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Abstract: We present the workflow for numerical reservoir simulation of supercritical multi-source
and multi-component steam injection for offshore heavy oil development. We have developed unique
techniques in a commercial reservoir simulator to implement the thermal properties of supercrit-
ical multi-source and multi-component steam, the pyrolysis chemical reactions, the temperature-
dependent relative permeability, and the process of partially dissolving the sandstone rock to enhance
the matrix permeability in a commercial reservoir simulator. Simulations are conducted on the type
pattern reservoir model, which represents one of the heavy oil fields in CNOOC’s Bohai Bay oil
field. Simulation input parameters are calibrated based on laboratory experiments conducted for
supercritical multi-source and multi-component steam injection. Simulation results have shown clear
improvements in injecting supercritical multi-source and multi-component steam in offshore heavy
oil reservoirs compared to the normal steam injection process using subcritical steam. This serves
as a workflow for implementing a numerical simulation of the novel supercritical multi-source and
multi-component steam injection recovery process.

Keywords: supercritical multi-source and multi-component steam; thermal reservoir simulation;
offshore heavy oil development; pyrolysis reaction; mineral dissolution

1. Introduction

Offshore heavy oil accounts for large resource potential for the future of the world oil
supply. For example, in Bohai Bay, China alone, 4 billion barrels of heavy oil have been
discovered. Such heavy oil resources are yet expected to be fully developed, potentially using
certain Enhanced Oil Recovery (EOR) techniques. Steam-based thermal recovery techniques
are the most widely used EOR methods for heavy oil development onshore [1]. The most
well-known steam flooding project is the Kern River oilfield in California, which has been
steam-flooded since about the 1960s. For example, the heavy oil resources in the Liaohe
and Xinjiang oil fields in China are successfully unlocked and developed using cyclic steam
stimulation, steam flooding, and steam-assisted gravity drainage techniques. The in situ
combustion process, also known as fireflooding, which injects air into the reservoir to combust
part of the oil to generate heat and pressure to mobilize the remaining oil, is also implemented
in oilfields such as the Suplacu field in Romania. Offshore oil fields, however, have seen rare
commercial success in implementing steam-based thermal EOR technologies. Early trials
include Elf’s cyclic steam stimulation tests in the Emeraue field offshore Congo [2].
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To overcome this challenge of offshore thermal heavy oil recovery, the China National
Offshore Oil Company (CNOOC) has implemented a series of thermal heavy oil recovery
field trials and even started early commercial thermal heavy oil production in Bohai Bay,
China, in recent years. The early field pilots have demonstrated great potential for offshore
heavy oil thermal recovery by using co-injection of steam and gases in a cyclic steam
stimulation mode [3–7]. The basic recovery technique deployed is normal cyclic steam
injection with co-injection of gases. A specially designed small-sized steam generator
that consumes diesel fuel and co-generates gases such as CO2 and N2 is utilized. Based
on all these efforts, the Lvda-21-2 offshore heavy oil field in Bohai Bay, China, has now
been commercially developed using the cyclic steam stimulation process. 16 horizontal
wells using cyclic steam stimulation have been drilled and completed on the platform of
Lvda-21-2. On average, one to two cycles of steam injection have already been applied to
these wells up to date. Besides the efforts in offshore thermal heavy oil production, the
CNOOC has also been an active player in the efficient development of gas hydrates in
China [8,9].

During our endeavor of offshore thermal heavy oil recovery, the CNOOC has focused
on a new technology called supercritical multi-source and multi-component steam injection.
Supercritical multi-source and multi-component steam injection shows great improvements
over normal steam injection using subcritical steam, especially for offshore heavy oil
development [10]. A novel designed supercritical multi-source and multi-component
steam generator specially suits the small space on offshore platforms designed by the
CNOOC. The new steam generator shows great improvements over the previous version
of the steam generator in reducing the high energy consumption and cutting off the strong
dependence on diesel fuel. The supercritical multi-source, multi-component thermal
fluid generator can utilize multi-source fuel, including oily wastewater and crude oil,
to generate a thermal fluid that can be directly injected into the injection well. Such
thermal fluid mainly contains supercritical steam and other gases, including CO2 and N2.
This novel steam generator effectively solves the problem of how to obtain fuel locally
for offshore heavy oil thermal recovery, reducing the processing cost of oily wastewater
on offshore platforms, and is particularly suitable for offshore heavy oil development.
Supercritical multi-source and multi-component steam injection into the heavy oil reservoir
is well known for its capability to invoke certain recovery mechanisms inside the reservoir,
including supercritical steam dissolving the crude oil at any mixing ratio, cracking the heavy
oil molecules into smaller oil molecules with the high-temperature pyrolysis reactions,
inducing temperature-dependent relative permeability effects which leads the rock to be
more water wet at high temperature [11], and also the partial dissolving of the sandstone
rock to enhance the matrix permeability at high temperature. All these mechanisms
contribute to improved oil recovery than normal steam injection.

Implementing numerical reservoir simulation of supercritical multi-source and multi-
component steam injection process, however, is a challenging task, especially the special
treatment of these novel recovery mechanisms. In this work, we have implemented the
thermal properties of supercritical multi-source and multi-component steam, the pyrolysis
chemical reactions, the temperature-dependent relative permeability, and the process of
partially dissolving the sandstone rock to enhance the matrix permeability in a commercial
reservoir simulator. We have successfully simulated the complex mechanisms in a supercritical
multi-source and multi-component steam injection process. The details are discussed as
follows. This should serve as a novel workflow for implementing a numerical simulation of
the supercritical multi-source and multi-component steam injection recovery process.

2. Materials and Methods

The commercial reservoir simulator CMG STARS is used in this study to simulate the
subcritical and supercritical multi-source and multi-component steam injection process in
the Lvda-21-2 heavy oil field [12]. We are able to build a single well-type pattern model
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based on the full-field model of the Lvda-21-2 oil field of Bohai Bay. The basic reservoir
properties are listed in Table 1.

Table 1. Single well type pattern model basic reservoir properties.

Model Settings Parameter Name Value Parameter Name Value

Grid and Reservoir

Reservoir Model Size (m) 153 × 400 × 30 Rock Thermal Conductivity
(J/m·day ◦C) 2.7 × 105

Reservoir Depth (m) 1500 Rock Heat Capacity (J/m3·◦C) 2.3 × 106

Average Reservoir
Permeability (mD) 2500 Average Reservoir Porosity 0.3

Overburden/Underburden
Heat Capacity (J/m3·◦C) 2.3 × 106 Overburden/Underburden

Thermal conductivity(J/m·day·◦C) 1.5 × 105

Oil Properties Live Oil Density (g/cm3) 0.964 Dead Oil Density (g/cm3) 0.984
Gas Oil Ratio (m3/m3) 4.3 Live Oil Bubble Point (MPa) 1.3

Initial Reservoir
Conditions

Initial Reservoir Pressure
(MPa) 15.3 Initial Reservoir Temperature (◦C) 54

Initial Oil Saturation 0.55 Initial Water Saturation 0.45

Well Configurations Wellbore Radius (cm) 7.62 Well Horizontal Length (m) 300

We have inherited the normal default input parameters for subcritical and supercritical
steam from CMG STARS in this study. The default steam table in the commercial reservoir
simulator is used in this study.

For crude oil, we have defined a dead oil component and a solution gas component
to represent the live oil. The fluid properties are listed in Table 2. We adjust component
property parameters such as the K-value of different components so that we match the PVT
of the live oil, including formation volume factor, live oil gas oil ratio, live oil viscosity, etc.
Figure 1 further shows the temperature-viscosity curve for the crude oil from the Lvda-21-2
oil field. As the temperature increases, the in-situ viscosity drops from thousands of cp to a
few cp, which is typical for heavy oil.

Table 2. Fluid properties.

Component Name Dead Oil Solution Gas

Molar Mass (g/mol) 166 16.3
Critical Pressure Pc (kPa) 1472 4573.81

Critical Temperature Tc (◦C) 1168 −84.15
K-value Coefficient KV1 0 1.033 × 106

K-value Coefficient KV4 0 −1024.3
K-value Coefficient KV5 0 −273.15

Initial Mole Fractions in Oil Phase 0.97 0.03
Heat Capacity Coefficient CPG1 (J/gmol-C) 332 19.031
Heat Capacity Coefficient CPG2 (J/gmol-C) 0 5.559 × 10−2

Mass Density (kg/m3) 985 123
Compressibility (1/kPa) 1 × 10−6 1 × 10−6

Thermal Expansion Coefficient (1/◦C) 5 × 10−4 5 × 10−4

The relative permeability curves used in this study are shown in Figure 2. As we know,
during thermal EOR operations, especially when injecting the relatively high-temperature
supercritical multi-source and multi-component steam, the sandstone matrix rock usually
tends to be more water-wet at such elevated temperatures [11]. This often leads the water-
oil relative permeability curve to shift to the right-hand side, leading to lower residual oil
saturation values. We have implemented such temperature-dependent relative permeability
endpoints, as shown in Table 3. Such endpoints are matched to our in-house laboratory
relative permeability curve measurements at high temperatures.
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Figure 1. Crude oil temperature-viscosity curve for Lvda-21-2.
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Figure 2. Relative Permeability: (a) Oil-water relative permeability curve; (b) Gas-liquid relative
permeability curve.

Table 3. Temperature Dependent Relative Permeability End Points.

Temperature Sorw Krwiro Swr

54 ◦C 0.15 0.10 0.45
150 ◦C 0.10 0.075 0.50
250 ◦C 0.05 0.05 0.55
350 ◦C 0.0 0.025 0.60

Crude oil has well known to have pyrolysis or cracking reactions at the temperature
range of more than 300 ◦C [13]. This pyrolysis kinetic reaction has been studied and
numerically simulated in in-situ combustion heavy oil recovery processes [14]. Based on
our in-house laboratory experiments, we have implemented a self-defined pyrolysis kinetic
reaction in the CMG STARS simulator for the high-temperature supercritical multi-source
and multi-component steam injection. A crude oil cracking pseudo-reaction equation based
on pseudo components is defined as:

Heavy Oil → Light Oil + Coke. (1)
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Heavy Oil, Light Oil and Coke are self-defined oil components in CMG STARS. Coke
is solid, which is the heavy residue from the pyrolysis reaction at elevated temperatures.
Heavy oil and light oil are oleic components, which have higher and lower molecular
weight and viscosities, respectively. Under high-temperature conditions of the supercritical
multi-source and multi-component steam injection, the Heavy Oil components crack into
solid Coke and Light Oil components. The crude oil cracking reaction settings, including
reaction order, activation energy pre-exponential factor, etc., are described in Table 4. The
kinetic parameters are calibrated to our in-house laboratory reaction kinetics experiments.

Table 4. Heavy oil cracking reaction settings.

Molar Mass (g/mol)
Heavy Oil 675

Light Oil 157

Coke 13

Stoichiometric Coefficients for the Crude Oil
Pyrolysis Reaction Model

Heavy Oil −1

Light Oil 2.154

Coke 25.96

Heavy Oil Pyrolisis Reaction Model
Reaction Kinetics Data

Reaction Order mγ 1

Activation Energy Eγ
α

(kJ/mol)
62.802

Pre-exponential Factor
αγ

4.1670 × 105

Reaction Enthalpy
∆Er

γ (kJ/mol) 93

Supercritical multi-source and multi-component steam injection process, due to its
high temperature, is known to have the capability to partially dissolve the sandstone
rock minerals to enhance both the porosity and permeability of the reservoir [10]. Based
on laboratory experiments, the mineral dissolution process is also defined for the high-
temperature supercritical multi-source and multi-component steam injection. We have
defined an initially present solid component inside the reservoir, called Dissolvable Rock,
which takes up to 5% of the initial pore space. Using the kinetic chemical reactions in
CMG STARS, we defined a rock dissolution process reaction, which only takes place at the
elevated temperature of the supercritical multi-source and multi-component steam:

Dissolvable Rock → Water. (2)

Table 5 shows the rock dissolving kinetic reaction settings, including reaction order,
activation energy and pre-exponential factor, etc. Once the solid Dissolvable Rock dissolves,
the porosity of the rock matrix increases. Based on the Carmen-Kozeny equation, we further
define the effective permeability of the rock as a function of the porosity:

K(∅) = Ko

(
∅
∅o

)n(1 −∅o

1 −∅

)2
. (3)

In this way, we model the effective permeability increase due to the dissolution of
rock minerals in supercritical multi-source and multi-component steam injection process.
A similar numerical simulation approach is also implemented for solid coke deposition-
induced permeability reduction effects in the in situ combustion process [15].
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Table 5. Dissolvable Rock dissolving reaction settings.

Molar Mass (g/mol)
Dissolvable Rock 13

Water 18

Stoichiometric Coefficients for the Rock
Dissolution Reaction Model

Dissolvable Rock −1

Water 0.722

Rock Dissolution Reaction Model Reaction
Kinetics Data

Reaction Order mγ 1

Activation Energy Eγ
α

(kJ/mol)
125

Pre-exponential Factor
αγ

5 × 109

3. Results

We implement a single well-type pattern model to study the effects of supercritical
multi-source and multi-component steam injection in the Lvda-21-2 heavy oil field. The
type pattern reservoir model is 400 m long, 150 m wide, and 30 m thick. A horizontal well
with a length of 300 m is deployed at the center bottom of the reservoir. This configuration is
representative of the production wells in the Lvda-21-2 oil field. A qualitative history match
is conducted initially to ensure the type model really represents the actual basic cyclic steam
stimulation production process in the Lvda-21-2 oil field. We have conducted primary
depletion for 275 days, with a producer’s maximum liquid production rate of 80 m3/day
and minimum producer bottom-hole pressure of 500 kPa. Then, the well undergoes five
cycles of cyclic steam stimulation. Each cycle starts with 25 days of steam injection, which
is followed by an immediate production period of 275 days. The producer also produces at
the liquid rate of 80 m3/day and a minimum producer bottom-hole pressure of 500 kPa
during the production period.

We start with normal subcritical steam injection with a steam temperature of 300 ◦C,
steam injection rate of 220 m3/day (cold water equivalent), and steam quality of 80%.
Figure 3 shows the oil production rate, water production rate, and steam injection rate of
the basic cyclic steam stimulation process using subcritical steam. As we can see, after the
slug of steam injection, a large volume of water and oil is produced back into the producer.
We observe an initial high water production rate, which declines continuously. The oil
production starts with low values, which increases and then decreases as the reservoir
depletes. Figure 4 further shows the producer well bottom-hole pressure and average
reservoir pressure of the basic cyclic stimulation process. As more and more cycles of
cyclic steaming are applied to the reservoir, the pressure in the reservoir gradually declines.
Figure 5 shows the reservoir temperature and oil saturation distribution of the basic cyclic
steam stimulation process at the end of the steam injection period of the fifth cycle. Figure 6
further shows the cross-sectional reservoir temperature (left) and oil saturation (right)
distribution of the basic cyclic steam stimulation process with subcritical steam at the end
of the steam injection period of the fifth cycle. As we can see, a steam chamber is formed
above the horizontal producer after five cycles of steam injection. Oil has been produced
due to cyclic steam stimulation from the near-well region of the horizontal producer.
Figure 7 further shows the cumulative oil production of the basic cyclic steam stimulation
process with subcritical steam. The production shown from the reservoir simulation gives
pleasant performance for subcritical steam injection.

The supercritical multi-source and multi-component steam injection process is sim-
ulated in the next stage. Most of the basic reservoir and fluid settings are kept the same
as the subcritical steam injection process. We have, however, shifted to a slug of super-
critical multi-source and multi-component steam injection in the cyclic steam stimulation
process. We have used the default supercritical steam properties from the commercial
reservoir simulator CMG STARS. The injection steam temperature is set to 390 ◦C, and
the injection steam pressure is set to 25 MPa. We also co-inject 10,000 m3/day of standard
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condition 40% CO2 and 60% N2 together with the steam at the same injection pressure and
temperature. Of course, at such high temperatures, the temperature-dependent relative
permeability effects will be more profound, causing the rock matrix to be more water-wet
than the subcritical steam injection process. At the same time, at such high temperatures,
the chemical reaction of pyrolysis reaction will also start to take place, causing an upgrading
effect of the crude oil. The rock matrix will also dissolve under the high temperature of
supercritical multi-source and multi-component steam, causing the sandstone permeability
to be higher.
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Figure 8 shows the comparison of oil production rates and water production rates of
the basic cyclic steam stimulation process using subcritical steam with such process using
supercritical multi-source and multi-component steam. We further show the cumulative
oil recovery curves of the subcritical and supercritical multi-source and multi-component
steam injection processes in Figure 9. Figure 10 also shows the solid Dissolvable Rock
component distribution (left) and effective porosity (right) distribution of the cyclic
steam stimulation process with supercritical multi-source and multi-component steam at
the end of the steam injection period of the fifth cycle inside the cross-sectional reservoir.
As we can see, the near well region porosity and permeability have been enhanced
greatly due to the mineral dissolution effect. The near well region permeability affects
the well productivity to a large extent. This provides great potential for oil production
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improvements. Figure 11 shows the reservoir temperature (left) and oil saturation (right)
distribution of the cyclic steam stimulation process with supercritical multi-source and
multi-component steam at the end of the injection period of the fifth cycle. Figure 12
further shows the cross-sectional reservoir temperature (left) and oil saturation (right)
distribution of the cyclic steam stimulation process with supercritical multi-source and
multi-component steam at the end of the injection period of the fifth cycle. We observed
a larger steam chamber and higher steam temperature for supercritical multi-source
and multi-component steam injection than the previous process with subcritical steam,
which is shown in Figures 5 and 6. Figure 13 shows the cross-sectional reservoir Light
Oil’s mole fraction in the oil phase distribution (left) and along the horizontal well
reservoir Light Oil’s mole fraction in the oil phase distribution (right) of the cyclic
steam stimulation process with supercritical multi-source and multi-component steam
injection at the end of the injection period of the first cycle. Figure 14 further shows
the cross-sectional reservoir oil viscosity distribution (left) and along the horizontal
well reservoir oil viscosity distribution (right) of the cyclic steam stimulation process
with supercritical multi-source and multi-component steam injection at the end of the
injection period of the first cycle. Initially, there are no light oil components present
inside the reservoir. The near-well Light Oil component distribution is solely due to
the pyrolysis reaction of the crude oil. We have observed clear in-situ upgrading of the
crude oil in the near-well high-temperature region. In the production period following
this upgrade, oil will be produced initially with high productivity, which accounts for
part of the improved oil recovery effects. Figure 15 shows the cumulative production of
the light oil component and heavy oil component of the cyclic steam stimulation process
with supercritical multi-source and multi-component steam injection. As we can see, the
light oil component production accounts for approximately 15,000 m3 of crude oil, while
the heavy oil component production accounts for about 90,000 m3 of crude oil. The in
situ upgrading effect is clearly present in such a process.
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Eventually, we observe incremental oil recovery of about 7.8% when comparing
supercritical multi-source and multi-component steam injection to subcritical steam injec-
tion. Overall, due to its novel recovery mechanisms of the crude oil pyrolysis reactions,
temperature-dependent relative permeability effects, and the mineral dissolution of the rock
matrix under high temperature, the supercritical multi-source and multi-component steam
injection process has shown clear improvements against the subcritical steam injection
process. We are now in the process of further economic evaluations and field pilot designs
to deploy such novel technology to one of the horizontal wells in the Lvda-21-2 oil fields. A
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field pilot is currently underway, with the supercritical multi-source and multi-component
steam generator specially designed for limited space on offshore platforms currently under
construction. Reports on improved oil recovery in actual field pilot operations will be
discussed in detail in further publications on this topic.
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4. Discussion

In order to model the novel heavy oil EOR process of supercritical multi-source
and multi-component steam injection, we have implemented the default steam thermal
properties in CMG STARS. We have also included the pyrolysis chemical reactions by
defining a cracking reaction of the Heavy Oil components, which turn into the Light Oil
and solid Coke components. The kinetic parameters of this reaction are calibrated according
to our in-house laboratory experiment measurements. The temperature-dependent relative
permeability is also implemented using the temperature-dependent end point shifts of the
water-oil relative permeability curve in CMG STARS. This yields a more water-wet matrix
rock under high temperatures. A kinetic chemical reaction, which turns the initially present
solid Dissolvable Rock into water under high temperature, is also included to mimic the
process of partially dissolving the sandstone rock to enhance the matrix porosity. The
Carmen-Kozeny correlation is defined to enhance the effective permeability of the rock
as a function of the porosity. These simulation parameters are calibrated according to the
laboratory experiments on these complex phenomena. Finally, we observe incremental oil
recovery of about 7.8% when comparing supercritical multi-source and multi-component
steam injection to subcritical steam injection in our simulations. We are now in the stage of
economics evaluations and field pilot designs in deploying such novel technology to the
horizontal wells in the Lvda-21-2 oil fields.

5. Conclusions

In this work, we demonstrate the workflow for numerical reservoir simulation of
the supercritical multi-source and multi-component steam injection process. We have
implemented the thermal properties of supercritical multi-source and multi-component
steam, the pyrolysis chemical reactions, the temperature-dependent relative permeability,
and the process of partial dissolution of the sandstone rock to enhance the reservoir
permeability in a commercial reservoir simulator. Simulations are conducted on the type
pattern reservoir model, which represents the Lvda-21-2 heavy oil field in CNOOC’s Bohai
Bay oil field. Simulation results have shown clear improvements in injecting supercritical
multi-source and multi-component steam in cumulative oil recovery when compared to
normal steam process using subcritical steam. This serves as a workflow for implementing
a numerical simulation of the novel supercritical multi-source and multi-component steam
injection recovery process.
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