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Abstract: This article presents the results of an experimental study on the effect of the selection of
kinematic system for the drilling process on the cylindricity deviation, roundness deviation, diameter
error and surface roughness of holes in brass alloy. Three different kinematic systems based on the
dependence of the direction of rotation of the workpiece and the drill bit were used. The drill bit
was mounted in an axially driven holder that allowed it to be put into motion. Cutting tests were
conducted at three different spindle speeds and three different feed rates per revolution (27 tests in
total). A static ANOVA analysis was used to evaluate the effect of each input parameter on each
output parameter. The results of this work have practical applications in machining. The following
input parameters of the drilling process should be used to obtain the smallest values of each output
parameter: for CYL, n = 4775 rpm, fn = 0.14 mm/rev and KIN III; for RON, n = 4775 rpm, fn = 0.1 or
0.12 mm/rev and KIN II; for DE, n = 3979 rpm, fn = 0.1 mm/rev and KIN I; and for Rz, n = 4775 rpm,
fn = 0.1 mm/rev and KIN II. This research work also used Grey Relational Analysis with which input
parameter optimization was derived. The optimal drilling parameters are spindle speeds of 4775 rpm, a
feed per revolution of 0.1 mm/rev and the use of the first kinematic system. This paper also includes
equations for predicting each parameter that describes the dimensional and shape accuracy and
roughness of the hole surface. Using the first kinematic system reduced the roughness of the hole
surface by as much as 58%. The correct selection of kinematic system improved its dimensional
accuracy by 15%. On the other hand, the roundness deviation of the hole improved by 33% and the
cylindricity deviation of the hole by 6%.

Keywords: drilling; kinematic system; hole quality; surface texture; brass alloy; ANOVA; Grey
Relational Analysis

1. Introduction

Brass materials are alloys consisting mainly of copper, zinc, lead, iron and nickel [1].
Lead is most often added to brass alloys because of its ability to improve the machinability of
the alloys, providing excellent chip breakage and low tool wear [2,3]. However, this element
is dangerous to living organisms, including humans, plants, animals and microorganisms,
so its use is becoming increasingly restricted [4–10]. Brass alloys have applications in many
industries including electronics, automotive, hydraulic and electrical [11–13].

Aized and Amjad [14] built a model in the form of a decimal logarithm equation
considering spindle speed (n = 200; 500; 800 rpm), feed speed (f = 10; 15; 20 mm/min)
and drilling methods (in several passes Q = 4; 8; 12 mm). They studied the effects of the
above parameters on cylindricity deviation, roundness deviation, diameter error and the Rz
parameter. The researchers in [15] presented only the roundness deviation of holes with the
hole diameter as a function of feed rate (f = 56; 148; 278 mm/min) for three different cutting
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speeds (vc = 7; 21; 28 m/min). They showed that an increased feed per revolution improves
the dimensional accuracy of the hole; however, it worsens the roundness deviation of the
hole. Vipin and co-authors [16] proposed a model for predicting hole diameter errors,
considering the following input parameters: tool material (M2 HSS; M35 HSS), tool diameter
(d = 4; 8; 12 mm), spindle speed (n = 80; 160; 244 rpm), feed per revolution (fn = 0.1; 0.125;
0.15 mm/rev) and workpiece material (HCHCr High Carbon High Chromium, H11 Hot
Die Steel and EN 31 die steels). They found that drill diameter had the greatest effect on
surface roughness. For hole diameter error, the most influential parameters were the tool
material and the workpiece material. An interesting approach was demonstrated by the
researchers in [17], who developed models for predicting hole roundness deviation. They
included three input parameters: feed rate (f = 5; 10; 15 mm/min, spindle speed (n = 2000;
3500; 5000 rpm) and coolant pressure (p = 2; 4; 6 bars). Spindle speed had a dominant effect
on improving roundness compared to the other two process parameters. A low feed rate
provided good hole roundness. Singh, Kumar and Saini [18] presented the effects of spindle
speed (n = 800; 1200; 1600 rpm), feed per revolution (fn = 0.1; 0.14; 0.18 mm/rev) and tool tip
angle (118◦; 127◦; 135◦) on hole diameter error and hole surface roughness. They showed
that the most influential input parameters were tip angle (32.7%) and spindle speed (28.6%).
Aamir and his co-authors [19] did not present any mathematical model based on the results
obtained for the roughness of the drilled holes. Perhaps this is because they took only feed
per revolution (fn = 0.04; 0.08; 0.14 mm/rev) and spindle speed (n = 1007; 2015; 3025 rpm)
as input parameters. Holes drilled in Al6061 alloy showed the lowest surface roughness
due to the low silicon content. The highest surface roughness was obtained for holes drilled
in Al5083 alloy. Spindle speed had a much greater effect than feed per revolution on surface
roughness, regardless of alloy type. Researchers from Italy (Angelone et al.) observed
the same results [20]. However, they found that spindle speed has a greater effect than
feed per revolution. The lower the spindle speed, the lower the hole roughness obtained.
In contrast, the researchers (Biermann et al.) in [21] presented only surface roughness,
including only the Rz parameter for which the input parameter was only the tool. They
concluded that an improvement in the Rz parameter could be obtained by using a suitable
tool coating. A different approach was demonstrated by Khanna and co-authors [22],
who examined only how the type of cooling (dry or cryogenic) affects the quality of the
drilled hole. However, they did not change any of the input parameters. They found that
cryogenic drilling significantly improves hole quality compared to dry drilling. A decrease
in roundness deviation of 50–77%, cylindricity deviation of 13–51% and surface roughness
of 47% was observed with cryogenic drilling. Several articles [23–26] examined how three
different input parameters—spindle speed, feed per revolution and three different drilling
strategies—affect cylindricity deviation, straightness deviation, roundness deviation and
hole diameter error. The above studies show that the use of a suitable drilling strategy can
significantly reduce the individual output parameters evaluated. An interesting approach
was demonstrated by the researchers (Guba et al.) in [27]. They investigated the effect of
vibration support during hole drilling on the Rz parameter (in three places at the entrance of
the material’s middle and at the exit). The vibration support resulted in better chip breakage,
which directly translated into better-drilled hole surfaces. Al-Tameemi and co-authors [28]
studied the effects of drill coating (TiN/TiAlN, TiAlN and TiN), spindle speed (n = 1000;
2000; 3000 rpm) and feed rate (f = 50; 100; 150 mm/min) on the Rz parameter, Ra parameter,
cylindricity deviation, roundness deviation, perpendicularity and hole dimension (at the
bottom and at the top). They found that the worst dimension and roundness of the hole
were obtained at low and medium spindle speeds and with TiN/TiAlN coatings. Tools
with TiN/TiAlN coatings had the worst hole cylindricity of all coatings. Holes drilled with
TiN-coated tools had the highest surface roughness. The researchers (Skrzyniarz et al.)
in [29,30] examined how the relative displacement of the tool affects surface roughness.
They also printed the drill using a direct metal laser melting method. After printing, the
maximum surface height, Sz, was 67 µm. The parameter Sa was 7.74 µm. After grinding,
both parameters were 11 µm and 0.86 µm, respectively. The authors in [31] studied hole
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accuracy against Si3N4 content (0%; 5%; 10%), drill diameter (d = 6; 8; 10 mm), feed per
revolution (fn = 0.125; 0.575; 1.25 mm/rev) and spindle speed (n = 300; 580; 1160 rpm).
They obtained the smallest values for the Ra parameter and hole cylindricity with a feed
per revolution of 0.125 mm/rev, spindle speed of 300 rpm, drill diameter of 8 mm and
Si3N4 content of 5%. The spindle speed had the greatest effect on the Ra parameter and the
roundness of the hole. Bolat and co-authors [32] examined what effect different values of
feed per revolution (fn = 0.05; 0.1; 0.2 mm/rev), cutting speed (vc = 15; 30; 45 m/min) and
drill diameter (d = 3; 5 mm) and different types of tool (tip angle of drill 90◦; 120◦; 138◦)
have on hole surface roughness (parameter Sa). Their study shows that a tool with a tip
angle of 120◦ significantly reduces the surface roughness. On the other hand, it increased
with increasing cutting speed. Drilling with a 5 mm drill bit reduced surface roughness
compared to a 3 mm drill bit. Aamir and co-authors [33] conducted metrological studies
related to the diameter and circularity of the hole during dry machining with respect to
varying technological parameters of the drilling process (n = 1500; 2500; 3500 rpm and
fn = 0.04; 0.08; 0.14 mm/rev) and two drills (HSS; carbide). They showed that spindle
speed has a non-significant effect on the parameters studied. Hole quality decreases with
increasing feed per revolution. Ni et al. [34] checked how different values of technological
parameters (n = 1000; 2000; 3000; 4000; 5000 rpm and f = 50; 100; 150; 200; 250 mm/min)
affect surface roughness. The best surface quality was obtained when drilling with a high
value of spindle speed and a low value of feed per revolution. An interesting approach was
used by Jia et al. [35], who applied a nanosecond–millisecond laser pulse in the drilling of
aluminum oxide ceramics. They showed that increasing the repetition rate of millisecond
pulses improved the quality of drilling. Increasing the repetition rate of millisecond pulses
improved hole diameters at the hole entrance. A very interesting article was the research
of Wang et al. [36], who found that a method of producing patterned superhydrophobic
surfaces can be achieved using femtosecond laser micromachining. This can produce a
surface with very low surface roughness.

A review of the literature reveals the absence of any studies describing the combined
effects of technological parameters and the choice of kinematic system on dimensional
accuracy and hole surface roughness in CuZN40Pb2 brass. Most of the above studies focus
on fixed technological parameters and one other selected input parameter such as tool
coating, cutting fluid pressure or tool tip angle. Most of the studies focus only on single
input parameters describing only surface roughness or cylindricity deviation. Therefore,
we decided to measure as many as four parameters—cylindricity deviation, roundness
deviation, diameter error and Rz parameter. The challenge in this research work was
to arrange the experimental research methodology to be able to use different kinematic
systems for the drilling process on a single station, which is presented later in this paper.

2. Materials and Methods

The material used in this study was CuZN40Pb2 brass. It shows good susceptibility
to hot forming and forging. It is used in the manufacturing of complex parts, tubing,
clamps and over-machined fittings. Figure 1a shows the points at which the current
chemical composition of the material was measured. The measurement results are shown
in Figure 1c. Figure 1b shows the Phenom XL scanning electron microscope used.

Testing of the drilling process was carried out on a Gildemeister (Bielefeld, Germany)
model CTX alpha 500 turning center (Figure 2) located in the Laboratory of Numerically
Controlled Machine Tools at the Kielce University of Technology. The machine tool had a
twelve-position head with driven tools in VDI30 DIN 5480 (Sauter, Metzingen, Germany)
standard (right side Figure 2), maximum spindle speed of 5000 rpm (left side Figure 2),
drive power rating of 20 kW and torque of 2200 Nm. The machine, thanks to its design, has
high rigidity, which provides stability to the machining processes. The machine tool also
has a coolant-filtering station. A 6 mm diameter drill bit has been fixed in the driven tool
head with an ER25 DIN 5480 collet (Orion, Ludwigsburg, Germany).
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Figure 2. View of the workspace of the CTX alpha 500 machine tool from DMG Gildemeister.

Before the drilling tests, 27 samples were prepared with a length and diameter of
30 mm (Figure 3a) so that the drilling depth divided by the drill diameter was 5 (to obtain
deep through holes, L/d = 5). Figure 3b shows samples after drilling tests. Table 1 shows
the three different applied values of each input parameter of spindle speed, feed per
revolution and three different kinematic systems. The technological parameters were
selected according to the drill manufacturer’s guidelines and book literature. The drilling
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process was carried out at a humidity of about 60% and an ambient temperature of 20 °C.
The kinematic system was mathematically described as the difference of tool speed and
spindle speed (Equation (1)),

KIN = nn − n (1)

where KIN refers to the kinematic system, nn is tool speed and n is spindle speed.
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Table 1. Input parameters used in the drilling experiments.

Input Parameters and Their Levels 1 2 3

n, rev/min 4775 3979 3183
fn, mm/rev 0.14 0.12 0.10

Kinematic system 1 2 3

Figure 4 shows the three kinematic systems used, depending on the direction of
rotation of the tool and the spindle. In the first kinematic system (Figure 4a), the tool
performs rotary motion, while the workpiece is stationary. In the second kinematic system
(Figure 4b), the tool is stationary, while the workpiece performs rotary motion. In the
third kinematic system (Figure 4c), the tool performs rotary motion, while the workpiece
performs rotary motion in the opposite direction of the tool’s rotation.

Metrological measurements of the parameters describing dimensional/form accu-
racy were performed on a Prismo Navigator coordinate measuring machine from Zeiss
(Oberkochen, Germany). For this purpose, the stylus was armed with a ruby ball with
a diameter of 1.5 mm. Measurements of roundness deviation and hole diameter error
were taken at a speed of 5 mm/s, and 1500 measurement points were collected at five
levels. For cylindricity deviation measurements, a cross-sectional measurement strategy
was used, and a Gaussian filter was set at 15 UPR. Figure 5 shows an example of a sample
measurement. The measurement of surface roughness, or more precisely, the sum of the
height of the highest profile elevation and the depth of the lowest profile depression inside
the elementary section (Rz), was performed on a Taylor Hobson Form Talysurf PGI 1230
contact profilometer using a diamond tip with a rounding radius of 2 µm at a speed of
0.5 mm/s. The parameter was calculated on an elementary section of 0.8 mm, and Gaussian
filtration was set to 0.8. The sampling step was 0.125 µm.
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3. Results
3.1. Measurement Results

The results of the metrological tests have been illustrated in order to clearly present
the measurement data in relation to the tested input parameters (spindle speed, feed per
revolution and kinematic system). Figure 6a shows that the smallest value of cylindricity
deviation of 62.3 µm was obtained using the third kinematic system, a spindle speed
of 4775 rpm and a feed per revolution of 0.14 mm/rev. It was noted that the smallest
values in most cases were obtained using the third kinematic system, regardless of the
technological parameters used. From Figure 6b, the smallest roundness deviation value of
3.2 µm was obtained using the second kinematic system, a spindle speed of 4775 rpm and
two different feeds per revolution of 0.1 or 0.12 mm/rev. In this case, the use of the second
kinematic system indicates that the smallest values of roundness deviation of the hole were
obtained. In Figure 6c, the most accurate hole relative to the dimension was obtained with
the first kinematic system using a spindle speed of 3979 rpm and a feed per revolution
of 0.1 mm/rev. It was noticed that when the first kinematic system was used, regardless
of the technological parameters, the most accurate hole relative to its nominal dimension
was obtained. As shown in Figure 6d, the smallest Rz parameter value of 1.819 µm was
obtained using the second kinematic system, a spindle speed of 4775 rpm and the smallest
feed per revolution of 0.1 mm/rev. In this case, it can be seen that the highest value of hole
roughness can be obtained with the third kinematic system.
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3.2. ANOVA Analysis

Multivariate ANOVA statistical analysis was used to analyze the metrological results
to determine the effect of the input parameters on the cylindricity deviation, roundness
deviation, diameter error and Rz parameter of the hole. The analysis used a surface
response model due to the inclusion of principal and higher orders for the predictors and
the occurrence of all possible combinations of product predictors, as shown in Equation (2).

Y = b0 + b1X1 + b2X2 + b3X1
2 + b4X2

2 + b5X1X2 (2)

The analysis used a 95% confidence interval at the 5% significance level. In the
analysis, the mean square and sum of square values were used to calculate F. The F value
was checked using statistical tables to read the significance of a given analysis. In Table 2
and Figure 7a,b, it can be seen that feed per revolution achieved a 41.72% influence on
hole cylindricity. Next, with almost the same influence, was spindle speed at 41.37%; the
rest went to the kinematic system at 16.91%. In contrast, spindle speed had the greatest
influence on the roundness of the hole at 56.6%, followed by feed per revolution at 26.99%
and the kinematic system at 16.41%. Analyzing the data in Table 3 and Figure 7c,d, we
found that feed per revolution achieved a 40.57% influence on hole diameter error. The
next parameter was the kinematic system at 37.05%, and the rest went to spindle speed at
22.38%. For the Rz parameter, it can be seen that the influence of the kinematic system was
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the largest compared to that of the other parameters. It obtained an influence of 68.57% on
the Rz parameter. Another influential input parameter was spindle speed at 25.32%, with a
slight influence of feed per revolution at 6.11%.

Table 2. ANOVA results for the process parameters and the type of kinematic system for the
cylindricity deviation and roundness deviation.

Parameter Cylindricity Deviation Roundness Deviation

Source SS DF MS F Value p Value PC SS DF MS F Value p Value PC

Model 3647.6190 9 405.2910 4.4311 0.0041 — 93.1434 9 10.3493 4.0471 0.0064 —

Constant 634.5816 1 634.5816 6.9380 0.0174 — 0.5042 1 0.5042 0.1972 0.6626 —

n 503.2850 1 503.2850 5.5025 0.0314 15.06 21.1196 1 21.1196 8.2588 0.0105 18.89

n2 87.8464 1 87.8464 0.9604 0.3408 2.63 38.7855 1 38.7855 15.1670 0.0012 34.68

fn 495.7528 1 495.7528 5.4202 0.0325 14.84 13.6650 1 13.6650 5.3437 0.0336 12.22

fn
2 102.7824 1 102.7824 1.1237 0.3039 3.08 10.2269 1 10.2269 3.9992 0.0618 9.14

KIN 1.4278 1 1.4278 0.0156 0.9020 0.04 3.7688 1 3.7688 1.4738 0.2413 3.37

KIN2 557.4176 1 557.4176 6.0943 0.0245 16.69 11.6564 1 11.6564 4.5582 0.0476 10.42

n·fn 1580.1075 1 1580.1075 17.2756 0.0007 47.30 6.7500 1 6.7500 2.6396 0.1226 6.04

n·KIN 1.5799 1 1.5799 0.0173 0.8970 0.05 0.0234 1 0.0234 0.0092 0.9248 0.02

fn·KIN 10.5855 1 10.5855 0.1157 0.7379 0.32 5.8370 1 5.8370 2.2825 0.1492 5.22

Error 1554.8995 17 91.4647 — — 29.89 43.4729 17 2.5572 — — 31.82

Total 5202.5185 26 — — — 100.00 136.6163 26 — — — 100.00

Table 3. ANOVA results for the process parameters and the type of kinematic system for the diameter
error and parameter Rz.

Parameter Diameter Error Parameter Rz

Source SS DF MS F Value p Value PC SS DF MS F Value p Value PC

Model 1807.8345 9 200.8705 5.4514 0.0014 — 80.9699 9 8.9967 13.6411 0.0000 —

Constant 63.0649 1 63.0649 1.7115 0.2082 — 0.1183 1 0.1183 0.1793 0.6773 —

n 10.7778 1 10.7778 0.2925 0.5956 0.54 9.4218 1 9.4218 14.2857 0.0015 11.01

n2 160.7500 1 160.7500 4.3625 0.0521 8.08 10.6375 1 10.6375 16.1291 0.0009 12.43

fn 369.5070 1 369.5070 10.0279 0.0056 18.57 1.5397 1 1.5397 2.3346 0.1449 1.80

fn
2 184.8150 1 184.8150 5.0156 0.0388 9.29 1.6412 1 1.6412 2.4884 0.1331 1.92

KIN 216.5273 1 216.5273 5.8763 0.0268 10.88 0.0866 1 0.0866 0.1314 0.7215 0.10

KIN2 435.6873 1 435.6873 11.8240 0.0031 21.89 54.9297 1 54.9297 83.2869 0.0000 64.20

n·fn 441.6533 1 441.6533 11.9859 0.0030 22.19 0.0023 1 0.0023 0.0035 0.9536 0.00

n·KIN 105.8104 1 105.8104 2.8716 0.1084 5.32 3.2090 1 3.2090 4.8656 0.0414 3.75

fn·KIN 64.6364 1 64.6364 1.7541 0.2029 3.25 4.0987 1 4.0987 6.2146 0.0233 4.79

Error 626.4121 17 36.8478 — — 25.73 11.2119 17 0.6595 — — 12.16

Total 2434.2467 26 — — — 100.00 92.1818 26 — — — 100.00

CYL = −494.31 + 1.25 × 10−1 × n − 6.04 × 10−6 × n2 + 5691.64 × fn − 10347.22 × fn
2 + 7 × 10−4 × KIN

+5.64 × 10−7 × KIN2 − 7.2 × 10−1 × n × fn + 1.18 × 10−7 × n × KIN
−1.16 × 10−2 × fn × KIN

(3)

RON = 13.93 + 2.56 × 10−2 × n − 4.01 × 10−6 × n2 − 944.95 × fn + 3263.88 × fn
2 + 1.13 × 10−3 × KIN

−8.16 × 10−8 × KIN2 + 4.71 × 10−2 × n × fn − 1.44 × 10−8 × n × KIN
−8.64 × 10−3 × fn × KIN

(4)
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DE = −155.82 − 1.83 × 10−2 × n + 8.17 × 10−6 × n2 + 4913.78 × f n − 138.75 × f n
2 − 8.62 × 10−3 × KIN

−4.99 × 10−7 × KIN2 − 3.81 × 10−1 × n × fn + 9.69 × 10−7 × n × KIN
+2.87 × 10−2 × fn × KIN

(5)

Rz = −6.74 + 1.71·10−2 × n − 2.1 × 10−6 × n2 − 317.19 × f n + 1307.5 × f n
2 + 1.72 × 10−4 × KIN

−1.77 × 10−7 × KIN2 − 8.68 × 10−4 × n × fn + 1.69 × 10−7 × n × KIN
−7.24 × 10−3 × fn × KIN
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Figure 7. Percentage influence of technological parameters and kinematic system for the (a) cylindric-
ity deviation, (b) roundness deviation, (c) diameter error, (d) parameter Rz.

Figure 8 shows a comparison of the experimental and predictive values. As can be
seen, these results are in very good correlation (R2 = 0.7011 for CYL, R2 = 0.6818 for RON,
R2 = 0.7427 for DE and R2 = 0.8784 for Rz).

From the data shown in Figure 9, it can be seen that when a spindle speed of 4775 rpm
was used, the lowest value of cylindricity deviation of 92.3 µm was obtained. The most
favorable feed rate per revolution, for which a cylindricity deviation value (CYL) of 90.4 µm
was obtained, is 0.1 mm/rev. When kinematic system three was used in the drilling process
of CuZN40Pb2 brass alloy, the smallest value of hole cylindricity deviation of 93.9 µm was
obtained. It was noted that an increase in the value of spindle speed and a decrease in the
value of feed per revolution resulted in a decrease in the value of hole cylindricity deviation
in CuZN40Pb2 brass alloy.
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Figure 8. Comparison of experimental and predictive values for the (a) cylindricity deviation, (b) 
roundness deviation, (c) diameter error, (d) parameter Rz. 
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(b) roundness deviation, (c) diameter error, (d) parameter Rz.
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Figure 9. Graphs of the main effects of cylindricity deviation in relation to the technological parame-
ters used and kinematic system.

In Figure 10, it can be seen that when a spindle speed of 4775 rpm was used, the
lowest roundness deviation value of 5 µm was obtained. The most favorable feed rate
per revolution, for which a roundness deviation value (RON) of 5.9 µm was obtained, is
0.12 mm/rev. When kinematic system two was used in the drilling process, the smallest
value of roundness deviation of the hole of 6 µm was obtained.
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ters used and kinematic system.

Figure 11 shows that when a spindle speed of 3979 rpm was used, the smallest diameter
error value of 99.6 µm was obtained. The most favorable feed rate per revolution, for which
a diameter error (DE) value of 99.7 µm was obtained, is 0.11 mm/rev. When CuZN40Pb2
brass alloy was used in the drilling process, the first kinematic system obtained the smallest
hole diameter error value of 94.9 µm.
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Figure 11. Graphs of the main effects of diameter error in relation to the technological parameters
used and kinematic system.

Figure 12 shows that when a spindle speed of 4775 rpm was used, the lowest value of
the Rz parameter of 4.998 µm was obtained. The most favorable feed rate per revolution,
for which an Rz parameter value of 5.637 µm was obtained, is 0.12 mm/rev. When the first
kinematic system was used in the drilling process, the smallest value of the Rz parameter
of 4.994 µm was obtained.
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3.3. Simulation of the Rz parameter

The results of the ANOVA analysis showed that a very large effect of the kinematic
system was noticed in the Rz parameter, so Equation (6) was simulated to illustrate the
change in the value of the aforementioned parameter. Analyzing Figure 13a, for the first
kinematic system, we found that when a feed per revolution of 0.12 mm/rev to 0.14 mm/rev
and the highest value of spindle speed of 4775 rpm were used, the lowest value for the
Rz parameter was obtained. The largest value of the Rz parameter was obtained when
the smallest feed per revolution of 0.1 mm/rev and a spindle speed of 3775 rpm were
used. Analyzing Figure 13b, for the second kinematic system, we found that when a feed
per revolution of 0.1 mm/rev to 0.13 mm/rev and the highest value of spindle speed
of 4775 rpm were used, the smallest value of the Rz parameter was obtained. In this
case, changing the spindle speed drastically affects the change in the value of the Rz
parameter. However, an increase in feed rate per revolution does not change the value of
the above-mentioned parameter very much. In this case, the highest value of the studied
parameter was obtained for the highest value of feed per revolution of 0.14 mm/rev and
a spindle speed from 3500 rpm to 3900 rpm. It was deduced from Figure 13c that for the
third kinematic system, when a feed per revolution of 0.11 mm/rev to 0.14 mm/rev and
a spindle speed value of 3183 rpm or 4775 rpm were used, the smallest value of the Rz
parameter was obtained. The largest value of the tested parameter was obtained using the
same parameters as for the first kinematic system.
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3.4. Grey Relational Analysis

Grey Relational Analysis (GRA) was used to select the most optimal process-input
parameters. Grey Relational Analysis is a multi-criteria optimization that allows the
optimization of input parameters against the obtained experimental results. In the above
analysis, the complex multi-response optimization problem can be simplified to a single-
response GRA optimization. There are three optimization methods: smaller better, nominal
better and larger better. In this case, we are interested in obtaining the smallest possible
output values; therefore, the first optimization (smaller better) was used [37,38]. The first
step in this optimization is to normalize the data and put them in an orthogonal table (L27,
Table 4). The values of cylindricity deviation, roundness deviation, diameter error and Rz
parameter were normalized and given values from 0 to 1 using Equation (7).

xij =
max

(
yij

)
− yij

max
(
yij

)
− min

(
yij

) (7)

Table 4. Normalized data Grey Relational Analysis.

Experiment No. n, rpm fn, mm/rev KIN CYL RON DE Parameter Rz

1 4775 0.14 1 0.388 0.622 0.564 0.743
2 4775 0.14 2 0.329 0.511 0.433 0.643
3 4775 0.14 3 1.000 0.667 0.588 0.365
4 3979 0.14 1 0.329 0.600 0.643 0.571
5 3979 0.14 2 0.369 0.189 0.360 0.361
6 3979 0.14 3 0.369 0.000 0.210 0.153
7 3183 0.14 1 0.210 0.811 0.260 0.688
8 3183 0.14 2 0.000 0.800 0.143 0.468
9 3183 0.14 3 0.063 0.278 0.031 0.297
10 4775 0.12 1 0.622 0.878 0.293 0.725
11 4775 0.12 2 0.435 1.000 0.271 0.883
12 4775 0.12 3 0.612 0.833 0.031 0.387
13 3979 0.12 1 0.095 0.644 0.450 0.485
14 3979 0.12 2 0.356 0.789 0.460 0.596
15 3979 0.12 3 0.399 0.356 0.226 0.238
16 3183 0.12 1 0.386 0.500 0.421 0.561
17 3183 0.12 2 0.318 0.744 0.179 0.449
18 3183 0.12 3 0.214 0.556 0.000 0.399
19 4775 0.1 1 0.413 0.833 0.421 0.692
20 4775 0.1 2 0.331 1.000 0.336 1.000
21 4775 0.1 3 0.600 0.811 0.114 0.000
22 3979 0.1 1 0.386 0.267 1.000 0.341
23 3979 0.1 2 0.642 0.456 0.210 0.414
24 3979 0.1 3 0.544 0.411 0.276 0.121
25 3183 0.1 1 0.804 0.711 0.786 0.636
26 3183 0.1 2 0.584 0.711 0.395 0.557
27 3183 0.1 3 0.691 0.311 0.271 0.221

In the next step, sequences of deviations were calculated using Equation (8). In order
to calculate the coefficients and the degree of gray relationship, a discriminant coefficient
of 0.5 was selected in Equation (9). If an experiment obtains the highest gray relationship
score with the reference sequence, it means that the comparison sequence is most similar to
the reference sequence and that this experiment would be the best choice. The results of the
gray-relationship coefficients and their evaluation are shown in Table 5. This table shows
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that the smallest values of all parameters tested can be obtained using the 20th experiment
(n = 4775 rpm; fn = 0.1 mm/rev and the second kinematic system).

∆ij = 1 −
max

(
yij

)
− yij

max
(
yij

)
− min

(
yij

) (8)

yij =
∆min + ξ·∆max

∆ij + ξ·∆max
(9)

Table 5. Coefficients of gray relational and their evaluation with rank.

Experiment No. n, rpm fn, mm/rev KIN CYL RON DE Parameter Rz Grade Rank

1 4775 0.14 1 0.450 0.570 0.534 0.661 0.554 8
2 4775 0.14 2 0.427 0.506 0.469 0.584 0.496 14
3 4775 0.14 3 1.000 0.600 0.548 0.440 0.647 4
4 3979 0.14 1 0.427 0.556 0.583 0.538 0.526 12
5 3979 0.14 2 0.442 0.381 0.438 0.439 0.425 24
6 3979 0.14 3 0.442 0.333 0.387 0.371 0.383 26
7 3183 0.14 1 0.388 0.726 0.403 0.616 0.533 11
8 3183 0.14 2 0.333 0.714 0.368 0.484 0.475 20
9 3183 0.14 3 0.348 0.409 0.340 0.416 0.378 27

10 4775 0.12 1 0.569 0.804 0.414 0.645 0.608 5
11 4775 0.12 2 0.470 1.000 0.407 0.811 0.672 2
12 4775 0.12 3 0.563 0.750 0.340 0.449 0.526 13
13 3979 0.12 1 0.356 0.584 0.476 0.493 0.477 19
14 3979 0.12 2 0.437 0.703 0.481 0.553 0.543 9
15 3979 0.12 3 0.454 0.437 0.393 0.396 0.420 25
16 3183 0.12 1 0.449 0.500 0.464 0.533 0.486 16
17 3183 0.12 2 0.423 0.662 0.378 0.476 0.485 17
18 3183 0.12 3 0.389 0.529 0.333 0.454 0.426 23
19 4775 0.1 1 0.460 0.750 0.464 0.619 0.573 6
20 4775 0.1 2 0.428 1.000 0.429 1.000 0.714 1
21 4775 0.1 3 0.555 0.726 0.361 0.333 0.494 15
22 3979 0.1 1 0.449 0.405 1.000 0.431 0.571 7
23 3979 0.1 2 0.583 0.479 0.387 0.461 0.477 18
24 3979 0.1 3 0.523 0.459 0.409 0.363 0.438 22
25 3183 0.1 1 0.718 0.634 0.700 0.579 0.658 3
26 3183 0.1 2 0.546 0.634 0.453 0.530 0.541 10
27 3183 0.1 3 0.618 0.421 0.407 0.391 0.459 21

The effect of each value of spindle speed, feed per revolution and kinematic system is
summarized in Table 6 and shown in Figure 14. The higher the GRA value, the better the
performance. Figure 14 shows that the smallest average values of cylindricity deviation,
roundness deviation, diameter error and parameter Rz were obtained for a spindle speed
of 4775 rpm, a feed per revolution of 0.1 mm/rev and using the first kinematic system.

Table 6. The main influence of factors on the grey relational grade.

Input Parameters and Their Levels 1 2 3

Spindle speed, rpm 0.493 0.474 0.587
Feed per revolution, mm/rev 0.547 0.516 0.491

Kinematic systems 0.554 0.537 0.464
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deviation, roundness deviation, diameter error and parameter Rz were obtained for a 
spindle speed of 4775 rpm, a feed per revolution of 0.1 mm/rev and using the first 
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4. Conclusions

Drilling tests conducted on CuZN40Pb2 brass in different kinematic systems facilitated
the determination of the influence of each input parameter (n, fn, KIN) on output parameters
(CYL, RON, DE, Rz). The authors present the practical application of the above studies in
the production of various components in order to optimize the input parameters relative to
the output parameters.

The main conclusions of the study are listed below:

1. Using the correct kinematic system reduced the roughness of the hole surface by
as much as 58%. The correct choice of kinematic system improved its dimensional
accuracy by 15%. On the other hand, the roundness deviation of the hole improved
by 33%, and the cylindricity deviation of the hole improved by 6%;

2. Equations (3)–(6) describe the values of the output parameters very well (R2 = 0.7011
for CYL, R2 = 0.6818 for RON, R2 = 0.7427 for DE and R2 = 0.8784 for Rz);

3. ANOVA analysis presented the input parameters that were the most influential on
the output parameters; for CYL, it was fn = 41.72%; for RON, it was n = 56.6%; for DE,
it was fn = 40.57% and for Rz, it was KIN = 68.57%;

4. In order to obtain the smallest values for the individual output parameters, use
the following input parameters for the drilling process: for CYL, n = 4775 rpm,
fn = 0.14 mm/rev and KIN III; for RON, n = 4775 rpm, fn = 0.1 or 0.12 mm/rev and
KIN II; for DE, n = 3979 rpm, fn = 0.1 mm/rev and KIN I; for Rz, n = 4775 rpm,
fn = 0.1 mm/rev and KIN II;

5. From the grey-relationship analysis, the smallest average values for cylindricity devi-
ation, circularity deviation, diameter error and parameter Rz were obtained with a
spindle speed of 4775 rpm, a feed per revolution of 0.1 mm/rev and using the first
kinematic system;

6. Future work will include surveys of the height and width of the burrs at the entrance
and exit of the holes. These will reduce additional operations, which will translate
into direct costs.
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Nomenclature
n spindle speed, rpm
nn tool speed, rpm
fn feed per revolution, mm/rev
KIN kinematic system
SS sum of squares
DF degrees of freedom
MS mean square
CYL cylindricity deviation, µm
RON roundness deviation, µm
DE diameter error, µm
UPR undulations per revolution
p significance
PC percentage contribution
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