|x∼i)] ≈
1

2N

N

∑
j=1

[ f (A)j − f (ABi)j]
2

(31)

Var(Y) = Var(YA + YB) (32)

Si =
Var[EX∼i(Y|Xi)]

Var(Y)
(33)

Si is called the first-order sensitivity index, which reflects the degree of contribution
of the variable Xi to the total variance of the function Y, and its value range is [0, 1].
The larger the index, the greater the impact of the change on the final output. In order
to control changes in the final output, we must focus on controlling input variables
with larger first-order sensitivity indexes.

STi =
EX∼i[Varxi(Y|X∼i)]

Var(Y)
(34)

STi is defined as the total sensitivity index of variable Xi, which reflects the degree of
influence of the first-order sensitivity index of variable Xi and the cross-effect with
other variables on the variance of function Y. The value range is [0, 1]. The total
sensitivity index includes the cross-effects between each variable. A smaller total
effect of the input variable indicates that the change of the variable has little impact on
the change of the output, and the cross-effect between the variable and other variables
has a small impact on the output. In actual calculations, in order to simplify the
calculation model, variables with a small total sensitivity index can be reduced.

3. Analysis of Energy Consumption and Influencing Factors of Tin Smelting Process
3.1. Principles of Tin Smelting Process

Tin is a silver-white metal with low melting point, good ductility, soft texture, and
five toxic properties, and that easily forms alloys with many metals. Tin and its alloys
have good oil film retention ability and are mainly used in the production of tin-plated
products, tin solder, tin alloys, tin chemical products, and float glass carriers. It has a very
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wide range of uses in the food, machinery, electrical appliances, automotive, aerospace,
and other industrial sectors.

Tin ingot production is mainly divided into the roasting process, melting process,
refining process, and waste heat recovery process, and a flow chart is shown in Figure 3.
The process includes tin concentrate, coal, and other mineral resources for roasting; with
roasting sand after cooling and solvent, coal, tin slag, and other raw materials added to
the top blowing furnace melting, smelting of tin slag using the smelting furnace recycling
process, the smelting of the crude tin through the refining process to remove impurities, the
casting process to obtain the product of tin ingots, smelting process through the recovery
of waste heat, which can be used for power generation and flue gas acid production.
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3.2. Tin Smelting Energy Consumption and Influencing Factors

The energy consumption involved in the whole process of tin smelting mainly consists
of electricity, coal, water, natural gas, and oxygen; we collated the energy consumption data
of each step in the whole process, analyzing and deriving a total of 20 main influencing
factors on energy consumption, and the statistical results are shown in Table 1.

Table 1. Factors affecting energy consumption and types of energy consumption.

Description Unit of Measure Variable Name

Compressed air for roasting process m3 x1
Roasted sand in roasting process t x2
Roasting process air inlet speed Nm3/h x3

Roasting process air inlet pressure Pa x4
Compressed air for austenitic melting process m3 x5

Furnace pressure in the smelting process Pa x6
Crude tin in the smelting process t x7

Oven melting process air inlet speed Nm3/h x8
Oven melting process air inlet pressure Pa x9

Furnace melting process slag temperature ◦C x10
Refining process compressed air m3 x11
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Table 1. Cont.

Description Unit of Measure Variable Name

Refining process solder t x12
Refining process air inlet speed Nm3/h x13

Refining process air inlet pressure Pa x14
Refining process tin ingot t x15

Charcoal dross in refining process t x16
Refining process aluminum dross t x17

Waste heat recovery process flue gas pressure Pa x18
Flue gas temperature of waste heat recovery process ◦C x19

Total tin ingot smelted t x20
Total electricity consumption in tin smelting process Kwh y1

Total coal consumption in tin smelting process Kg y2
Total water consumption in tin smelting process m3 y3

Total natural gas consumption in the tin smelting process m3 y4
Total oxygen consumption in the tin smelting process m3 y5

4. Experiments and Conclusions

This paper took a tin smelting enterprise located in southwest China as the research
object. Due to the inconsistent data collection frequency of each process and in order to
facilitate establishment of the model, this paper collated a total of 120 sets of production
data and energy consumption data from the enterprise on a monthly basis. Aiming at the
problems of multiple energy consumption in the tin smelting process, the multi-process
production, and the small amount of available data, and considering the coupled relation-
ship between different energy uses, a multi-output support vector regression prediction
model was constructed. The multi-output support vector regression model was improved
by introducing multi-kernel learning to improve the fitting effect of the model, and the
model hyper-parameters were optimized using a differential evolutionary algorithm to
further analyze the energy consumption of the smelting process as well as its potential for
energy saving, and the overall framework of the experiment is shown in Figure 4.

4.1. Data Preprocessing

Directly collected process data cannot be used directly for modelling, as sensor anoma-
lies, abnormal working conditions, data transmission failures, etc. may cause data anoma-
lies in the production process. In addition, differences in the structure and scale of the data
can also affect the prediction of the model. So, reasonable data preprocessing is extremely
important [52].

The raw data were analyzed for missing values and data descriptive information;
and the data were checked for outliers using box-and-line diagrams. The outlier detection
results are shown in Figure 5. The vertical axis in Figure 5 represents the normalized
variable values, while the horizontal axis represents the variables. The red circles represent
the outliers. Outliers were not directly removed but interpolated. The detailed number of
outliers and missing values, and the statistical information of the data are shown in Table 2.
As can be seen from Table 2, the range of values of the variables varied too much. Some
variables varied too little and some varied too much. For example, the variable x10 varied
very little, with a minimum value of 1100 and a maximum value of 1200, while the variable
x14 varied greatly, with a minimum value of 540,000 and a maximum value of 762,000.
There were missing values for the input variables x2, x3, x6, x7, x10, x14, x16, x17, and for
the target variables y2 and y4.
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Table 2. Statistical information for data.

Variable Name Average Value Standard
Deviation

Minimum
Value

Maximum
Value

Number of
Missing Values

Number of
Outliers

x1 399,294 145,667 119,296 809,984 - 4
x2 6904 1785 1309 10,485 5 3
x3 6777 410 5413 7813 8 3
x4 16,056 800 14,200 17,700 - -
x5 290,802 67,142 170,560 442,132 - -
x6 −17 4 −27 −5 3 -
x7 6998 794 4802 8394 7 2
x8 13,345 1253 9600 15,839 - 7
x9 186,033 7031 170,000 200,000 - -
x10 1144 23 1100 1200 4 -
x11 2305 414 1087 2994 - 3
x12 530 128 142 773 - 1
x13 490 80 319 641 - -
x14 688,591 43,212 540,000 762,000 6 4
x15 4562 1304 1231 6920 - -
x16 69 21 7 105 3 -
x17 221 62 13 318 9 1
x18 530,226 40,886 440,000 615,000 - -
x19 128 32 27 168 - 7
x20 5155 1088 1318 7123 - 2
y1 10,975,904 2,361,977 2,434,472 16,837,375 - 4
y2 4,484,116 1,368,535 205,864 7,960,266 3 6
y3 9105 1716 3537 13,610 - 11
y4 311,559 80,609 39,267 451,994 5 2
y5 4,222,810 1,277,492 503 6,244,448 - 7

In this paper, Lagrange interpolation was used to fill in the anomalous and missing
data. Due to the different units of measurement between variables, the range of values of
each variable varied too much. In order to eliminate the influence of the scale between
variables, z-score standardization was used to scale the range of values for each variable.

The predicted energy consumption in the tin smelting process includes electricity, coal,
water, natural gas, and oxygen. To facilitate the subsequent analysis of the correlation
between the comprehensive energy consumption and the influencing factors, this paper
converted values into a unified unit of measurement. Referring to GB/T 2589-2020 “General
Rules for Calculating Comprehensive Energy Consumption” issued by China in 2020 to
convert each energy consumption into standard coal [53], the conversion coefficients were
as shown in Table 3. The conversion factor refers to the physical amount of energy per unit
of energy or the physical amount of energy consumed in the production of a unit for an
energy-consuming workpiece, which was converted into the amount of standard coal. Fuel
with a low-level heat value equal to 29,307.6 kilojoules (KJ) is defined as 1 kg of standard
coal (1 kgce).

Table 3. Types of energy source and discounted standard coal coefficients.

Type of Energy Variable Name Unit of Measure Discount Factor for Standard Coal

Electronic y1 kwh 0.1229 (kgce/kwh)
Coal y2 kg 0.9000 (kgce/kg)

Water y3 m3 0.4857 (kgce/m3)
Natural Gas y4 m3 1.3300 (kgce/m3)
Oxidation y5 m3 0.4000 (kgce/m3)
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4.2. Feature Analysis

Feature dimensionality reduction helps to reduce model computation and model
runtime. Analyzing redundant features helps to improve the model prediction accuracy.
There were 20 input variables (x1~x20) and 5 output variables (y1~y5) in this paper. By
constructing the distance correlation coefficient matrix, as shown in Figure 6, the corre-
lation coefficient between the variables was calculated; its correlation coefficient ratio
ranged [0, 1]. If the correlation coefficient ratio is 0, this means that the variables are
independent of each other; the closer the correlation coefficient ratio is to 1, the stronger
the correlation between the variables.

Processes 2024, 12, x FOR PEER REVIEW 16 of 29 
 

 

coefficients were as shown in Table 3. The conversion factor refers to the physical amount 
of energy per unit of energy or the physical amount of energy consumed in the production 
of a unit for an energy-consuming workpiece, which was converted into the amount of 
standard coal. Fuel with a low-level heat value equal to 29,307.6 kilojoules (KJ) is defined 
as 1 kg of standard coal (1 kgce). 

Table 3. Types of energy source and discounted standard coal coefficients. 

Type of Energy Variable Name Unit of Measure Discount Factor for Standard Coal 
Electronic y1 kwh 0.1229 (kgce/kwh) 

Coal y2 kg 0.9000 (kgce/kg) 
Water y3 m3 0.4857 (kgce/m3) 

Natural Gas y4 m3 1.3300 (kgce/m3) 
Oxidation y5 m3 0.4000 (kgce/m3) 

4.2. Feature Analysis 
Feature dimensionality reduction helps to reduce model computation and model 

runtime. Analyzing redundant features helps to improve the model prediction accuracy. 
There were 20 input variables (x1~X20) and 5 output variables (y1~y5) in this paper. By 
constructing the distance correlation coefficient matrix, as shown in Figure 6, the correla-
tion coefficient between the variables was calculated; its correlation coefficient ratio 
ranged [0, 1]. If the correlation coefficient ratio is 0, this means that the variables are inde-
pendent of each other; the closer the correlation coefficient ratio is to 1, the stronger the 
correlation between the variables. 

 
Figure 6. Distance correlation coefficient matrix. 

In this paper, a correlation coefficient ratio of 0.9 was used as a threshold, and a cor-
relation coefficient higher than 0.9 indicated a strong correlation between the variables. 
The specific screening method for redundant features was to compare the correlation be-
tween two strongly correlated variables with the correlation between the output variables 
separately and retain the set of variables that had a higher correlation with the output 
variables. 

As can be seen in Figure 6, in the correlation matrix, darker colors indicate stronger 
correlation between the variables, and the ratio of correlation coefficients calculated be-
tween the variables is shown as a numerical value. The correlation coefficient ratios 

Figure 6. Distance correlation coefficient matrix.

In this paper, a correlation coefficient ratio of 0.9 was used as a threshold, and a corre-
lation coefficient higher than 0.9 indicated a strong correlation between the variables. The
specific screening method for redundant features was to compare the correlation between
two strongly correlated variables with the correlation between the output variables sepa-
rately and retain the set of variables that had a higher correlation with the output variables.

As can be seen in Figure 6, in the correlation matrix, darker colors indicate stronger cor-
relation between the variables, and the ratio of correlation coefficients calculated between
the variables is shown as a numerical value. The correlation coefficient ratios between
variables x19 and x8, x19 and x16, and x15 and x20 were higher than 0.9, which indicated
that the correlation between the variables was very strong, and for this reason, the redun-
dant variables had to be removed. From the viewpoint of the correlation between the more
redundant variables and the output variables (y1~y5), the correlation between x19 and the
output variables was higher than that between x8 and x16. Therefore, the variable x19 was
retained, and x8 and x16 were removed; Similarly, the variable x15 was removed and the
variable x20 was retained.

4.3. Building Predictive Models

Support vector regression is suitable for solving problems such as non-linearity, small
samples, and high-dimensional modelling [54]. In the tin smelting process, there are many
production processes, each process has multiple types of energy consumption, and there is a
coupling relationship between the energy sources. In a high-temperature environment, due
to the high frequency of damage to sensors and the difficulty of maintenance, there are often
only a handful of sensors installed in the field, resulting in a small number of samples of
collected data. The data from the production process exhibited characteristics such as multi-
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dimensional non-linearity. Thus, a multi-output support vector regression prediction model
was established. In the face of a complex data structure, using single-kernel multi-output
support vector regression to train the data struggles to meet the accuracy requirements of
multi-output predictor variables. In order to fit the data better and obtain more accurate
predictive values, the concept of multi-kernel learning was introduced, which gave the
model better fitting for the multi-output problem using a linear combination of individual
kernel functions. Considering that the accuracy of the prediction model was affected by
the penalty coefficient C, as well as the kernel parameters, the model hyper-parameters
were optimized using a differential evolutionary algorithm, the algorithmic framework of
which is shown in Figure 7.
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The algorithm framework mainly included four parts: data preprocessing, model
training, parameter optimization, and model evaluation. Data preprocessing was mainly to
deal with the missing values, outliers, and the data scale. Lagrange interpolation was used
to deal with missing values and outliers, and the z-score algorithm was used to standardize
the scales of the variables. Redundant variables were eliminated using correlation analysis
of each variable, to improve the computational speed of the model. Next, 80% of the data
were divided into a training set and trained on the model, with 20% of the data used
for model testing. Considering that the hyperparameters of a prediction model and the
parameters of the kernel function have a great impact on the performance of the model, a
differential evolutionary algorithm was introduced to optimize the model parameters. The
prediction performance of the model before and after optimization is then compared based
on the results trained on the test set.

4.4. Projected Results

In order to demonstrate the superiority of the proposed multi-kernel multi-output
support vector regression prediction model, three sets of comparison experiments were
set up in this paper. The first set of experiments compared the prediction effect of MSVR
under different kernel functions, considering the influence of model parameters on the
prediction accuracy, all of which used a differential evolutionary algorithm to optimize the
model hyperparameters. On the basis of the first set of experiments, the prediction effect of
the different optimization algorithms for optimizing the hyperparameters of MK_MSVR
was chosen to compare with the prediction effect of MK_MSVR, which included a particle
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swarm optimization algorithm (PSO) and a Bayesian optimization algorithm (BOA). The
third set of experiments investigated the prediction effect of the different models to compare
with the prediction effect of the different models, and the chosen comparison models were
the multi-output Gaussian process regression (MGPR) model and multi-layer perceptual
machine neural network model (MLPNN). The model evaluation indexes chosen in this
paper included the coefficient of determination (R2), root mean square error (RMSE), mean
error (MAE), and percentage error (MAPE).

The coefficient of determination, R2, is the proportion of variation in the dependent
variable that can be predicted from the independent variable and is calculated as follows:

R2 = 1− ∑m
i=0 (yi − ŷi)

2

∑m
i=0 (yi − yi)

2 (35)

where m denotes the total number of samples; yi and ŷi denote the measured and predicted
values, respectively; and y denotes the mean of the measured values.

The RMSE is the standard deviation of the residuals (prediction error). The residuals
are a measure of the distance of the data points from the regression line, so the RMSE
is a measure of the degree of distribution of those residuals. The formula is calculated
as follows:

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (36)

where m denotes the total number of samples; yi and ŷi denote the measured and predicted
values, respectively.

MAE is the average size of the measurement error and is calculated as follows:

MAE =
1
m

m

∑
i=0
|yi − ŷi| (37)

where m denotes the total number of samples; yi and ŷi denote the measured and predicted
values, respectively.

MAPE is a measure of the predictive accuracy of forecasting methods in statistics that
produces a measure of relative overall fit, calculated as follows:

MAPE =
1
m

m

∑
i=1
| (yi − ŷi)

yi
| (38)

where m denotes the total number of samples; yi and ŷi denote the measured and predicted
values, respectively.

4.4.1. Effect of Different Kernel Functions on Predictive Models

First, this paper analyzed the energy consumption prediction effect of multi-output
support vector regression with different kernel functions selected. The types of kernel
function can be classified into global and local kernels, and the commonly used kernel
functions are linear kernel (Lin), polynomial kernel (Poly), radial basis kernel (RBF), and
sigmoid kernel. The Lin kernel is only suitable for linear relationships. The Poly kernel
maps data onto high dimensional space and is suitable for nonlinear data. The RBF kernel
can achieve nonlinear mapping of data but is prone to overfitting. The Sigmoid kernel
function has a similar performance to the RBF kernel. Currently, there is a lack of a
theoretical basis for a specific selection of the kernel function, which can only be verified
through experiments. For the data situation in this paper, the polynomial kernel (Poly) with
global properties and the radial basis kernel (RBF) with local properties were selected for
convex linear combination. The model was trained using 80% of the data, and the remaining
20% was used as a test set for comparing the effectiveness of the prediction models. The
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evaluation metrics are shown in Table 4, and the energy consumption prediction results are
shown in Figure 8.

Table 4. Evaluation metrics for predictive models with different kernel functions.

Type of Energy Different Kernel
Functions

Evaluation Indicators

MAPE MAE MSE R2

Electronic
DE_RBF_MSVR 0.3987 0.3109 0.1172 0.9456
DE_Poly_MSVR 0.5542 0.3256 0.1298 0.9397
DE_MK_MSVR 0.331 0.2545 0.0829 0.9615

Coal
DE_RBF_MSVR 0.3665 0.1481 0.0449 0.9736
DE_Poly_MSVR 0.6945 0.3253 0.1489 0.9125
DE_MK_MSVR 0.317 0.1269 0.0268 0.9843

Water
DE_RBF_MSVR 0.3562 0.3328 0.214 0.9021
DE_Poly_MSVR 0.8012 0.4936 0.3426 0.8433
DE_MK_MSVR 0.3096 0.2305 0.0837 0.9617

Natural Gas
DE_RBF_MSVR 4.1449 0.3294 0.133 0.9033
DE_Poly_MSVR 4.6763 0.3512 0.1876 0.8636
DE_MK_MSVR 3.3537 0.2613 0.0952 0.9308

Oxidation
DE_RBF_MSVR 0.22 0.2182 0.0781 0.9655
DE_Poly_MSVR 0.4722 0.3073 0.1267 0.9441
DE_MK_MSVR 0.1703 0.1527 0.0364 0.9839Processes 2024, 12, x FOR PEER REVIEW 20 of 29 
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As shown in Table 4, among the multi-energy prediction, the DE_MK_MSVR model
was lower than the single-kernel model for the evaluation indexes MAPE, MAE, and
RMSE, and its R2 was higher than the single-kernel prediction model. Figure 8 shows
the comparison results of the model evaluation indexes under different kernel functions.
Smaller values of the model evaluation indexes MAPE, MAE, and RMSE indicate that the
model performance was better. The evaluation index R2 represents the model’s fitting effect
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on the data, and the closer the value is to 1, the better the model performance. As can
be seen from Figure 8, the DE_MK_MSVR model prediction evaluation metrics were the
best among all the metrics, indicating that multi-kernel learning had a better fitting effect
for multi-output processing problems. Considering the prediction accuracy of the model,
DE_MK_MSVR was selected for training in the subsequent work in this paper.

4.4.2. Effect of Different Optimization Algorithms on Predictive Models

As an efficient heuristic parallel search technology, the differential evolution (DE)
algorithm has the characteristics of a fast convergence speed, few control parameters and
simple settings, and robust optimization results [55]. The DE algorithm has excellent
optimization capabilities and performs well for high-dimensional spaces and nonlinear
relationships. As a typical swarm intelligence optimization algorithm, particle swarm
optimization algorithm (PSO) has the characteristics of few parameters, simple principle,
and easy implementation. This algorithm is more suitable for continuous optimization
problems. The Bayesian optimization (BOA) algorithm based on the probability model
is a very effective global optimization algorithm. It can effectively use complete histor-
ical information to improve search efficiency. It is often used in black box optimization
and sequence optimization problems. Considering that the data used in this article had
high-dimensional nonlinear characteristics, the DE algorithm was used to optimize the
hyperparameters of the model, and the POS algorithm and BOA algorithm were compared
with them. A total of 80% of the data were used as a training set to train the model, and
20% were used as a test set to compare the performance of MK_MSVR prediction model
under different optimization algorithms. The model evaluation metrics are shown in
Table 5, and the energy consumption prediction results of MK_MSVR based on the different
optimization algorithms are shown in Figure 9. As shown in Table 5, the DE_MK_MSVR
model had the best evaluation metrics for each energy consumption prediction. The R2 of
the prediction models were all greater than 0.9, with the R2 for coal and oxygen reaching
more than 0.98. Figure 9 shows the statistical results of the evaluation indexes for the
prediction of the MK_MSVR model with different optimization algorithms, from which it
can be seen that the DE_MK_MSVR model had the best evaluation indexes compared to the
PSO_MK_MSVR and BOA_MK_MSVR prediction models. The experimental results show
that the best prediction performance was achieved using the multi-kernel multi-output
regression model optimized based on the DE algorithm, which confirmed the applicability
of the DE algorithm to this problem.

Table 5. Evaluation metrics of prediction models under different optimization algorithms.

Type of Energy Different Optimization
Algorithms

Evaluation Indicators

MAPE MAE RMSE R2

Electronic
PSO_MK_MSVR 0.5035 0.3464 0.4089 0.9224
BOA_MK_MSVR 0.4802 0.3423 0.4089 0.9224
DE_MK_MSVR 0.331 0.2545 0.2879 0.9615

Coal
PSO_MK_MSVR 0.8931 0.3259 0.4273 0.8927
BOA_MK_MSVR 0.4994 0.2884 0.4119 0.9003
DE_MK_MSVR 0.367 0.1269 0.1164 0.9843

Water
PSO_MK_MSVR 0.3876 0.2542 0.4151 0.9211
BOA_MK_MSVR 0.406 0.3153 0.4632 0.9018
DE_MK_MSVR 0.3096 0.2305 0.2893 0.9617

Natural Gas
PSO_MK_MSVR 4.8385 0.4489 0.5106 0.8105
BOA_MK_MSVR 5.0288 0.4951 0.6411 0.7012
DE_MK_MSVR 3.3537 0.2613 0.3084 0.9308

Oxidation
PSO_MK_MSVR 0.5855 0.4372 0.5135 0.8837
BOA_MK_MSVR 0.5019 0.503 0.5948 0.8439
DE_MK_MSVR 0.1703 0.1527 0.1909 0.9839
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4.4.3. Comparison of DE-MK-MSVR with Other Multi-Output Prediction Models

Figure 10 shows the statistical evaluation indexes, and it can be seen that the R2 of
the prediction methods used in this paper were higher than 0.93, which was the highest
among all the models, indicating that the model is feasible for the prediction of multi-energy
consumption with small amounts of sample data. Moreover, the prediction model proposed
in this paper had the smallest MAPE, MAE, and RMSE among all the prediction models.
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The MGPR model and MLPNN model were experimentally compared with the DE-
MK-MSVR model proposed in this paper. The evaluation indexes of each model are shown
in Table 6, and the energy consumption results predicted by different methods are shown
in Figure 11.

Table 6. Evaluation indicators under different models.

Type of Energy Different Forecasting Models
Evaluation Indicators

MAPE MAE RMSE R2

Electronic
DE-MK-MSVR 0.3310 0.2545 0.2879 0.9615

MLPNN 0.5367 0.3523 0.4460 0.9076
MGPR 0.3434 0.2742 0.3299 0.9495

Coal
DE-MK-MSVR 0.3670 0.1269 0.1164 0.9843

MLPNN 0.5552 0.2138 0.2630 0.9593
MGPR 0.3979 0.1729 0.2205 0.9714

Water
DE-MK-MSVR 0.3096 0.2305 0.2893 0.9617

MLPNN 0.4133 0.3763 0.5117 0.8802
MGPR 0.3436 0.2698 0.3741 0.9360

Natural Gas
DE-MK-MSVR 3.3537 0.2613 0.3084 0.9308

MLPNN 5.2915 0.3672 0.4530 0.8509
MGPR 5.0207 0.3480 0.3985 0.8845

Oxidation
DE-MK-MSVR 0.1703 0.1527 0.1909 0.9839

MLPNN 0.6806 0.4022 0.4805 0.8982
MGPR 0.3285 0.1888 0.2258 0.9775

As shown in Table 6, the DE-MK-MSVR model had the best prediction performance
under multiple energy consumption. The R2 of coal and oxygen reached more than 0.98,
the R2 of electricity and water reached more than 0.96, and the R2 of natural gas was more
than 0.93. Among all models, the DE-MK-MSVR model had the best evaluation index.
As can be seen from Figure 11, among the prediction models, the DE-MK-MSVR model
predicted values closer to the real values and had the best prediction performance, and the
stability of the model was also the best.

Due to the high-temperature environment of the tin smelting process, sensor damage
is frequent and data acquisition is expensive. In this, study, there were many production
processes and the data acquisition frequency of the different processes is not consistent,
while the data differed in structure and scale. In addition, some process data collected were
abnormal or missing due to the complexity of the smelting conditions. The data samples
for modelling were small, there were strong non-linear relationships between the data, and
the actual data collected did not meet a Gaussian distribution. So, the data did not predict
well using the MLPNN model and MGPR model.

4.4.4. Grey Correlation Analysis and Sensitivity Analysis

The comprehensive energy consumption of the smelting process was calculated by
converting each type of energy consumption into standard coal. The grey correlation analy-
sis model was used to analyze the correlation between the factors influencing the energy
consumption of the smelting process and the comprehensive energy consumption. The
order of the degree of correlation between each influencing factor and the comprehensive
energy consumption is shown in Table 7.

As can be seen from Table 7, the degrees of correlation between the energy consump-
tion influencing factors and the comprehensive energy consumption were all between
0.6 and 0.8. In terms of the degree of correlation, there were seven variables with a high
contribution to the energy consumption, all of which were above 0.8. They were charcoal
slag in the refining process (x16), total tin ingot in the smelting process (x20), tin ingot in
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the refining process (x15), flue gas temperature in the waste heat recovery process (x19),
crude tin in the refining process (x7), and roasted sand in the roasting process (x2).

In order to further analyze the impact of the inputs on outputs, this paper used the
Sobol sensitivity analysis method to analyze the sensitivity of the input parameters. The
results are shown in Figure 12.
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It can be seen from Figure 12 that total tin ingot smelted was the most sensitive variable.
Its Si = 0.198 and Sti = 0.2, this variable had a significant impact on comprehensive energy
consumption; followed by the flue gas temperature of waste, where this variable had a
very important effect on energy consumption, with Si = 0.137 and Sti = 0.14. In addition,
variables like the refining process for tin ingots, refining process of aliuminium dross,
refining process of compressed air, and the roasting sand in the roasting process played a
non-negligible role in the energy consumption. The oven melting process air inlet pressure
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had little impact on energy consumption, mainly because the variable value was between
0.17 and 0.2 Mpa.

Table 7. Correlation between the various factors influencing energy consumption and the overall
energy consumption.

Description Variable Name Correlation Order of Importance

Refining process carbon slag x16 0.865 1
Smelting total tin ingot x20 0.860 2

Refining process tin ingot x15 0.850 3
Waste heat recovery process flue gas temperature x19 0.842 4

Crude tin in the smelting process x7 0.836 5
Roasted sand in roasting process x2 0.818 6
Refining process aluminum slag x17 0.801 7

Slag temperature in AUS furnace smelting process x10 0.790 8
Inlet air speed of the smelting process in the furnace x8 0.779 9

Roasting process air inlet speed x3 0.777 10
Inlet air pressure in the smelting process x9 0.775 11

Compressed air consumption in refining process x11 0.766 12
Waste heat recovery process flue gas pressure x18 0.760 13

Compressed air consumption in the smelting process x5 0.754 14
Roasting process air inlet pressure x4 0.754 15
Refining process air inlet pressure x14 0.750 16

Roasting process compressed air consumption x1 0.705 17
Refining process solder x12 0.665 18

Refining process air inlet speed x13 0.663 19
Furnace pressure for melting process x6 0.652 20
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In the whole tin smelting process, the consumption of electricity was the highest; the
consumption of coal and oxygen was the second highest; and the consumption of water
and natural gas was low. Natural gas is a clean and environmentally friendly high-quality
energy source; almost free of sulfur, dust, and other harmful substances; and produces less
carbon dioxide than other fossil fuels when burned. However, enterprises still rely heavily
on coal in the tin smelting process, and to achieve energy saving and carbon reduction, they
should use more clean energy, rather than fossil fuels. Electricity is a high-demand energy



Processes 2024, 12, 32 25 of 28

source for the smelting process, and the use of renewable energy sources will greatly reduce
carbon emissions, such as the use of renewable energy sources such as wind and solar
energy for energy supply. In addition, charcoal residues from the refining process have a
significant impact on energy consumption and can be treated as an auxiliary material in
the next process to improve material utilization, based on an analysis of the material and
energy flows of the smelting process.

5. Energy Saving Advice

Industry associations should strengthen their guidance and assessment of energy
efficiency benchmarking activities for non-ferrous metal enterprises and further improve
energy-efficiency benchmarking management mechanisms. They should actively imple-
ment an energy manager system for the whole industry, standardize and establish energy
management accounts, diagnose and analyze the energy application status of enterprises,
study and propose energy-saving measures, explore the energy-saving potential of various
production links between enterprises, measure and verify the energy-saving capacity, and
establish an all-round energy management system covering all production links.

The optimization level of production scheduling in the tin smelting process greatly
affects the material and energy consumption of enterprises, and production planning
and scheduling ability is directly related to whether the resources of enterprises can
be reasonably utilized, thus affecting the production, operation, and management effi-
ciency of enterprises. Enterprises should pay attention to the optimization of the smelting
process, in order to achieve the purpose of saving energy, consumption reduction, and
efficiency increases.

The recycling of energy and materials from the smelting process is a practice worth
promoting. As certain enterprises have conducted, the soot produced by each process
can be collected for further reuse as an auxiliary material for the process; and the waste
heat from the waste heat boiler can be recovered for power generation, making full use of
existing resources. The recycling aspect of the smelting process can improve the resource
utilization rate and is of great significance for reducing energy consumption. However,
from the results of the parameter sensitivity analyses, the flue gas temperature of waste
heat recovery had a very important impact on energy consumption. To achieve energy-
efficient production, the energy consumption in the waste heat recovery process should not
be neglected.

6. Conclusions

The non-ferrous metal smelting process involves multiple types of energy use, and
energy consumptions are often coupled with each other. The traditional single energy
consumption prediction model cannot be applied to the prediction of multiple energy
consumption. Facing the problems of complex production processes, multiple types of
energy consumption, and small available data samples in the tin smelting process, this
paper proposed a multi-kernel multi-output support vector regression prediction model
based on the optimization of a differential evolutionary algorithm. The grey correlation
analysis model was used to analyze the contribution of the factors affecting the energy
consumption in the tin smelting process with comprehensive energy consumption, and
corresponding energy-saving recommendations were put forward based on the results of
the analysis for the tin smelting process. In this paper, a DE_MK_MSVR methodology for
multi-process and whole-process multi-energy consumption prediction for metal smelting
processes was proposed. The main conclusions are as follows:

Aiming at multi-energy use in the smelting process, less effective data samples, strong
data nonlinearity, and other characteristics, the multi-output support vector regression
(MSVR) model was adopted as a benchmark. The concept of multi-kernel learning was
introduced, and the kernel function of MSVR was improved using the method of linear
combination. Compared with the MSVR model with single kernel function, the MSVR
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model based on multiple kernel function had better prediction ability, and the multiple
kernel function could better discover the relationships hidden in the data.

The hyperparameters of the prediction model were obtained using the optimization
algorithm. Comparing different optimization algorithms, DE had better tuning ability
for the MK_MSVR model and the DE_MK_MSVR prediction model had the highest ac-
curacy. To demonstrate the prediction performance of the model, DE_MK_MSVR was
compared with other multi-output prediction models. The experiments showed that the
DE_MK_MSVR model had the best evaluation index, which proved the superiority of this
model in multi-energy prediction.

A grey correlation analysis model explored the importance of the influencing factors
on energy consumption in each process on the comprehensive energy consumption. The
sensitivity of the input parameters was discussed using the Sobol sensitivity analysis
method, giving corresponding energy-saving suggestions for the tin smelting process. The
use of clean energy for smelting, such as natural gas, wind energy, solar energy, and other
resources is conducive to achieving energy savings and efficiency; in addition, recycling
and processing of soot and dust in various stages of smelting and generating electricity
from waste heat is a practice worthy of being advocated, and technological inputs to the
recycling process should be increased to improve energy efficiency.

In future studies, we will work on the following problems that may be of interest for
industrial applications and scientific research: (1) The development of energy-intensive
processes in process industries towards the direction of massiveness, integration, and
scalability. A hybrid approach of mechanism analysis and data-driven modeling will be
introduced into the modelling and analysis process, which may significantly improve not
only the modelling efficiency, but also solve the problem of poor model generalization
ability. (2) Appropriate virtual samples will be generated by combining domain prior
knowledge, and they will be added to the training samples to achieve data expansion and
feature enhancement, which in turn may improve the generalization ability of the model.
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