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Abstract: Thermo-rechargeable batteries, or tertiary batteries, are prospective energy-harvesting
devices that are charged by changes in the battery temperature. Previous studies on tertiary bat-
teries have utilized an electrolyte solution, yet the volume of this electrolyte solution could be
a disadvantage in terms of the heat capacity given to the tertiary batteries. To overcome this
drawback, the performance of an electrolyte-free tertiary battery consisting of physically joined
Na1.60Co[Fe(CN)6]0.902.9H2O (NCF90) and Na0.72Ni[Fe(CN)6]0.685.1H2O (NNF68) thin films was
investigated for the first time. During thermal cycling between 5 ◦C and 15 ◦C, the thermal voltage
(VTB) was observed to be 8.4 mV. This result is comparable to the VTB of conventional tertiary batteries
that use electrolyte solutions made of NCF90 and NNF68 thin films.
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1. Introduction

Energy-harvesting devices that can efficiently utilize low-temperature environmental
heat below 100 ◦C are attracting attention as an essential technology for achieving carbon
neutrality. Among these devices, thermo-rechargeable batteries [1–13] are promising
because they can be charged by changes in the battery’s surrounding temperature (T)
due to a difference in the temperature coefficient (α = dE/dT) of the redox potential (E)
between their cathode (α+) and anode (α−) materials. Henceforth, we refer to thermo-
rechargeable batteries consisting of solid active materials as tertiary batteries. Tertiary
batteries generate electricity by utilizing the temperature changes between the low (TL)
and high (TH) temperatures during thermal cycling, rather than the temperature difference
between the electrodes. This means that a tertiary battery is able to harvest thermal energy
close to the room temperature and transduce this energy into electricity. The working
mechanism of a tertiary battery is as follows. For simplicity, the initial output voltage (Vcell0)
of the tertiary battery is defined as 0 V. In a tertiary battery composed of a cathode and anode
with different α values, when the temperature of the tertiary battery is increased from TL to
TH in an open-circuit state, a thermal voltage (VTB) is generated for the temperature change
∆T (=TH − TL) in the tertiary battery, and the output voltage (Vcell) becomes VTB (≥0)
from 0 V. This can be considered the charge of the tertiary battery due to the temperature
change. In addition, by discharging the tertiary battery at TH, a current can be extracted to
an external circuit only by the discharge capacity (QTB) corresponding to VTB. Similarly,
when the circuit is returned to the open-circuit state at TH and the temperature is decreased
from TH to TL, Vcell becomes −VTB from 0 V. Then, by discharging at TL, the current can
be extracted to an external circuit only by the QTB corresponding to −VTB. In other words,
a tertiary battery behaves like a heat engine in response to the thermal cycle. In a tertiary
battery, VTB and QTB are significant performance parameters. The thermal voltage (VTB) is
expressed as VTB = (α+ − α−)∆T [5,6]. In general, the capacity of a battery is determined by
the amount of charge for which the electromotive force is equal to the voltage drop. Since
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the electromotive force is small (tens of mV) in a tertiary battery, the capacity coefficient
(β± ≡ −dE±/dq±; q represents the capacity per unit weight of the active material) of E
can be considered a constant. The discharge capacity (QTB) per unit weight of total active
material is expressed as QTB = VTB

β+
r +

β−
1−r

, where β+ (β−) and r are the β of the cathode

(anode) and the weight ratio ( m+
m++m−

, where m+ (m−) is the weight of active material in the
cathode (anode)), respectively [10]. This equation indicates that optimizing α+ (α−), β+ (β−),
and r can lead to maximizing QTB. Actually, it has been reported that optimizing α, β, and r
can increase the QTB and VTB of a tertiary battery [10]. Thus, there have been many reports
of performance improvements in tertiary batteries [7–10]. However, these previous studies
of tertiary batteries used an electrolyte solution, and the volume of this electrolyte solution
has the potential to suppress the thermal response. This is because many liquids have a
higher specific heat capacity than solids [14], and the volume of the electrolyte solution may
be a drawback in terms of the heat capacity given to the tertiary battery, since the volume
of liquids tends to be larger than the volume of solids. To overcome this drawback, it is
important to develop all-solid-state tertiary batteries that use solid electrolytes or remove
the electrolyte layer to reduce the heat capacity of the tertiary battery. Nevertheless, an
all-solid-state tertiary battery has not yet been demonstrated.

Prussian blue analogs (M-PBAs: AxM[Fe(CN)6]y, where A and M represent an alkaline
metal and a transition metal, respectively) exhibit a crystal structure consisting of a jungle-
gym-type 3D framework of transition metals with cyano bridges. In general, M-PBAs
in the reduced state have trigonal (R3m; Z = 3) or face-centered cubic (fcc) (Fm3m; Z = 4)
structures [15–17]. Nano spaces within the framework enable the reversible storage of guest
species (Na+ and H2O) [15,16]. This property of M-PBAs results in various functionalities,
such as lithium/sodium/potassium ion secondary batteries [18–45], tertiary batteries [5–10],
electrochromism [46–53], and so on. Shibata et al. [48] reported that an all-solid-state ion
transfer device, in which only Na+ ions but not electrons can pass through the interface, for
electrochromic devices can be fabricated with the physical junction of two PBA thin films.
The electron barrier at the physically formed interface was attributed to the naturally formed
water sheet [48], which acts as a pseudo electrolyte layer. In fact, it has been found that
when all-solid-state devices that consist of physically joined NCF90 and NNF68 thin films
are fabricated in a glove box and the water sheet is removed, there is no ion transfer [48].
In other words, all-solid-state ion transfer devices can be regarded as electrolyte-free
all-solid-state ion transfer devices. However, no current research has been carried out
on the application of these all-solid-state devices to an ion secondary battery and/or a
tertiary battery. Next, let us consider M-PBAs as an active material for the electrodes of
tertiary batteries. The range of values of α for M-PBAs varies from positive to negative.
Therefore, a tertiary battery composed of M-PBAs can include materials with both positive
and negative α. According to one study [54], the values of α are positive in Fe-PBA and
Co-PBA and negative in Mn-PBA, Ni-PBA, Cu-PBA, and Cd-PBA. Among M-PBAs, Co-
PBA and Ni-PBA are a typical combination for the cathode and anode active materials in
tertiary batteries [8]. This is because the α values of Co-PBA and Ni-PBA are relatively
large, resulting in good cycle stabilities of the potential. For example, Takahara et al. [8]
reported that a tertiary battery fabricated with Na1.60Co[Fe(CN)6]0.902.9H2O (NCF90) and
Na0.72Ni[Fe(CN)6]0.685.1H2O (NNF68) thin films using an electrolyte solution of 17 mol/kg
NaClO4 exhibited a VTB of 40 mV at ∆T = 40 K. The battery also exhibited stable operation
for at least 10 cycles without any degradation of the discharge capacity. Therefore, if tertiary
battery operation can be demonstrated with an all-solid-state ion transfer device consisting
of physically joined Co-PBA and Ni-PBA thin films, it is possible to develop a tertiary
battery that can utilize the thermal energy more effectively than a conventional tertiary
battery using an electrolyte solution.

In this study, the battery performance between TL (=5 ◦C) and TH (=15 ◦C) in an
electrolyte-free tertiary battery consisting of physically joined NCF90 and NNF68 thin films
is investigated as a first report. It was confirmed that the performance of the electrolyte-free
NCF90/NNF68 tertiary battery demonstrated comparable performance to a conventional
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tertiary battery composed of NCF90 and NNF68 during thermal cycling between 5 ◦C and
15 ◦C.

2. Materials and Methods
2.1. Materials

NaNO3, Co(NO3)26H2O, Ni(NO3)26H2O, K3[Fe(CN)6], NaClO4, and a 0.1 mol/L
HNO3 solution were purchased from FUJIFILM Wako Pure Chemical Co. (Osaka, Japan).
An indium tin oxide (ITO) transparent electrode coated on glass (with sheet resistivity of
100 Ω/sq.) was purchased from GEOMATEC Co., Ltd. (Yokohama, Japan).

2.2. Sample Preparation and Characterization

Thin films of Na1.60Co[Fe(CN)6]0.902.9H2O (NCF90) and Na0.72Ni[Fe(CN)6]0.685.1H2O
(NNF68) were synthesized on a transparent ITO glass electrode using electrochemical
deposition techniques described in previous studies [8,9]. Prior to the deposition of the
thin film, the ITO glass electrode surface underwent purification through electrolysis with
0.1 mol/L HNO3 with 2.5 V applied for one minute. The NCF90 thin film was deposited on
an ITO glass electrode utilizing an aqueous solution consisting of 0.8 mmol/L K3[Fe(CN)6],
0.5 mmol/L Co(NO3)26H2O, and 5 mol/L NaNO3. The deposition process was carried out
under potentiostatic conditions at −0.45 V vs. an Ag/AgCl standard electrode (saturated
KCl). Sawtooth wave modulation (±0.35 V, 36 Hz) was also applied to the potential. The
obtained thin film was a transparent green color. The NNF68 thin film was deposited on an
ITO glass electrode utilizing an aqueous solution consisting of 0.5 mmol/L K3[Fe(CN)6],
0.5 mmol/L Ni(NO3)26H2O, and 1 mol/L NaNO3. The deposition process was carried out
under potentiostatic conditions at −0.45 V vs. an Ag/AgCl standard electrode (saturated
KCl). Sawtooth wave modulation (±0.35 V, 36 Hz) was also applied to the potential. The
obtained thin film was transparent and colorless. The chemical composition was cited from
the studies in [8,9]. X-ray diffraction patterns were examined using a MiniFlex 600 X-ray
diffractometer (Rigaku; Tokyo, Japan) equipped with a CuKα line (λ = 1.54 Å) as the X-ray
source at room temperature. Scanning electron microscope (SEM) images of the surface
of the as-grown NCF90 and NNF68 thin films were observed with a Hitachi S4000 SEM
(Hitachi High-Tech Co.; Tokyo, Japan) at an acceleration voltage of 5 kV.

The electrochemical properties of the NCF90 and NNF68 thin films were investigated
using a potentiostat (HJ1001SD8; MEIDEN HOKUTO; Tokyo, Japan) with a three-electrode
beaker cell. The working, reference, and counter electrodes were the NCF90 (NNF68) thin
film, Ag/AgCl standard electrode (saturated KCl), and Pt electrode, respectively. The
aqueous electrolyte solution was 17 mol/kg NaClO4. The rate of charge and discharge was
approximately 0.5 C. The cut-off potentials of the NCF90 and NNF68 thin films were in
the ranges of 0.20 V to 1.2 V vs. Ag/AgCl, and 0.20 V to 0.80 V vs. an Ag/AgCl standard
electrode (saturated KCl), respectively. The weight of each thin film was determined by
measuring its thickness, area, and volume density. The thickness (d) of the thin films was
evaluated with a stylus profilometer. The NCF90 and NNF68 thin films had actual volume
densities of 0.58 and 0.68 of the ideal density, respectively. The actual volume densities
were obtained by carefully removing the thin films and evaluating their weight, which was
measured using micro-analytical balances.

The values of α were evaluated with a two-electrode beaker cell whose cathode and
anode were the same PBA thin films linked by a salt bridge. The aqueous electrolyte
solution was 17 mol/kg NaClO4. The temperature of one electrode was regulated utilizing
a thermostatic bath (BB301; Yamato Scientific Co., Ltd.; Tokyo, Japan), while the other
electrode’s temperature was kept at room temperature. The potential difference (∆V) was
carefully measured against the temperature difference (∆T) between the cathode and anode
in the open-circuit condition. For each ∆T, we waited 20 min for the potential to stabilize,
and then measured the ∆V.
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2.3. Electrolyte-Free Tertiary Battery Assembly

At first, the NCF90 and NNF68 thin films were pre-oxidized. This step is required for
tertiary batteries because it adjusts the potential of both electrodes and sets β to a small
value. A conventional tertiary battery is composed of the cathode, anode, and electrolyte
solution, as shown in Figure 1a, while an electrolyte-free tertiary battery with a contact
area of 0.04 cm2 was prepared by joining the surfaces of the NCF90 thin film and NNF68
thin film. This junction was achieved by applying stress (P) from the outside, as shown
in Figure 1b. The P was investigated to finely regulate the electrical contact of the films.
As P increases, the resistivity between the NCF90 and NNF68 thin films gradually reduces
and becomes almost insensitive to P [48]. Consequently, measurements were carried out in
the latter P-range. The initial potential E0 was set to be 0.50 V at 5 ◦C, where β+ (β−) of the
NCF90 (NNF68) thin film was small. The parameters for both the NCF90 and NNF68 thin
films are summarized in Table 1.
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Figure 1. Schematic illustrations of (a) conventional and (b) electrolyte-free tertiary batteries: (a) The
conventional tertiary battery is composed of NCF90, NNF68 thin films, and 17 mol/kg NaClO4

aqueous electrolyte solution. (b) The electrolyte-free tertiary battery is composed of NCF90 and
NNF68 thin films. The junction between NCF90 and NNF68 thin films is achieved by applying stress
(P) from outside the ITO glass electrodes.

Table 1. The parameters of NCF90 and NNF68 thin films used in the tertiary battery. α(=dE/dT),
β(=dE/dq), d, S, m, and E0 are the temperature coefficient of the redox potential E, the capacity
coefficient of E, the thickness of the thin film, the active area of the thin film, the weight of the thin
film in the active area of the tertiary battery, and the initial potential (vs. Ag/AgCl standard electrode
(saturated KCl)), respectively. The α of conventional tertiary battery’s electrodes were evaluated
with a three-electrode beaker cell, whose working, reference, and counter electrodes were the NCF90
(NNF68) thin film, Ag/AgCl standard electrode (saturated KCl), and Pt electrode, respectively [8].
Therefore, the α of Ag/AgCl standard electrode is also included in this α.

Material α (mV/K) β (Ωg/h) d (nm) S (cm2) m (µg) E0 (mV)

Electrolyte-free NCF90 0.69 0.14 220 0.04 1.1 500
NNF68 −0.39 0.82 700 0.04 3.7 500

Conventional [8]
NCF90 1.53 3.3 300 1.0 36.4 500
NNF68 0.23 2.0 280 1.0 37.1 500

2.4. Thermal Cycle Measurement

The thermal cycle properties of the tertiary batteries were measured using a potentio-
stat (ECstat-301; EC Frontier Co., Ltd.; Kyoto, Japan) between TL(=5 ◦C) and TH(=15 ◦C).
The cell temperature (Tcell) was controlled by a desktop atmospheric thermostatic chamber
(AC200; EC Frontier Co., Ltd.; Kyoto, Japan). The Tcell was assumed to be the temperature
of the thermostatic chamber since it was held there for a sufficient period of time. The
thermal cycle is composed of four processes: (i) heating and waiting, (ii) discharging at
TH, (iii) cooling and waiting, and (iv) discharging at TL. During the (i) heating process,
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T was gradually increased from TL to TH, and then held at TH for 15 min to stabilize the
potential in the open-circuit condition. During the (ii) discharging process, a constant
current (=0.50 µA/cm2) was applied until the output voltage (Vcell) reached 0 V. During
the (iii) cooling process, T was gradually decreased from TH to TL, and then held at TL for
15 min to stabilize the potential in the open-circuit condition. During the (iv) discharging
process, a constant current (=0.50 µA/cm2) was applied until Vcell reached 0 V. The total
weight of the active materials in the cathode and anode was defined as the unit weight.

3. Results and Discussion

Figure 2a exhibits the X-ray diffraction (XRD) patterns of the as-grown NCF90 and
NNF68 films. The asterisks (*) denote the diffraction peaks of the ITO transparent glass
electrode. In the NCF90 thin film, the observed diffraction peaks can be assigned an index
in the trigonal (R3m; Z = 3) structure. Lattice constants were evaluated using the Rietveld
method (Rietan-FP program [55]): a = 7.403 (5) Å and c = 17.542 (15) Å. In the NNF68 thin
film, the observed diffraction peaks could be assigned an index in the face-centered cubic
(fcc) (Fm3m; Z = 4) structure. Lattice constant a was 10.172 (2) Å. These lattice constants
of the as-grown NCF90 and NNF68 thin films were consistent with those in the studies
in [8,9]. Figure 2b,c are scanning electron microscope (SEM) images of the surfaces of the
NCF90 and NNF68 thin films, respectively. The surface of the NCF90 thin film is composed
of large crystals. The grain size was roughly evaluated to be 200–500 nm. On the other
hand, the surface of the NNF68 thin film seems to be composed of granular particles with
low crystallinity. The grain size was roughly evaluated to be 150–300 nm.
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eaus at around 1.0 V and 0.5 V vs. the Ag/AgCl standard electrode. This feature is con-

Figure 2. X-ray diffraction (XRD) patterns and scanning electron microscope (SEM) images of the
surfaces of the NCF90 and NNF68 thin films: (a) XRD patterns of NCF90, NNF68, and ITO transparent
glass electrodes. The values of NCF90 and NNF68 in the brackets are the indexes in the trigonal
and face-centered cubic structures, respectively. SEM images of the surfaces of the (b) NCF90 and
(c) NNF68 thin films.

Figure 3a,b exhibit the discharge curves of the NCF90 and NNF68 thin films at 5 ◦C,
respectively. In the NCF90 thin film (Figure 3a), the discharge curve exhibits two plateaus at
around 1.0 V and 0.5 V vs. the Ag/AgCl standard electrode. This feature is consistent with
that observed in propylene carbonate (PC) with 1mol/L NaClO4 [28]. Therefore, the redox
site at the lower (upper) plateau is Co3+/Co2+ ([Fe(CN)6]3−/[Fe(CN)6]4−). The observed
capacity (=112 mAh/g) is close to the ideal value (=125 mAh/g). In the NNF68 thin film
(Figure 3b), the discharge curve exhibits a single plateau at around 0.55 V vs. the Ag/AgCl
standard electrode. The redox site of this plateau is [Fe(CN)6]3−/[Fe(CN)6]4− [54]. The
observed capacity (=65 mAh/g) is close to the ideal value (=65 mAh/g). Figure 3c,d show



Processes 2024, 12, 175 6 of 11

the potential difference (∆V) between the two-electrode beaker cell, whose cathode and
anode were the same PBA thin films linked by a salt bridge, against the temperature differ-
ence (∆T) between TL and TH during the heating (filled red circles) and cooling processes
(open blue circles) at the potentials at the arrow positions in Figure 3a,b, respectively. The
open and filled circles correspond to the ∆T-increasing and ∆T-decreasing experimental
runs, respectively. These results indicate that the NCF90 and NNF68 thin films had no hys-
teresis between TH and TL. The α values of the NCF90 and NNF68 thin films determined
using least squares fitting of each dataset were +0.69 mV/K and −0.39 mV/K, respectively.
Here, based on the discussion of Moritomo et al. [54], the value of α is considered for
the NCF90 and NNF68 thin films. From a thermodynamical viewpoint, α is expressed as
(Sred − Soxi)/e. Here, Sred and Soxi represent the entropy of the system in the reduction and
oxidation states, respectively, and e represents the elementary charge (>0). The difference
in redox sites is responsible for the difference in the sign of α. In the lower plateau of
NCF90, the redox site is the Co site. This reduction process alters the valence (qn) in Co
and causes a modification of the Na+ configuration entropy (SNa) around the redox site.
The large |qn| strongly constrains the Na+ configuration and decreases the SNa. At the
lower plateau of the NCF90, the |qn| of the reduction state (Co2+) is 2, which is smaller
than the oxidation state (Co3+) where |qn| is 3. In other words, SNa in the reduction state is
expected to be larger than SNa in the oxidation state. Under these conditions, Sred becomes
larger than Soxi. This results in the positive value of α, as observed. At the single plateau of
NNF68, the redox site is the [Fe(CN)6] site. During this reduction process, the |qn| of the
reduction state ([Fe(CN)6]4−) is 4, which is larger than the oxidation state ([Fe(CN)6]3−),
where |qn| is 3. In other words, SNa in the reduction state is expected to be smaller than
SNa in the oxidation state. Under these conditions, Sred becomes smaller than Soxi. This
results in the negative value of α, as observed. Furthermore, these values are consistent
with the literature values obtained for electrodes made from Co-PBA and Ni-PBA powder
samples [54]. The parameters of NCF90 and NNF68 thin films used in the electrolyte-free
tertiary battery are summarized in Table 1, along with the parameters of conventional
tertiary batteries reported in a previous study [8]. The difference in the α of the electrode
active materials in the electrolyte-free tertiary battery and the conventional tertiary battery
reflects the difference in the evaluation method. In addition, the difference in β is assumed
to be due to sample dependence.

Figure 4 exhibits the thermal cycle behaviors of the electrolyte-free NCF90/NNF68
tertiary battery between TL = 5 ◦C and TL = 15 ◦C. During the first cycle (open black circle)
of the heating process, as shown in Figure 4a, VTB linearly increases with an increase in T at
a rate of 0.9 mV/K. This rate is close to αcell (=1.1 mV/K), which represents αNCF90–αNNF68.
At TH, the thermal voltage (VTB) becomes 8.4 mV. During the discharging process at TH, as
shown in Figure 4b, the output voltage (Vcell) gradually decreases to 0 V with an increase
in capacity (q). The discharge capacity (QTB) per unit weight of the total active materials
is 5.6 mAh/g. Here, we compared this observed value and the calculated value (QTB

calc).
QTB

calc is expressed as Qcalc
TB = VTB

β+
r +

β−
1−r

, where β+ (β−) and r are the β of the cathode

(anode) and the weight ratio ( m+
m++m−

, where m+ (m−) is the weight of active material in
the cathode (anode)), respectively. With the parameters in Table 1, it is estimated that
QTB

calc is 5 mAh/g at ∆T = 10 K. Therefore, the observed value is consistent with the
calculated value. As shown in Figure 4c, during the cooling process, VTB linearly decreases
with an increase in T at a rate of 0.9 mV/K. At TL, VTB becomes −8.5 mV. During the
discharging process at TL, as shown in Figure 4d, QTB is 3.2 mAh/g. The thermal cycle
properties observed during the fifth cycle were essentially similar to those observed during
the first cycle. Furthermore, the observed αcell of the electrolyte-free tertiary battery was
consistent with the αcell (=1.1 mV/K) of a conventional NCF90/NNF68 tertiary battery
using electrolyte solution in a previous report [8].
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Figure 3. First discharge curves of (a) NCF90 and (b) NNF68 thin films at 0.5 C and 5 ◦C against the
capacity (q) per unit weight of the active material. Downward arrows indicate the initial potential of
the pre-oxidized (a) NCF90 and (b) NNF68 for a tertiary battery, respectively. Potential difference
(∆V) between the two-electrode beaker cell, whose cathode and anode were the same PBA thin films
connected by a salt bridge, against the temperature difference (∆T) between TL and TH in the heating
process (filled red circles) and cooling process (open blue circles) runs in (c) NCF90 and (d) NNF68.
Red (blue) arrows indicate the direction of ∆V change in the heating (cooling) process. Solid straight
lines represent the results of the least squares fitting.
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Figure 4. Thermal cycles of the electrolyte-free tertiary battery composed of NCF90 and NNF68
thin films: (a) Thermal voltage (VTB) of the electrolyte-free tertiary battery against temperature (T)
measured in the heating run under the open-circuit condition at the first and fifth cycles; the solid
and broken straight lines represent the results of the least squares fitting, respectively. The arrow
indicates the direction of VTB change. (b) Discharge curves at TH (=15 ◦C) against capacity (q) per
unit weight of the total active materials at the first and fifth cycles. (c) VTB against T was measured
in the cooling run under the open-circuit condition at the first and fifth cycles; the solid and broken
straight lines represent the results of the least squares fitting, respectively. The arrow indicates the
direction of VTB change. (d) Discharge curves at TL (=5 ◦C) against q per unit weight of the total
active materials at the first and fifth cycles.
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Figure 5a,b exhibit the thermal cycle property of the electrolyte-free NCF90/NNF68
tertiary battery. The open and filled circles represent the data obtained at TL and TH,
respectively. In the electrolyte-free NCF90/NNF68 tertiary battery, there was almost no
change in either |VTB| or QTB up to the fifth cycle. However, a significant difference
exists between the QTB values of TH and TL. The difference in QTB between TH and TL
is considered to be due to higher resistance in a physical-junction-type all-solid-state ion-
transfer device made of PBA films at lower temperatures, resulting in a lower number of
ions that can pass through this interface [48].
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Figure 5. (a) Thermal voltage (VTB) and (b) discharge capacity (QTB) per unit weight of the total
active material against cycle number. Open and filled circles represent the data obtained at TL and
TH, respectively.

Here, the thermal efficiency (η) of the first cycle of the electrolyte-free NCF90/NNF68
tertiary battery is roughly evaluated. Details of the evaluation are described in the study
in [7]. As shown in Figure 5, the electrolyte-free NCF90/NNF68 tertiary battery exhibited
a VTB of 8.4 mV and QTB of 5.6 mAh/g at TH = 15 ◦C, and a VTB of 8.5 mV and QTB of
3.2 mAh/g at TL = 5 ◦C. The η is defined as (WH + WL)/Q, where WH (WL) and Q are the
electric work at TH (TL) and the input thermal energy, respectively. WH (WL) was estimated
to be 1.3 meV/NCF90 (0.75 meV/NCF90), whose value was roughly estimated as q′VTB/2
at TH (TL). Here, q′ is the discharge capacity (q) per unit weight of the total active material
of the tertiary battery at TH (TL), converted to the final extraction charge per NCF90. Q
was estimated as (C+ + C−)∆T, where C+ (C−) represents the specific heat of the cathode
(anode) material, respectively. Based on the Dulong–Petit law, C+ (C−) was approximated
by the specific heat of the ideal Na2Co[Fe(CN)6] (Na2Ni[Fe(CN)6]) in the high temperature
limit; C+ = 4.16 meV/K, C− = 15.23 meV/K. As a result, η = 1.1% was obtained, which
corresponds to 31% of the Carnot efficiency (ηcarnot = 3.5%).

Finally, the performance of the electrolyte-free tertiary battery is compared with the
conventional tertiary battery reported in a previous study [8]. Table 2 summarizes the
VTB and QTB values of the electrolyte-free and conventional tertiary batteries at TH. For
convenience of explanation, the normalized values, VTB* and QTB*, at ∆T = 10 K are also
listed in Table 2. Note that this normalization is easy to perform because the QTB of a tertiary
battery is proportional to VTB, and VTB is proportional to ∆T. The electrolyte-free tertiary
battery exhibits a VTB* of 8.4 mV and a QTB* of 5.6 mAh/g at ∆T = 10 K. On the other hand,
the conventional tertiary battery exhibits a VTB* of 10 mV and a QTB* of 1.3 mAh/g at ∆T =
10 K. The VTB* was found to be similar for both tertiary batteries, while the QTB* was about
four times greater for the electrolyte-free tertiary battery. The difference in QTB* between
the electrolyte-free tertiary battery and the conventional tertiary battery can be interpreted
as due to the difference in the charge coefficient β (see Table 1). Thus, it was found that
the electrolyte-free tertiary batteries exhibited high performance. Note that the thermal
response properties of electrolyte-free tertiary batteries could not be evaluated due to
problems in the experimental environment. This is because the thermostatic chamber used
to measure the electrolyte-free tertiary battery could determine the temperature inside the
chamber, but could not measure the temperature of the device in real time. It is imperative
to evaluate the thermal response of all-solid-state tertiary batteries, as they are expected to
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have better performance compared to conventional tertiary batteries. This evaluation will
be performed in the future.

Table 2. Performance of the electrolyte-free and conventional tertiary batteries. VTB and QTB are the
thermal voltage and discharge capacity per unit weight of the total active materials contained in the
cathode and anode at TH. VTB* and QTB* are normalized values at ∆T = 10 K.

Cathode Anode VTB (mV) QTB
(mAh/g) ∆T (K) VTB* (mV) QTB*

(mAh/g) Ref.

Electrolyte-free NCF90 NNF68 8.4 5.6 10 8.4 5.6 This work
Conventional NCF90 NNF68 40 5 40 10 1.3 [8]

4. Conclusions

The operation of an electrolyte-free tertiary battery consisting of physically joined
NCF90 and NNF68 thin films is demonstrated for the first time. The results indicate
that the performance of an electrolyte-free tertiary battery is comparable to that of a
conventional tertiary battery using an electrolyte solution. It is believed that all-solid-state
tertiary batteries, including electrolyte-free all-solid-state tertiary batteries and all-solid-
state tertiary batteries with solid electrolytes, will be a new direction for future tertiary
battery studies.
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