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Abstract: In the regeneration mode, precise control of the Diesel Oxidation Catalyst (DOC) outlet
temperature is crucial for the complete combustion of carbon Particulate Matter (PM) in the subse-
quent Diesel Particulate Filter (DPF) and the effective conversion of Nitrogen Oxides (NOx) in the
Selective Catalytic Reduction (SCR). The temperature elevation process of the DOC involves a series
of intricate physicochemical reactions characterized by high nonlinearity, substantial time delays,
and uncertainties. These factors render effective and stable control of the DOC outlet temperature
challenging. To address these issues, this study proposes an approach based on Long Short-Term
Memory (LSTM) neural networks for Model Predictive Control (MPC), emphasizing precise control
of the Diesel Oxidation Catalyst’s outlet temperature during the regeneration mode. To tackle the
system’s nonlinear characteristics, LSTM is employed to construct a predictive model for the outlet
temperature of the Diesel Oxidation Catalyst, thereby enhancing prediction accuracy. Simultaneously,
model predictive control is applied to mitigate the significant time delays inherent in the system. The
gradient descent algorithm is utilized within a rolling optimization cycle to optimize the objective
function, enabling the rapid determination of the control law. To validate the performance of the
proposed control strategy, tracking performance and disturbance rejection tests are conducted. Simu-
lation results demonstrate that, compared to the traditional Proportional Integral Derivative (PID)
controller, this control strategy exhibits superior tracking performance and disturbance rejection
capabilities. In the regeneration mode, the adoption of this control strategy enables more effective
and precise control of the Diesel Oxidation Catalyst’s outlet temperature.

Keywords: Diesel DOC; regeneration mode temperature; outlet temperature; model predictive
control; LSTM neural network; gradient descent method

1. Introduction

With the ongoing enhancement of emission regulations, vehicle exhaust emission
limits are progressively tightening [1–3]. Traditional in-cylinder purification is no longer
sufficient to meet exhaust emission standards. In order to effectively reduce the emission
of harmful substances in exhaust gases, posttreatment devices have been widely employed
in the exhaust gas treatment of diesel engines [4,5]. Postprocessing devices typically adopt
technology routes such as DOC + DPF + SCR [6,7].

DPF is an effective means of reducing PM to meet emission limits [8,9]. However, DPF
has a certain limit on PM capture. With the increase in usage time, PM captured in the
DPF will continuously accumulate, leading to an increase in engine exhaust back pressure.
This, in turn, affects engine fuel economy and power performance [10]. To address this
issue, active regeneration of the DPF is necessary to restore its particulate matter capture
capacity [8]. In practical applications, diesel engines often operate under medium to low
load conditions. Under these conditions, exhaust temperatures are insufficient to meet the
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requirements for the active regeneration of the DPF. Additional energy is required to elevate
the internal temperature of the DPF, and this is achieved through the Diesel Oxidation
Catalyst (DOC) assisting in the active regeneration of the DPF [11]. DOC-assisted DPF
active regeneration involves injecting fuel towards the end of the diesel engine cycle, where
incomplete combustion leads to the conversion of hydrocarbons (HC). These HC are then
discharged into the DOC, where they undergo oxidation combustion, thereby raising the
exhaust temperature [12,13]. Active regeneration of the DPF requires elevated tempera-
tures, typically around 600 ◦C. If the temperature is too low, the particulate matter inside
the DPF cannot be effectively removed, resulting in blockage and decreased performance.
Conversely, excessively high temperatures may lead to the melting and damage of the
DPF [14]. Achieving stable and reliable active regeneration of the DPF is of paramount
importance, necessitating precise control of the outlet temperature of the DOC. Traditional
control methods based on MAP calibration require extensive dynamometer test data to
establish the relationship between fuel injection parameters and DOC temperature rise,
determining the MAP chart for control purposes [15]. This approach demands significant
human and material resources. In response, many scholars have proposed model-based
control methods [16–18]. Combining advanced control methods such as adaptive con-
trol [19], fuzzy logic control [20], state observer [21], neural network PID control [22],
model predictive control [23], etc., to achieve target control. However, the DOC is a non-
linear system with strong coupling, significant time delays, susceptibility to disturbances,
and inherent uncertainties [24,25]. The complex internal chemical reactions of the DOC
make it challenging to obtain an accurate mathematical model. These uncertainties and
inherent system characteristics add to the challenges of controlling the outlet temperature
of the DOC.

In addressing this issue, numerous scholars have made substantial efforts. Lepreux
et al., by applying the law of energy conservation, simplified the distribution changes in
the internal temperature field of the DOC and reduced the input–output relationship of
the DOC to a first-order transfer function. They validated the effectiveness of this model
using a Smith predictor controller. However, in situations with rapid system changes or
disturbances, predictors may struggle to accurately anticipate these changes, leading to
poor control effects [26]. Building on the work of the former, Wu et al. considered partial
chemical reactions within the DOC, simplifying it into a second-order transfer function,
which, to some extent, improved the precision of the DOC model but increased the difficulty
of model identification [27]. Liu et al. established a first-order delayed response model for
the time-delay problem of the DOC system. They applied inner model PID control to DOC
temperature control, resulting in faster response times and improved temperature control
precision compared to traditional PID. However, challenges such as poor disturbance
rejection, difficult parameter tuning, and potential integral saturation still persisted [28].
Huang et al. proposed a feedforward compensation and error-based Active Disturbance
Rejection Control (ADRC) for the DOC system. This approach significantly reduced the
impact of disturbances, exhibiting smaller and faster stabilization overshoots than PID
control in the presence of disturbances. Nevertheless, it did not consider the influence
of the DOC system’s time delay, and the control performance of ADRC also relied on
the selection of control parameters [29]. Kim et al. designed an MPC method for DOC
temperature control during DPF regeneration. When compared with production controllers,
their approach demonstrated a significant reduction in error [23].

Model predictive control has many advantages, such as multivariable control ability,
strong prediction and optimization ability, strong nonlinear system processing ability,
strong constraint processing ability, and strong robustness and adaptability. However, there
are still a lot of problems to be solved in the application of model predictive control in
practical engineering [30,31]. Firstly, it is difficult to establish an accurate dynamic model
of the DOC system, and secondly, it is difficult to optimize the solution because of the
nonlinearity and strong coupling of the DOC system.
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To address the aforementioned challenges, this paper proposes a DOC outlet tempera-
ture nonlinear MPC based on LSTM neural networks (LSTM-MPC). LSTM is employed to
describe the nonlinear process model of the DOC system, predicting future variations in the
outlet temperature behavior. This approach provides a highly accurate predictive model for
subsequent nonlinear MPC. The gradient descent method is applied to the rolling optimiza-
tion in MPC to solve the objective function, enabling online control rate computation. This
reduces the computational burden of optimization problem-solving, enhancing efficiency.
Finally, the effectiveness of LSTM-MPC is confirmed through simulation verification.

2. Materials and Methods
2.1. DOC System Description

In the regeneration mode, unburned fuel in the diesel engine exhaust, namely HC,
enters the DOC carrier with the tail gas. Under the catalytic action, oxidation occurs,
releasing heat to elevate the exhaust temperature. However, the coupling of various
parameters under different operating conditions of the diesel engine can affect the DOC
outlet temperature, exponentially increasing the difficulty of temperature control. To
alleviate this control challenge, starting from the boundary conditions of the DOC system,
variations in diesel engine parameters can be mapped to changes in exhaust emissions. To
avoid affecting the main operating parameters of the diesel engine under various conditions,
the DOC system is treated as a single-input, single-output system. The exhaust temperature
T1 and mass flow rate F are considered external disturbance variables, while the additional
fuel injected postcombustion serves as the input (i.e., the control variable u). The DOC
outlet temperature T2 is regarded as the output variable.

2.2. DOC System Model Building

In previous research, methods for establishing models of controlled objects can be
broadly categorized into two main types: theoretical models and data-driven models.
Theoretical models possess strong physical significance, providing a reliable dynamic
representation of the system. However, when modeling the DOC system, considerations
often involve gas components and their spatial state changes, making model-solving
challenging. In line with previous studies [15], modeling the DOC carrier can be somewhat
simplified by disregarding the carrier’s thermal exchange with the surroundings. At this
time, the DOC system can be regarded as a whole, and the overall energy is unchanged.
The energy changes in DOC include convective heat transfer between the gas flow and
DOC carrier and heat release by oxidation reaction of HC on DOC carrier. From the
perspective of energy conservation law, it is divided into conservation of energy in the gas
phase and conservation of energy in the solid phase. The model can be represented by the
following equation:

Conservation of energy in the gas phase:

ερgCp
∂T(z,t)

∂t + F
Acell

Cp
∂T(z,t)

∂z =

∂
∂z

(
εkg

∂T(z,t)
∂z

)
+ hgGa(Ts(z, t)− T(z, t))

(1)

The first term on the left represents the energy stored by the gas phase, and the second
term represents the energy transferred by the gas phase. The first term on the right side of
the equation is the energy of diffusion heat transfer, and the second term is the energy of
solid phase exchange.

Conservation of energy in the solid phase:

(1 − ε)ρgCps
∂Ts(z,t)

∂t = ∂
∂z

(
(1 − ε)kg

∂T(z,t)
∂z

)
+

hgGa(T(z, t)− Ts(z, t)) + Gca
NM
∑

j=1
Rjhj

(2)
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The first term on the left represents the energy stored in the solid phase, the first term
on the right is the energy of the diffusion of the solid phase, the second term is the energy
of the gas phase exchange, and the third term is the enthalpy flow of the chemical reaction.
where, T and Ts represent the gas temperature and carrier temperature; ρg and ρs are the
gas density and carrier density; ε is the carrier porosity; Cp and Cps are the gas and carrier
specific heat capacities, respectively; z represents the axial position of the DOC; F is the
gas mass flow rate; Acell is the cross-sectional area of the DOC system; kg and ks are the
gas and carrier thermal conductivity; hg is the convective heat transfer coefficient between
gas and solid phases; Ga is the channel surface-area-to-volume ratio; Gca is the catalyst
surface-area-to-volume ratio; j a is substance a j; NM is the number of species in the carrier;
Rj is the reaction rate of substance j; hj is the chemical enthalpy of substance j.

Due to the structure of the DOC carrier, convection heat transfer is much larger than
diffusion heat transfer, and the diffusion heat transfer terms in Equations (1) and (2) can
be ignored. By further eliminating variable ερgCp from the first term on the left side of
Formula (1) and variable (1 − ε)ρgCps from the first term on the left side of Formula (2), we
can obtain: 

∂T(z,t)
∂t + v ∂T(z,t)

∂z = k1(Ts(z, t)− T(z, t))
∂Ts(z,t)

∂t = k2(T(z, t)− Ts(z, t)) + φ(z, t)
(3)

where parameters in the above equation can be represented as:

v =
F

Acellερg
(4)

k1 =
hgGa

ερsCp
(5)

k2 =
hgGa(1 − ε)

(1 − ε)ρsCps
(6)

φ(z, t) =

Gca
NM
∑

j=1
Rjhj

(1 − ε)ρsCps
(7)

Performing the Laplace transform on Equation (3):{
sT(z, s)− T(z, 0) + v ∂T(z,s)

∂z = k1(Ts(z, s)− T(z, s))
sTs(z, s)− Ts(z, 0) = k2(T(z, s)− Ts(z, s)) + Φ(z, s)

(8)

Considering the research focus on the DOC outlet gas temperature and eliminating
the solid-phase temperature Ts(z, s), Equation (8) can be rewritten as:

s2 + (k1 + k2)s
k1

T(z, s) + s + k2
k1

v ∂T(z,s)
∂z =

Φ(z, s) + s + k2
k1

T(z, 0) + Ts(z, 0)
(9)

Under a certain fixed working condition of diesel engine, DOC inlet temperature T1
and gas mass flow rate F remain unchanged, that is, T(z, 0), Ts(z, 0) and v are constant
values. Here, Φ(z, s) represents the heat release term, which is related to the control
variable u and can be equivalently considered as the exhaust boundary temperature. As
the system is primarily influenced by the control variable u under this fixed condition,
partial differentiation of Equation (9) yields an approximate first-order plus time-delay
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transfer function of the control variable u with respect to exhaust temperature, as shown in
Equation (10). The specific parameters require further determination.

G(s) =
T(s)
u(s)

=
k

Tcs + 1
e−τs (10)

where k is the steady-state gain of the system; Tc is the time constant of the system; τ is the
system time delay; s is the complex frequency variable;

2.3. Experimental Equipment and Model Identification

To establish a simplified thermodynamic model of the controlled object for controller
design, it is necessary to obtain relevant data through experimental tests on a test bench.
The experimental test bench is equipped with a 2.5 L small-sized high-pressure common rail
diesel engine with a straight-four-cylinder layout and a turbocharger, and the aftertreatment
system consists of DOC + DPF + SCR. The engine has a compression ratio of 17.5:1. The
physical drawing and layout diagram of the test bench are shown in Figure 1, while the
main technical parameters are presented in Tables 1 and 2.
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Table 1. Basic parameters of the diesel engine.

Parameter Type Numerical Value

Diesel engine type 4-cylinder inline, 4 valves, turbocharged
Bore × Stroke (mm × mm) 92 × 94

Displaced volume (L) 2.5
Compression ratio 17.5:1

Maximum torque (N·m) 400
Rated speed (r/min) 3000
Power rating (kW) 120

Table 2. Specifications of the DOC.

Parameter Type Numerical Value

DOC Substrate Cordierite
Length (mm) 152.4

Diameter (mm) 122
Cell density (cpsi) 400

The experimental environment for the diesel engine test bench is at an altitude of
2000 m, with an atmospheric pressure of 80 kPa, an ambient temperature of 25 ◦C, at-
mospheric humidity of approximately 50%, and a coolant temperature of around 90 ◦C.
Experiments were conducted on the test bench in this environment to study the diesel
engine’s Diesel Oxidation Catalyst (DOC) outlet temperature response under three operat-
ing conditions. The diesel engine operating conditions were set at low speed 1200 r/min
and low load 50 N·m, medium speed 1800 r/min and medium load 150 N·m, and high
speed 2400 r/min and high load 250 N·m. The target temperature was set to 600 ◦C, and
the exhaust mass flow rates F for the three conditions were 90.64, 214.29, and 405.64 kg/h,
respectively. The DOC carrier inlet temperatures were 328 ◦C, 459 ◦C, and 508 ◦C. The
diesel engine used dual injections for postinjection. The first injection was controlled by
the test bench to raise the DOC inlet temperature to the ignition temperature, and the
second injection (i.e., the controlled variable u) was mainly controlled to increase the DOC
outlet temperature.

To further determine the system parameters k, Tc and τ in the DOC outlet temperature
response curve, the experimental data obtained from the test bench under three operating
conditions were subjected to parameter identification using the MATLAB Identification
Toolbox. The identification results were determined by minimizing the least squares error,
and the model accuracy was calculated by the best-fit degree formula, as follows:

Acc =

1 −

√
n
∑

i=1
(yi − yi

′)2

√
n
∑

i=1
(yi − y)2

× 100 (11)

where n is the sample quantity; yi is the actual value of the i sample; yi
′ is the predicted

value of the i sample; y is the mean of the actual values.
The final iteration results are shown in Table 3, and the comparison between ex-

perimental values and simulated values under different working conditions is shown in
Figure 2.
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Table 3. Identification parameters and fitting accuracy of first-order time delay transfer
function model.

Speed (r/min) Torque (N·m) k Tc τ Accuracy (%)

1200 50 944.91 24.223 41.331 92.52
1800 150 394.78 11.677 18.462 93.15
2400 250 384.8 7.3513 9.3265 93.33
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Figure 2. Experimental and simulated value comparison under different operating conditions.
(a) 1200 r/min 50 N·m, u = 0.3 mg. (b) 1800 r/min 150 N·m, u = 0.36 mg. (c) 2400 r/min 250 N·m,
u = 0.24 mg.

The accuracy of the first order plus time delay transfer function of the identified DOC
temperature rise system provides a solid basis for the subsequent controller design and
makes the controller design more convenient.

3. Predictive Control Based on LSTM Neural Network Model

Neural network predictive control is a control method based on a neural network
model, with its fundamental structure being a closed-loop negative feedback regulation
system. It primarily consists of several components, including the controlled object, con-
troller, and predictive model. The control algorithm comprises four main stages: predictive
modeling (used for predicting system output), feedback correction (utilized for correcting
model errors and uncertainties), rolling optimization (employed for dynamically optimiz-
ing the tracking of output reference trajectories), and reference trajectories (defining the
desired control effects). Through continuous monitoring and adjustment, precise control of
the system is achieved. The basic structure is illustrated in Figure 3.
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In the figure, ys represents the setpoint for the controlled object (DOC) output tem-
perature. yr(k + 1) represents the reference trajectory at time k + 1. u(k) is the control
input applied to the controlled object at the current time. y(k) is the actual output of the
controlled object at the current time. yp(k) is the output of the predictive model at the
current time. yp(k + 1) is the prediction made by the predictive model for the controlled
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object’s output at time k + 1. ym(k + 1) is the predicted output considering the feedback
correction at time k + 1.

3.1. DOC Outlet Temperature Prediction Model Based on LSTM Neural Network

In order to implement a predictive control strategy for the DOC outlet temperature
model, establishing an accurate dynamic prediction model for the DOC outlet temperature
variation is a prerequisite to ensure control effectiveness. Currently, the establishment
of dynamic models describing the system mainly involves methods such as difference
equations, transfer functions, and neural networks. Research indicates that neural networks
exhibit strong capabilities in handling nonlinear problems and compared to complex
physical modeling, do not require consideration of internal system mechanisms.

For the established nonlinear dynamic prediction model, its system dynamics can be rep-
resented by a Nonlinear Autoregressive Exogenous (NARX) model, with the expression being:

y(k + 1) = f [y(k), y(k − 1), · · ·, y(k − dy),

u(k), u(k − 1), · · ·, u(k − du)]
(12)

where y(k + 1) is the predicted output value at time k + 1 by the predictive model predicted
at time k; f represents a nonlinear mapping relationship; y(k) is the output value of the
model at time k; u(k) is the input value of the model at time k; dy represents the output
delay; du represents the input delay.

The LSTM neural network is one of the most prominent variants in the realm of
Recurrent Neural Network (RNN). Compared to traditional RNN, LSTM introduces gate
mechanisms and internal memory units, effectively alleviating the issues of gradient
explosion or vanishing gradients during backpropagation in RNNs. Additionally, LSTM
possesses long-term memory capabilities, enabling it to handle lengthy sequences and
capture long-term dependencies.

The basic unit structure of LSTM consists of a memory cell, forget gate, input gate, and
output gate. These components are designed to control the flow of information and manage
memory. The structure is illustrated in Figure 4. The information in LSTM is primarily
transmitted through two hidden states within the unit structure: the long-term state ck and
the short-term state hk. In the preceding unit structure, the long-term state ck−1, through
the forget gate, selects the information to be forgotten. Subsequently, through the input
gate, it decides how much new information to input, forming a new long-term state ck.
The long-term state ck is then transmitted to the next unit structure, and simultaneously,
the output gate determines how much information from the long-term state should be
output to the short-term state. The short-term state hk−1 from the preceding memory unit
is integrated with the new unit input xk to form a new input vector. This vector enters
the long-term state through the input gate. Simultaneously, by combining with the output
gate’s decision on which part of the long-term state information to retain, a new short-term
state hk is formed.
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The LSTM unit cleverly employs gate mechanisms (forget gate, input gate, and output
gate), along with sigmoid and tanh activation functions. It precisely controls state updates
by weighting input information. The update rules are formulated as follows:

fk = σ
(

W f · [xk, hk−1] + b f

)
ik = σ(Wi · [xk, hk−1] + bi)

ĉk = tanh(Wc · [xk, hk−1] + bc)

ck = fk · ck−1 + ik · ĉk

ok = σ(Wo · [xk, hk−1] + bo)

hk = ok · tanh(ck)

(13)

where fk represents the forget gate; ik represents the input gate; ok represents the output
gate; ĉk represents the input to the long-term state; ck represents the long-term state; ck
represents the short-term state; σ represents the non-linear sigmoid function; W f , Wi, Wc
and Wo represent the corresponding weight parameters; b f , bi, bc and bo represent the
corresponding bias parameters.

To establish a neural network predictive model for the DOC outlet temperature,
dynamic sample data are required. To better capture the dynamic variations of DOC under
various operating conditions, the World Harmonized Transient Cycle (WHTC) is chosen as
the experimental scenario in regeneration mode. Due to the requirement of the DOC system
for an inlet temperature of 250 ◦C or above, the WHTC in its thermal mode is chosen as the
experimental scenario. Experimental results are recorded using INCA, with a sampling
frequency of 1 s, and each cycle lasts for 1800 s, resulting in a total of 1801 data sets. For the
model development, 70% of the data (1261 sets) are selected as training samples, and the
remaining 30% (540 sets) are used as test samples. An offline predictive model based on
the LSTM neural network is then established.

For the obtained training data, differences in scales among variables may hinder the
convergence of the model during training. To improve the convergence speed and predic-
tion accuracy during the model training process, normalization of the data is necessary.
Therefore, the following normalization formula is applied to the aforementioned data:

x′ =
x − xmin

xmax − xmin
(14)

where x represents the input data; xmin is the minimum value of the input data; xmax is the
maximum value of the input data; x′ represents the normalized value corresponding to x′.

To train the LSTM predictive model, the MatlabR2023a Deep Learning Toolbox was
utilized, and the Adam algorithm was employed to accelerate the model training speed,
thereby avoiding local minima. The specific training information and parameter settings are
detailed in Table 4. Figure 5 illustrates the relationship between the training loss function
and validation loss function during the model training iteration process. From the graph, it
can be observed that within the limited number of iterations, as the loss function reaches
its minimum value, both training and validation losses gradually decrease with increasing
iterations. After some oscillations, they eventually converge. This indicates successful
model training, with no occurrences of underfitting or overfitting.

The comparison between the predicted results of the model and the actual values is
shown in Figure 6. The predicted results of the model closely align with the actual values,
accurately capturing the changing trend of the DOC outlet temperature. To further assess
the performance and accuracy of the prediction model, three evaluation metrics, namely
Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared (R2), are
used. Their formulas are as follows:

RMSE =

√√√√√ n
∑

i=1
(yi − yi

′)

yi
(15)
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MAE =
1
n

n

∑
i=1

∣∣yi − yi
′∣∣ (16)

R2 = 1 −

n
∑

i=1
(yi − yi

′)2

n
∑

i=1
(yi − y)2

(17)

where n is the sample quantity; yi is the actual value of the i sample; yi
′ is the predicted

value of the i sample; y is the mean of the actual values.

Table 4. Structural parameters of the LSTM-based predictive model for DOC outlet temperature.

Name Numerical Value

Optimizer Adam
Activation function Sigmoid, tanh
Maximum iterations 300
Gradient decay rate 0.99

Learning rate decline cycle 175
Initial learning rate 0.05

Learning rate decline coefficient 0.001
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The evaluation metrics for the LSTM-based DOC outlet temperature prediction model
are as follows: RMSE is 3.268, MAE is 4.163, R2 is 96.844%. These metrics indicate that the
predictive model performs well, and its accuracy is sufficient to meet the requirements for
controller design.

3.2. Reference Trajectory and Feedback Correction

To ensure the smooth operation of the control system, the reference trajectory needs to
be designed as a smooth curve, allowing the actual output to transition smoothly toward
the setpoint.

yr(k + i) = ai
ry(k) + (1 − ai

r)ys i = 1, 2, · · · (18)

where ai
r is the smoothing factor, and 0 < ai

r < 1; ys is the reference setpoint.
Due to errors in the identification model and the presence of external disturbances,

there is a certain deviation between the optimization solution in model control and the
actual effect. Utilizing feedback correction can, to some extent, reduce the errors introduced
by this deviation. Taking the prediction error e(k) between the DOC outlet temperature
yp(k) predicted by the neural network model at time k and the actual output DOC outlet
temperature y(k) as the prediction error, multiplying it by the feedback correction scaling
factor ή, and applying it to the next time step to correct the correction value ym(k + 1). The
formula can be expressed as:

e(k) = yp(k)− y(k) (19)

ym(k + 1) = yp(k + 1) + ή ∗ e(k) (20)

3.3. Optimization Solution Based on Gradient Descent Method

Rolling optimization adjusts the optimization control strategy within a finite number
of time steps to optimize the value of the performance index function, determining the
optimal control input to achieve the system’s optimal performance. The main goal of DOC
outlet temperature control is to minimize the difference between the outlet temperature
and the target value. Therefore, its performance index function can be defined as:

J(k) =
Np

∑
i=1

[ŷr(k + i)−ŷm(k + i)]Tλy[ŷr(k + i)− ŷm(k + i)]

+
Nu
∑

i=1
[∆u(k + i)T

λu∆u(k + i)]
(21)

s.t. umin ≤ u ≤ umax (22)

where ŷr is the target temperature; Np and Nu are prediction time domain and control time
domain, respectively (Np > Nu); λy and λu are the weight factors; ∆u is the change of the
control law; umin and umax are the minimum and maximum values of the control quantity
u, respectively.

The performance index function can be equivalent to a quadratic form:

Ĵ(k) =
1
2
[Ê(k)T Ê(k) + ρ̂∆u(k)T∆u(k)] (23)

where Ê(k) = [ŷr(k + 1)− ŷm(k + 1), ŷr(k + 2)− ŷm(k + 2), · · ·, ŷr(k + Np)− ŷm(k + Np)]
T

represents the error vector; ∆u(k) = [∆u(k + 1), ∆u(k + 2), · · ·, ∆u(k + Np)] represents the
control increment vector; ρ̂ = diag[ρ1, ρ2, · · ·, ρNu ] represents the control weight matrix.

In order to obtain the optimal control quantity, the gradient descent method is used to
solve the performance index function to obtain the control increment vector:

u(k + 1) = u(k) + ∆u(k) = u(k)− η
∂ Ĵ(k)
∂u(k)

(24)

where η is the adaptive rate of gradient descent method.
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Obtain by differentiating Equation (23) with respect to u(k):

∂ Ĵ(k)
∂u(k)

=

(
∂Ê(k)
∂u(k)

)T

Ê(k) + ρ̂∆u(k) = Ĥ(k)T Ê(k) + ρ̂∆u(k) (25)

Bring Formula (25) into Formula (24):

u(k + 1) = u(k)− ηĤ(k)T Ê(k)− ηρ̂∆u(k) (26)

∆u(k) =
−ηĤ(k)T Ê(k)

ηρ̂+ 1
(27)

where:

Ĥ(k) =


− ∂ŷ(k+1)

∂u(k) 0 · · · 0

− ∂ŷ(k+2)
∂u(k) − ∂ŷ(k+2)

∂u(k+1) · · · 0
...

...
. . .

...

− ∂ŷ(k+Np)

∂u(k) − ∂ŷ(k+Np)

∂u(k+1) · · · − ∂ŷ(k+Np)

∂u(k+Nu−1)


Np×Nu

(28)

The literature shows that when the control time domain Nu is 1, it can not only
overcome the difficult problem of large-scale matrix operation, but also obtain satisfactory
control effect [32]. Therefore, Nu = 1 is set in this paper; Equation (28) can be expressed as:

g(k) = Ĥ(k) = −
[

∂ŷ(k + 1)
∂u(k)

,
∂ŷ(k + 2)

∂u(k)
, · · ·

∂ŷ(k + Np)

∂u(k)

]T

(29)

By inserting Equation (29) into (27), the control rate increment ∆u(k) can be expressed as:

∆u(k) =
η

ηρ̂+ 1
g(k)T Ê(k) (30)

And when the performance index function is minimum or ∆u(k) = 0, the optimal
control quantity u(k) is obtained as the controller control quantity.

4. Simulation Experiment and Result Analysis

To validate the predictive control performance of the proposed LSTM-MPC controller
in the DOC temperature rise system, combined with the first-order plus time-delay transfer
function identified in Section 2 for the DOC temperature rise system, tracking performance
and disturbance rejection simulations were conducted in Matlab/Simulink. The LSTM-
MPC control strategy was compared and analyzed against PID control.

4.1. Setpoint Tracking Performance Experiment

To validate the setpoint tracking performance of the controllers, the target temperature
for the DOC outlet temperature was set to 600 ◦C. After each controller reached the set
target value, the target temperature was reduced by 50 ◦C at time t = 500 s. The response
results of each controller to the setpoint tracking of the target temperature, considering the
transfer function of the DOC temperature rise system under different operating conditions,
are illustrated in Figure 7.

From Figure 7, Setpoint tracking experiments under three operating conditions (1200 r/min
50 N·m, 1800 r/min 150 N·m and 2400 r/min 250 N·m) show that the LSTM-MPC system
has a significant control advantage when the target temperature changes. It can be observed
that both LSTM-MPC and PID control can effectively achieve setpoint tracking. At times
t = 0 s and t = 500 s, the actual temperature under each controller is maintained for some
time at the initial temperature due to the inherent time delay of the controlled system. How-
ever, calculations show that, compared with PID, the time for the DOC outlet temperature
under LSTM-MPC control to reach the target temperature for the first time was shortened
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by 21.08, 15.58, and 6.91 s, respectively. The overshoot was reduced by 39.4%, 36.6%, and
17.31%, respectively, and the average time to reach the stable state was reduced by 55.17,
40.51, and 13.02 s. It can be seen from the data that the longer the delay time of LSTM-MPC
in the DOC system, the more obvious the improvement of the control effect. This is due to
the fact that in systems with time delays, traditional PID controllers may have difficulty
quickly adapting to changes because the PID feeds back only based on the current error
information. By predicting the future state of the system, LSTM-MPC can deal with the time
delay more effectively and adjust the control strategy in advance. Therefore, LSTM-MPC
provides faster response, lower overshoot, and comparable steady-state performance in
controlling the DOC outlet temperature compared to conventional PID control.
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Figure 7. Tracking setpoint temperature responses under various operating conditions. (a) 1200 r/min
50 N·m. (b) 1800 r/min 150 N·m. (c) 2400 r/min 250 N·m.

4.2. Disturbance Rejection Performance Simulation Experiment

To validate the disturbance rejection performance of the controllers, the target tempera-
ture was set to 600 ◦C. After the controlled system reached stability, step disturbance signals
were introduced at times t = 50 s and t = 450 s. At time t = 50 s, the inlet temperature was
decreased by 50 ◦C, and at time t = 450 s, the inlet temperature was increased by 30 ◦C.
The response curves of each controller to the transfer function of the DOC temperature rise
system under different operating conditions are shown in Figure 8.
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From Figure 8, it can be observed that after introducing disturbances at times t = 50 s
and t = 450 s, both LSTM-PID and PID control maintain the outlet temperature at the
target value for some time (due to the inherent time delay of the controlled system) before
experiencing a sharp decrease (or increase). In PID control, the DOC outlet temperature
continues to exhibit a time lag after the sharp decrease (or increase) because PID control
primarily relies on feedback regulation, and adjustments to the control strategy are made
only after the feedback of the changed DOC outlet temperature. However, the LSTM-MPC
controller, leveraging predictive modeling to anticipate the future behavior of the system,
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adjusts the control strategy in real time upon introducing disturbances. As a result, the DOC
outlet temperature responds promptly after the system’s time lag. Additionally, LSTM-
MPC control has a smaller overshoot than PID control, which is reduced by 35.65%, 34.66%
and 28.89%, respectively, and the average time to reach the stable state is shortened by 93.26,
58.13 and 28.72 s, respectively. From this, it is evident that LSTM-MPC control demonstrates
robustness in dealing with time-delay systems, effectively addressing uncertainties and
changes in time delay to some extent. Furthermore, the LSTM-MPC controller proves
effective in suppressing the impact of disturbances during control, resulting in significantly
enhanced disturbance rejection compared to conventional PID controllers.

5. Conclusions

In this paper, we introduce the LSTM prediction model and gradient descent method,
proposing a nonlinear predictive control method for DOC outlet temperature named LSTM-
MPC. By offline training the LSTM neural network, real-time prediction of the DOC outlet
temperature for diesel engines is achieved, providing a high-precision predictive model
for MPC.

(1) LSTM-MPC employs the gradient descent algorithm to solve nonlinear optimization
problems, aiming to reduce the computational time for optimization solutions and
achieve optimal control rates for fuel injection heating.

(2) LSTM-MPC is compared with PID control in terms of tracking performance and
disturbance rejection capability through simulation. In the set point tracking exper-
iment, the average time to first reach the set temperature is reduced by 14.61 s, the
average overshoot is reduced by 35.9%, and the average time to reach the steady
state is reduced by 36.23 s. In the experiment of anti-interference performance, the
average overshoot is reduced by 33.89%, and the average time to reach the stable
state is reduced by 60.04 s. The results indicate that this control strategy exhibits fast
response, good tracking performance, and strong disturbance rejection capabilities.
Additionally, the strategy can effectively reduce the influence of time delay on the
system, and its theoretical control effect in the DOC outlet temperature control pro-
cess is proved by simulation experiments. We will further verify its control effect in
engineering applications in future work.

Author Contributions: Conceptualization, X.Y., G.W. and Y.W.; methodology, X.Y.; software, X.Y.;
validation, X.Y., G.W. and Q.S.; formal analysis, X.Y.; investigation, X.Y., Y.W., Q.S. and B.Z.; resources,
S.H.; data curation, S.H.; writing—original draft preparation, X.Y.; writing—review and editing, X.Y.,
G.W. and Y.W.; visualization, Q.S. and B.Z. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the Innovation Guidance and Technology-based Enterprise
Cultivation Program of Science and Technology Department of Yunnan Province, grant number
(202104BN050007), funder: G.W.; and the Major Science and Technology Special Program of Science
and Technology Department of Yunnan Province, grant number (202102AC080004), funder. G.W.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: Author Shuchao He is employed by the company Kunming Yunnei Power Co.,
Ltd.; The remaining authors declare that the research was conducted in the absence of any commercial
or financial relationships that could be construed as a potential conflict of interest.

References
1. Johnson, T. Vehicular emissions in review. SAE Int. J. Engines 2016, 9, 1258–1275. [CrossRef]
2. Wu, Y.; Zhang, S.; Hao, J.; Liu, H.; Wu, X.; Hu, J.; Walsh, M.P.; Wallington, T.J.; Max Zhang, K.; Stevanovic, S. On-road vehicle

emissions and their control in China: A review and outlook. Sci. Total Environ. 2017, 574, 332–349. [CrossRef] [PubMed]
3. Wang, J.; Wu, Q.; Liu, J.; Yang, H.; Yin, M.; Chen, S.; Guo, P.; Ren, J.; Luo, X.; Linghu, W.; et al. Vehicle emission and atmospheric

pollution in China: Problems, progress, and prospects. PeerJ 2019, 7, e6932. [CrossRef] [PubMed]
4. Ayodhya, A.S.; Narayanappa, K.G. An overview of after-treatment systems for diesel engines. Environ. Sci. Pollut. Res. 2018,

25, 35034–35047. [CrossRef] [PubMed]

https://doi.org/10.4271/2016-01-0919
https://doi.org/10.1016/j.scitotenv.2016.09.040
https://www.ncbi.nlm.nih.gov/pubmed/27639470
https://doi.org/10.7717/peerj.6932
https://www.ncbi.nlm.nih.gov/pubmed/31143547
https://doi.org/10.1007/s11356-018-3487-8
https://www.ncbi.nlm.nih.gov/pubmed/30368713


Processes 2024, 12, 225 15 of 15
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