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Abstract: Self-assembly of nanoscale objects is of essential importance in materials science, condensed
matter physics, and biophysics. Curvature modifies the principles and sequence of self-assembly
in Euclidean space, resulting in unique and more complex structures. Understanding self-assembly
behavior in curved space is not only instrumental for designing structural building blocks and assembly
processes from a bottom-up perspective but is also critically important for delineating various biological
systems. In this review, we summarize efforts made to unveil the physical nature of self-assembly in
curved space through experiments and simulations. First, we outline the differences in the physical
nature of self-assembly between curved space and Euclidean space by presenting relevant results of
experiments and simulations. Second, we explore the principles of self-assembly in curved space at
multiple scales and interactions, elucidating important factors that govern the self-assembly process
from the perspectives of confinement and structural building blocks. Finally, we enumerate practical
applications and control strategies for self-assembly in curved space and outline the challenges and
prospects in this field. We hope that this review will encourage further efforts toward fundamental
research and broaden the potential applications of designed assemblies in curved space.

Keywords: curved space; entropy; topological defect; order; self-assembly

1. Introduction

Self-assembly refers to the process by which disordered systems, without external
intervention, organize into an ordered structure through interactions among their con-
stituents [1–3]. This process is driven by thermodynamic equilibrium, with the organized
structure possessing the lowest free energy within the system. Colloids refer to fluid
mixtures in which dispersed particles have sizes ranging from 1 nm to 1 µm, which are
commonly found in the natural world and biological systems. When colloidal particles
aggregate, many fascinating phenomena, including self-assembly, can emerge. In contrast
to atomic and molecular systems, the self-assembly of colloidal particles predominantly
relies on forces such as DNA-mediated interactions [4], van der Waals forces [5], electro-
static interactions [6], and hydrophobic effects [7]. These forces are considerably weaker
than chemical bonds [8] and, thereby, cannot entirely dictate the formation of the most
stable structure. Thus, entropy plays an indispensable role in the self-assembly of colloidal
particles. Self-assembly phenomena are abundant in biological systems, such as viruses [9],
bacteria [10], and living cells [11], and a comprehensive understanding of these processes
is essential for unraveling the complexity of life. These instances of self-assembly can
serve as a source of inspiration for the design of biomimetic systems or play a role in
medical applications like targeted drug delivery. However, biological systems often feature
numerous curved interfaces, and the presence of interfaces frequently exerts a profoundly
influential and determinative impact on the overall system’s properties. The introduction
of curvature significantly enriches the processes and outcomes of self-assembly. Due to
the mismatch between locally favorable structures and curved space or the hindrance
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of evolution paths by curvature, ordered structures [12,13], phase transitions [14,15], and
dynamic processes [16] in curved space differ significantly from normal space. Additionally,
the inherent defects brought about by topology create new order structures and generate
new physics, making topology an equally important controlling factor alongside free en-
ergy. In recent years, the field of interface self-assembly at the nanoscale has gradually
emerged [17,18], where curved interfaces often serve as scaffolds for nanodevices, func-
tioning as constraints and templates [19–22]. At the same time, with the development of
nanoscale synthesis methods [23], the variety of particles involved in self-assembly has
greatly expanded, including grafted particles [24], Janus particles [25], various shapes of
hard particles [26–28], mesoporous particles [29], and more. This enables more precise,
complex, and widespread self-assembly. Therefore, understanding the physical processes
of particle self-assembly in curved space is of great significance, aiding in the design of new
heterogeneous materials or offering new perspectives on some biological processes.

In this review, we focus on the physical principles and practical applications of
nanoscale particle self-assembly in curved space and propose control strategies for self-
assembly systems in such space. Firstly, we introduce recent important experimental and
simulation research, highlighting the physical rules of self-assembly in curved space and
emphasizing the fundamental differences from Euclidean space through comparisons.
Then, we delve into specific factors that influence self-assembled structures and processes,
including the shape of confined interfaces, the interplay between colloidal particles and
interfaces, and the properties of colloidal particles, as shown in Figure 1. Finally, we
enumerate practical applications and control strategies for self-assembly in curved space
and present the challenges and prospects that require further exploration in this field. It is
anticipated that this review can offer new perspectives on many physical phenomena and
provide theoretical guidance in the design of novel materials.

Processes 2024, 12, x FOR PEER REVIEW 3 of 20 
 

 

 
Figure 1. Control Strategies for Self-Assembly in Curved Spaces: The regulation of self-assembly in 
curved space is influenced by three key factors—namely, the shape of the curved interface, particle 
properties, particle-particle interactions, and particle-interface interactions. These factors collec-
tively impact the overall topological structure, local geometric arrangement, and free energy, ulti-
mately determining the outcomes of self-assembly [9,13,14,30–34]. Here, “topological structure” re-
fers to the shape of the space in which self-assembly occurs, and “geometric” refers to the local 
curvature size. 

2. Colloids in Curved Space 
In this section, we provide a brief overview of cases of colloidal particle self-assembly 

in two-dimensional (2D) and three-dimensional (3D) curved spaces. We summarize the 
fundamental physical rules of self-assembly in curved space and the influence of curva-
ture. This helps illustrate how curvature can be used to control the outcomes and pro-
cesses of self-assembly. 

Consider identical hard disks packing on a 2D plane. In the densest packing arrange-
ment, these particles naturally form a hexagonal lattice structure, with each particle hav-
ing six nearest neighbors, and the hexagons can densely cover the entire 2D space. When 
the plane becomes curved, the introduction of curvature changes the distance distribution 
among the particles because the sum of the interior angles of curved triangles is not equal 
to π. This alteration in distance distribution results in a change in the number of nearest 
neighbors for the particles. By using the Voronoi partition, we can determine the number 
of nearest neighbors for each particle, denoted as c, which corresponds to the number of 
edges of the Voronoi polygons surrounding the particle. The basic idea is to create poly-
gons around each seed point in such a way that every point within a given polygon is 
closer to the associated seed point than to any other seed point. Particles with a number 
of nearest neighbors different from 6 are referred to as defects, and the charge of a defect 

Figure 1. Control Strategies for Self-Assembly in Curved Spaces: The regulation of self-assembly in
curved space is influenced by three key factors—namely, the shape of the curved interface, particle



Processes 2024, 12, 119 3 of 19

properties, particle-particle interactions, and particle-interface interactions. These factors collectively
impact the overall topological structure, local geometric arrangement, and free energy, ultimately
determining the outcomes of self-assembly [9,13,14,30–34]. Here, “topological structure” refers to the
shape of the space in which self-assembly occurs, and “geometric” refers to the local curvature size.

2. Colloids in Curved Space

In this section, we provide a brief overview of cases of colloidal particle self-assembly
in two-dimensional (2D) and three-dimensional (3D) curved spaces. We summarize the
fundamental physical rules of self-assembly in curved space and the influence of curvature.
This helps illustrate how curvature can be used to control the outcomes and processes of
self-assembly.

Consider identical hard disks packing on a 2D plane. In the densest packing arrange-
ment, these particles naturally form a hexagonal lattice structure, with each particle having
six nearest neighbors, and the hexagons can densely cover the entire 2D space. When the
plane becomes curved, the introduction of curvature changes the distance distribution among
the particles because the sum of the interior angles of curved triangles is not equal to π. This
alteration in distance distribution results in a change in the number of nearest neighbors
for the particles. By using the Voronoi partition, we can determine the number of nearest
neighbors for each particle, denoted as c, which corresponds to the number of edges of the
Voronoi polygons surrounding the particle. The basic idea is to create polygons around each
seed point in such a way that every point within a given polygon is closer to the associated
seed point than to any other seed point. Particles with a number of nearest neighbors different
from 6 are referred to as defects, and the charge of a defect is defined as q = 6 − c. On a
plane, the appearance of defects is only related to the density and polydispersity of particles.
Regular and dense crystals are formed at high density. Determining the type and quantity
of defect particles on a curved surface requires applying Euler’s formula, which relates the
number of vertices (V), edges (E), and faces (F) of Voronoi polygons in a network:

V − E + F = χ (1)

χ is the Euler characteristic, determined by the shape of the curved surface. If we
replace V, E, and F in the Euler formula with the number of edges per Voronoi polygon c
and the number of Voronoi polygons Nc, we can obtain the total defect charge determined
by topology:

∑ (6 − c)Nc ≥ 6χ (2)

Indeed, you can relate curvature and the Euler characteristic using the Gauss-Bonnet
theorem. The theorem states that for a closed surface M with Gaussian curvature K, the
Euler characteristic is related to the total Gaussian curvature over the entire surface:∫

M
KdA +

∫
∂M

kgds = 2πχ(M) (3)

where dA represents the area element of the surface and ds is the line element of the
boundary of M. This equation provides a valuable relationship between geometry and
topology. For a sphere, χ = 2, and 12 pentagon defects can form a regular icosahedron
structure. For a cylinder and a plane, the Gaussian curvature is zero everywhere, which
allows particles to form a defect-free perfect structure. For surfaces with negative curvature,
χ < 0, and heptagon defects may dominate. In crystallography, isolated defects that alter
the rotational symmetry are referred to as disclinations [35], while defects formed by the
connection of a pentagonal and heptagonal defect, disrupting translational symmetry, are
known as dislocations. Dislocations, having positive and negative charges that cancel each
other out, do not have a necessary topological existence. They appear to accommodate
variations in curvature, driven by local geometric requirements and are consequently
referred to as excess defects.
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Irvine et al. [13,36] further investigated the relationship between the total defect charge
and interface shape by confining fluorescent PMMA particles to interfaces of various
shapes, including spherical, arched, waist-shaped, barrel-shaped, and planar, as shown
in Figure 2b. The topological shape of the interface dictates the total defect charge. For
interfaces of different shapes, whether with charged or neutral particles, the total defect
charge is approximately equal to the integral of the interface Gaussian curvature. The
presence of defects is analogously likened to pleats, and they adapt to the rapid changes
in surface curvature by forming continuous dislocations. Subsequent simulations have
confirmed and expanded upon these experimental findings [37]. The type, location, and
orientation of defects are closely related to the curvature. Under weak curvature, excess
defects like pleats appear, with their orientation following the direction of the fastest
Gaussian curvature change, while under strong curvature, disclinations arise near regions
of maximum (minimum) curvature.
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Figure 2. Self-assembled structures in curved spaces [12,13]. (a) Interfaces are in the shape of spheres,
domes, waists, and barrels on cylindrical capillary bridges. The red dots represent heptagonal defects,
and the yellow dots represent pentagonal defects. (b) The total defect charge is linearly related to
the Integrated Gaussian curvature. (c) Defects are identified using spherical triangulation, where
disclinations appear when there are fewer particles, and scars appear when there are more particles.
Bars, 5 µm. (d) The twelve scars on the spherical surface exhibit an icosahedral structure. (e) The
excess number of defects is linearly related to the size of the constrained spherical surface.

Although the aforementioned studies provide a clear topological relationship between
the total defect charge and interface shape, in specific systems, the number and spatial
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arrangement of each type of defect still depend on the potential energy interactions between
particles and local geometric requirements. This is exemplified by the scar-like structures
on a spherical surface. Bausch et al. [12,38] explored the self-assembly of colloidal parti-
cles with arbitrary repulsive interactions on a constrained spherical surface, where 1 µm
diameter cross-linked polystyrene microspheres adhered to the surface of water droplets
with a radius R. As shown in Figure 2c, when the number of particles is low, the spherical
surface exhibits only 12 + 1 charge defects. However, when the number of particles exceeds
a critical value (N ≈ 360), additional defect structures emerge. Defining a as the average
distance between particles, it was discovered that the excess dislocation count is linearly
related to R/a. In other words, on a larger constrained spherical surface, there are more
defects. Observing the distribution of defects further reveals that they exist in the form of
scars. On each scar, the coordination number of particles varies as . . . 5-7-5-7-5 . . . The total
defect charge on each chain of defects is +1. The locations of the twelve scars correspond to
a regular icosahedral structure.

On the one hand, these scars act as grain boundaries between different crystal regions,
causing a change in crystal axis orientation whenever the crystal axis extends to the scar’s
position to adapt to the curvature of the sphere. On the other hand, the presence of these
scars serves to reduce the elastic energy loss caused by individual pentagonal defects.
Using elastic theory [39], it can be calculated that the length of each scar in the ground state
should be 33.56◦. Therefore, the number of excess defects on the sphere follows a linear
relationship with R/a.

From these studies, it can be concluded that the self-assembly in curved space results
from the interplay between locally favorable structures, topology, and geometry. This
principle applies to 3D space as well. Taking the example of hard sphere packing, as the
packing density increases, the system enters an ordered structure at a packing density of
approximately 0.64 [40] and eventually forms a face-centered cubic (FCC) or hexagonal
close-packed (HCP) structure at a packing density of 0.74 [41–43]. Although FCC and
HCP structures are energetically favorable, they cannot perfectly fill the entire spherical
space, especially under strong confinement. As shown in Figure 3b, to maximize each
particle’s free volume or entropy, the structure that aligns better with spherical symmetry
is the icosahedron. However, as the degree of confinement decreases with a larger sphere,
the system transitions from the icosahedron structure through a rhombicosidodecahedron
structure to an FCC structure [31]. The observation of such structures changing with the
degree of confinement has also been observed in simulations of cylindrical confinement [44].
This phenomenon is not limited to spherical confinement but is a general characteristic
of self-assembly in 3D confined spaces. The dynamics of this crystallization process, as
revealed through event-driven molecular dynamics (EDMD) simulations, suggest that
the crystallization initiates at the spherical-constrained surface, forming multiple layered
structures inward.
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Figure 3. Self-assembly of hard spheres by spherical confinement [31,45]. (a) Results of CoFe2O4

nanoparticles self-assembled in an emulsion and EDMD simulation. When there are fewer particles,
they form an icosahedral structure. As the number of particles increases, a rhombicosidodecahedron
structure forms on the surface of the icosahedral core. With further particle increase, an FCC structure
is formed. The different colors represent different crystal regions distinguished by bond order
parameters. (b) The fraction of various structures as a function of the number of particles. (c) Library
of magic number colloidal clusters and a comparison to the model, bars, 1 µm. (d) Free energy
was obtained from EDMD simulations as a function of the number of particles and the spherical
confinement radius compared to the FCC structure. The free energy is at a local minimum when the
number of particles matches the magic number.

In addition to the changes in self-assembled structures, another characteristic of 3D
confined self-assembly is the presence of numerous local optimal structures. The number
of particles at specific values forms self-assembled structures with better compatibility
with spherical symmetry, known as the magic number [46,47]. Whether under attractive
potentials or hard interactions, as shown in Figure 3d, these structures often have enhanced
stability, higher packing densities, and average particle-free energy at a local minimum
due to maximizing the number of neighboring particles [45]. Not only within a sphere but
also within a cylindrical confinement, an optimal cylinder radius exists that maximizes the
packing density to achieve a local maximum [48–51].

In addition to structural, the influence of curvature on self-assembly is also reflected
in deeper aspects, such as phase transitions and crystallization dynamics. Phase transitions
in 2D systems differ from those in 3D space, and there are various microscopic theories
for 2D phase transitions, with the KTNHY theory being the most famous [52–54]. This
theory predicts that phase transitions in 2D space are mediated by defects and involve two
continuous processes: the unbinding of dislocation pairs disrupts translational symmetry
while preserving orientational symmetry, leading the system from a solid phase to a hexatic
phase. The separation of dislocations forms disclinations, breaking orientational symmetry
and transitioning the system into a liquid phase. As shown in Figure 4, on a spherical
surface, particles with dipole potentials undergo phase transitions as the dimensionless
interaction parameter Γ changes, and both crystallization and melting processes follow the
KTNHY theory [14,15]. However, due to the presence of inherent defects, the potential
strength required for phase transitions differs from the results on a flat plane [55], and
the curvature, to some extent, hinders crystallization. During the crystallization process,
defects that occur in normal positions are eventually absorbed by grain boundaries, leading
to the formation of the twelve scars. This has been confirmed in interstitial experiments on
curved surfaces [56,57], where dislocations are more likely to move in the direction parallel
to Burger’s vector [16] and are subsequently absorbed when they reach a grain boundary.
However, what is surprising is that during the melting process, the positions where free
dislocations are generated are unrelated to grain boundaries. Instead, they randomly occur
within the regular hexagonal lattice.
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Figure 4. KT Phase Transition on a Spherical Surface [14,15]: (a–c) depict the crystallization process,
while (d–f) illustrate the melting process. (a) With increasing Γ, the number of defects decreases (top),
and the bond order parameter of particles increases (bottom). (b) The variation in the fraction of
defects (top) and the average bond order parameter (bottom) on both a flat plane and a spherical
surface as a function of Γ. Changes on the spherical surface are slower compared to the flat plane.
(c) The overall icosahedral symmetry of defects as a function of Γ, icosahedral symmetry appears
in the solid phase. (d) Melting of particles on the spherical surface by screening charges with the
addition of NaOH, defects obey icosahedral symmetry in the solid phase. (e) The first peak of the
radial distribution function for defects and the average bond order parameter as a function of Γ
indicate two distinct phase transition processes.

In Euclidean spatial crystallization, nucleation theory is often used to explain the
process. In confined spaces, however, crystallization frequently initiates at the outer
layers near the confining interface and progresses inward, resulting in the formation of
complex multi-layered structures [26,31,58,59]. The curved interface acts as a template,
influencing the final crystalline structure. When hard spheres crystallize within a sphere
or a cylinder [31,44], they first form distinct crystal domains on the surface, and then the
growth occurs inward. The competition and matching between the external and internal
structures determine the final structure. In the case of systems with potentials, the situation
is even more complex [58], and this competition exists in both thermodynamic and kinetic
aspects. Crystallization initially occurs on the surface in the form of defects with icosahedral
symmetry. It then grows inward through body-centered cubic (BCC) solid metastable states.
Over an extended period, the structures formed by shorter-range (harder) interaction are
predominantly FCC but are separated into icosahedral symmetry regions by the HCP
domain. The structures formed by longer-range (softer) interactions are closer to BCC
single-crystal.

3. Factors Controlling Self-Assembly in Curved Spaces

In this section, we discuss the specific control factors influencing self-assembly in
curved spaces. As shown in Figure 1, there are three primary aspects: (1) interactions
between particles and between particles and interfaces; (2) particle properties, including
their shape and hardness; and (3) the shape of the confined interface or the curvature of the
space, acting as a template, influencing the overall topological structure and local geometric
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properties. These three factors control the self-assembly process and resulting structures by
affecting the three key factors discussed in the previous section: free energy, topological
structure, and local geometry.

Interactions. Regarding self-assembly on curved interfaces, there exists a longstanding
inquiry known as Thomson’s Problem [60–62]: Given N unit point charges positioned
on the surface of a unit conducting sphere, what is the configuration that minimizes
Coulombic energy? This classical problem has led to various extensions, encompassing
generalized forms under different potential functions [63,64]. When particles self-assemble
on a curved interface, the form of the potential significantly impacts the ground-state
structure [65]. For pairwise repulsive potentials, one of the simplest forms is power-law
potentials V(r) = e2/rγ, in which e represents a generalized electric charge. The case γ = 1
corresponds to the pure Coulomb potential appropriate for charged colloids [60]. The case
γ = 3 corresponds to a dipole interaction appropriate for neutral colloids at the interface
between two liquids [14,15,55,66,67]. The different dielectric constants of the two liquids
lead to an asymmetric distribution of charge on the colloids and a net dipole moment. The
case γ = 12 is the repulsive part of the Lennard–Jones potential and is the important piece
of the interaction for driving crystallization [68,69].

Particles typically form stable structures through repulsive interactions; however,
when much smaller depletants are present in the system, depletion effects induce attractive
interactions between colloidal particles as well as between particles and interfaces [70],
causing colloidal particles to aggregate and crystallize on the interface. The depletion effect
is a result of an effective, attractive force that occurs between large colloidal particles or
macromolecules in the presence of smaller, non-adsorbing particles (depletants) in the
surrounding solution [30]. The crystallization process on a curved surface differs from that
on a flat surface. As shown in Figure 5C, on a flat surface, according to classical nucleation
theory, the crystal region will spontaneously continue to grow once it exceeds the critical
radius. However, on a curved surface, due to the presence of bending energy, the crystal
region cannot grow indefinitely. Instead, like a brittle material pressed onto a curved
surface, fractures form to create striped crystallization patterns. The overall structure does
not contain defects but rather many voids (Figure 5A). If the crystal is flattened back onto
a plane, the lattice axes remain mutually parallel (Figure 5B); this phenomenon is termed
elastic instability [30,71].
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(A) Under depletion effects, polystyrene spheres with a diameter of 1 µm aggregate on a spherical
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(F) Schematic representation of the core-corona potential and the resulting structure of core-corona
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predicted by self-consistent field theory, with colors representing segment fractions. (H) Self-assembly
of star copolymers on a spherical substrate, forming structures that adhere to spherical topological
requirements. Different colors represent different copolymers.

In addition to power-law repulsive interactions and attractive interactions, there are
various specific forms of interactions with different ranges and strengths. Examples include
core–corona interactions [73,76], DNA complementary base pairing [72], segment-segment
interaction in copolymers [74,75,77], and volume exclusion in hard particles [78,79], among
others, as shown in Figure 5. The interactions between particles influence the aggregate
structure; long-range interaction systems are more dominated by enthalpy, while short-
range interaction systems are more dominated by entropy.

The interactions between particles and interfaces impact the confined space for par-
ticles, determining the dimensions of self-assembly. This interaction specifically refers
to the relationship among three surface energies. When the difference in surface energy
between the oil phase and the water phase is greater than the difference in surface energies
between the particles and the two phases, the particles will be adsorbed onto the surface,
like Pickering emulsions [80–82]. Conversely, if the surface energy difference is larger, the
particles will be located within one of the phases, depending on the particle’s affinity for
either the hydrophilic or hydrophobic nature.

Particle Properties. In both experiments and simulations, the tunable properties of
particles mainly include their softness/hardness and anisotropy [23,83,84]. Anisotropy
refers to the variation in the physical or chemical properties of a material with different
directions, exhibiting distinct properties in different directions. Traditional isotropic spheri-
cal colloidal particles typically lead to materials with simple symmetries, such as FCC and
HCP packing. With advancements in synthetic techniques, like surface modification [85],
addition of patchy particles [86], or grafting polymers [87], various shapes (rod-like, ellip-
soidal, polyhedral, etc.) have been experimentally synthesized and self-assembled into
more complex functional materials. The anisotropy of colloidal particles can be classified
into surface anisotropy and shape anisotropy. Surface anisotropy refers to variations in the
properties of the particle surface, such as patching and grafting chains. Shape anisotropy,
on the other hand, involves the inherent non-spherical shape of particles. In this section,
we emphasize the roles of configurational entropy and vibrational/rotational entropy in
the self-assembly of anisotropic particles.
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Configurational entropy is a crucial type of entropy in the context of large molecules
with chain-like topology, such as DNA, peptides, and proteins [88]. The different spatial
conformations that these chain-like molecules can adopt, owing to factors like internal
bond rotations, are termed configurations. Due to thermal motion, the conformation of
a molecule is constantly changing, resulting in a vast number of possible configurations
for long-chain molecules. This leads to significant statistical relevance and observable
configurational entropy. The configurational entropy effect of long-chain molecules plays a
crucial role in the formation and evolution of the hierarchical structure in polymer systems.
In the self-assembly of polymer-grafted nanoparticles, the competition or synergy between
configurational entropy and enthalpy dominates the final structure [89,90].

Entropy is emergent, and it manifests its dominance prominently in confined spaces,
particularly evident in the self-assembly of polymer-grafted Janus particles exhibiting
surface anisotropy. In such confined spaces, optimal utilization of space is required to
maximize the configurational space [4,91]. As show in Figure 6, Two types of Janus particles
with surface anisotropy grafting long and short chains, when present at a planar oil-water
interface, exhibit phase separation driven by the incompatibility of the two types of grafted
chains. Applying pressure to this interface results in the mixing of the two types of particles,
with short-chain particles interspersed between long-chain particles to achieve a larger
configurational entropy. Despite the unfavorable enthalpic contribution of this process,
the increase in configurational entropy compensates for the enthalpic loss [92]. In curved
spaces, where the available space on either side of the interface is unequal, Janus particles
grafted with two different lengths of semi-rigid chains spontaneously rotate to adjust
the positions of the long-chain and short-chain ends, aiming to achieve the maximum
configurational entropy. Various ordered structures emerge as the length and grafting ratio
of the grafted chains vary [32].

Vibrational entropy and rotational entropy relate to the number of states arising
from the vibrational or rotational modes of particles arranged in specific structures. The
magnitude of vibrational entropy depends on the degree of freedom of particle vibrations.
For colloidal particles with shape or surface anisotropy, in addition to vibration, changes in
orientation at specific positions can generate rotational entropy or orientational entropy.
Microstructures of typical materials, such as plastic crystal material [93], are organized by
anisotropic particles with translational order but orientational disorder. Vibrational entropy
and rotational entropy are particularly crucial for stabilizing colloidal assembly structures
characterized by non-dense packing. In such loosely packed structures, the vibrational
and rotational degrees of freedom are extensive and seemingly unstable; however, the
substantial vibrational and rotational entropy produced reduces the system’s free energy,
enhancing the stability of the assembly structure.

Vibrational entropy and rotational entropy typically come into play in non-dense,
hard-particle systems. Similar to how spherical particles adopt FCC, HCP, or hexagonal
lattice structures to maximize vibrational entropy beyond the random close packing point,
non-spherical particles, in the absence of constraints, tend to form lattice structures match-
ing their shapes as packing density increases, as shown in Figure 7. Analogous to the
Onsager entropy-driven ordering phenomenon [94], non-spherical particles adopting face-
to-face or edge-to-edge ordered structures contribute to an increase in overall vibrational
entropy [84,95–99]. However, under spherical confinement, non-spherical particle systems
still exhibit icosahedral symmetry structures characteristic of spherical particles, reflecting
the competition between interface shape and particle shape [33,100,101]. Additionally,
layered structures demonstrate how non-spherical particles mimic the behavior of spherical
particles to achieve compatibility with confined spaces [26].
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Figure 6. Impact of Grafted Chain Conformational Entropy on Self-Assembly Structures [32,91,92].
(a) Varied structures and phase diagrams observed by altering chain length and grafting ratio of
Janus particles grafted with two different lengths of polymer chains on a sphere, including binary
nanocluster (CB), trinary nanocluster (CT), nanoribbon (RN), and hexagon with centered reverse
(HR). (b) Amphiphilic Janus particles adsorbed at the interface, forming a mixed structure where
a compressed interface leads to short-chain particles segregating long-chain particles. The arrows
indicate the lateral and vertical changes of the simulation box during applying a mechanical pressure
(c) Configuration of grafted chains on particles with changing rigidity, highlighting the strongest
conformational entropy effect for semi-rigid chains.
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Figure 7. Impact of shape anisotropy on self-assembly structures [26,84,95]. (a) Self-assembly
results of various hard polyhedra obtained through Monte Carlo simulations, categorized into four
types: crystalline, plastic crystalline, liquid crystalline, and disordered, differentiated by different
colors. (b) Assembly of rounded cubes forming a structure with icosahedral symmetry under
spherical confinement. The different colors represent different crystal regions distinguished by bond
order parameters. (c) Face-to-face self-assembly of polyhedral particles induced by shape entropy,
where polyhedral particles can be driven by entropy to form oriented ordered structures similar to
patchy particles.

Curvature. Regarding the impact of curvature on self-assembly structures, it has
been discussed in the previous section. Here, we focus on some modeling approaches
used to predict the location and types of defects. Self-assembly of particles with repulsive
interactions can be regarded as the bending of continuum elastic material [39,102], and
this allows the calculation of the relationship between defect location and free energy. The
portion where the formation of a defect raises the total energy is denoted as Ecore, while the
drop in energy from matching the defect formation with Gaussian curvature is given by
elasticity theory. The final form of free energy is thus simplified to

E(K0) = K0

∫
d2x

√
g(x)d2y

√
g(y)[K(x)− s(x)]

1
∆2

∣∣∣∣
xy

× [K(y)− s(y)] + NEcore (4)

where g(x) is the determinant of the metric tensor, K(x) is the associated Gaussian curvature,
and s(x) is the disclination density. The bending modulus of a continuum is determined
by the potential energy between particles. This approach considers defects as degrees
of freedom in a continuous elastic medium without distinguishing the types of defects,
focusing only on the location and organizational forms of defects. Using this method, the
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length of scar-like defects can be calculated. The free energy of 2D crystallization in curved
spaces can also be described by the Ginzburg-Landau free energy functional [34,103,104]:

F
kBT

=
∫

d2r
√

g
[

f (ψ) +
D
2

gαβ∂αψ(r)∂βψ(r)
]

(5)

where g is the determinant of the metric tensor, determined by curvature, and f (ψ) is the
local free-energy areal density of a phase with an order parameter ψ. For a two-phase
system, this term takes the typical double-well form:

f (ψ) =
1
4

ηψ2(ψ − 1)2 +
3ε

2

(
ψ3

3
− ψ2

2

)
(6)

The formation of the crystal order can be analyzed through the bond-orientational or-
der parameter ψ6(ri) =

1
Ni

b
∑j exp(6iθij). Upon crystallization, the positions of the particles

can be determined through the local maxima in the order parameter function. This method
combines theoretical models of microphase separation in block copolymers, allowing for
the calculation of the evolution process of defects during annealing and the crystalline
dynamics on various curved surfaces. These two methods can theoretically predict the
location and types of defects on various surfaces [105–107], especially in systems with
repulsive interactions or spring potentials.

4. Practical Applications and Control Strategies

Curved spaces are ubiquitous in biological systems, from viral capsid proteins [9,108–110]
to the formation of vesicle surfaces [111]. To reduce surface energy and form stable homo-
geneous structures, the spherical shape is a natural choice in curved interfaces. Therefore,
the most crucial application of self-assembly in curved interfaces lies in deepening our
understanding of biological systems. By controlling the self-assembly process of viral cap-
sid proteins, virus-like particles can be designed for use as vaccines, eliciting an immune
response against the virus. Leveraging the self-assembly properties of vesicles allows
the design of nano-sized vesicles for drug delivery. These vesicles can achieve targeted
drug delivery by modifying surface properties, size, and composition, enhancing drug
effectiveness while reducing side effects. In drug delivery, an important and promising ap-
plication is colloidosomes. Colloidosomes refer to microcapsule shells formed by colloidal
particles, typically ranging in size from nanometers to micrometers [112,113]. The synthesis
of colloidosomes involves the soft template method, where emulsion droplets serve as
templates. Colloidal particles adsorb at the droplet interface due to surface energy. During
the evaporation of the droplet, colloidal particles aggregate and solidify, forming a stable
shell structure. The number of colloidal particles on the droplet surface controls the size of
colloidosomes, while the size of colloidal particles determines the pore size on the surface
of colloidosomes, granting them selective permeability [81]. The self-assembly principle
of colloidosomes aims to minimize the second moment of the mass distribution, defined
by M2 = ∑n

i=1|ri − r0|2, rather than minimizing energy, which is related to the physical
constraints and collapse process of the droplets [114]. When the number of particles is
small, colloidosomes exhibit structures different from symmetric structures with long-range
attractive potentials. This result indicates a general rule for clusters with short-range attrac-
tion: highly symmetric structures are highly unfavorable at equilibrium. High symmetry
implies a stable state and asymmetric structures have greater configurational entropy,
which dominates the formation of structures [115]. Simultaneously, the particle paths
during collapse sometimes hinder the formation of the tightest structures. For example,
with 13 colloidal particles, the most stable structure should be an icosahedron. However,
due to the collapse process, particles cannot enter the interior of the spherical shell, so the
final structure is not an icosahedron [116,117]. Moreover, many physical processes can
be reinterpreted from the perspective of defect formation in curved surface self-assembly.
For instance, the non-uniform particle density distribution caused by an external potential
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field on a flat surface with repulsive interactions can be equivalently understood as the
angular projection transformation of particle positions on a curved cap [118,119]. On a
macroscopic scale, the periodically corrugated pattern formed by a hard, thin film adhered
to a soft substrate under compression due to mechanical instability can be explained using
the continuous medium elasticity theory of defects on a curved surface [120–122]. In the
context of the filament bundle packing problem, the stress in the cross-sectional filler can
be equivalently modeled as the geometrically induced stress in a thin elastic sheet with
spherical curvature [123–125].

The controllability of self-assembled structures drives ongoing research, development,
and realization of new functional materials. Simultaneously, there is a continuous explo-
ration of the structural changes and inherent mechanisms leading to the formation of new
ordered structures during the material formation process. Understanding how to control
the variation in self-assembled structures is a crucial and pivotal issue in material prepa-
ration and production, holding significant academic and practical importance. Whether
they are van der Waals forces, hydrogen bonds, or electrostatic forces, these interactions fall
under the category of basic interactions and can be attributed to enthalpy effects. Enthalpy
effects regulate the structure at a fine particle level, allowing for precise control over particle
positions and orientations. This control is based on a deep understanding of various funda-
mental interactions, leveraging the characteristics of a specific interaction. For example, in
hydrogen bond-induced self-assembly, the design of assembly units takes full advantage of
the dynamic reversibility of hydrogen bonds, enabling the resulting assembly to possess
properties or functionalities such as self-healing, self-repair, and stimulus-response. In con-
trast to enthalpy effects, entropy effects emphasize collective particle behavior. Factors like
conformational entropy, vibrational or rotational entropy, and shape entropy, as mentioned
earlier, all exert influence on structure under conditions of dense particle packing. Entropy
possesses characteristics of statistical macroscopicity, emergence, and unidirectional en-
tropy increase. It can induce the generation of ordered structures, especially in extreme
environments with spatial constraints, such as the stacking crystallization of colloidal hard
spheres and anisotropic polyhedra. Entropy regulation often operates on a larger scale,
subtly impacting the entire structure in a relatively concealed manner. Curvature, due to
its unique characteristics, provides a means of structural regulation beyond entropy and
enthalpy. On a large scale, it allows for the control of the entire topological structure of the
self-assembled system. On a small scale, specific structural changes in self-assembly can
be achieved by altering local curvature. Whether it is entropy or enthalpy, the impact on
structure is global and uniform, while curvature provides a non-uniform regulatory mecha-
nism, enabling localized functionalization. Therefore, curvature holds great significance in
this context.

5. Conclusions and Outlook

The self-assembly behavior of nanoparticles in curved space is closely related to
biological systems. Research on their self-assembly processes can offer new perspectives
on many physical phenomena and provide theoretical guidance in the design of novel
materials. In this article, we elucidate the intrinsic differences between self-assembly in
curved and normal spaces by summarizing experimental and simulation studies on curved
space self-assembly. The final self-assembled structure is determined by a combination
of free energy, topology, and local geometry. Through an in-depth analysis of numerous
research results, we discuss three structural control factors: interactions, particle shape,
and curvature. We propose three self-assembly control strategies—entropy, enthalpy,
and curvature—each with its characteristics and scale. These findings are crucial for
understanding the behavior of nanoparticles at interfaces and their further applications.

Despite significant progress in understanding the self-assembly behavior in curved
space over the years, there is still ample exploration space in this field. Due to the non-
intuitiveness of entropy, a deeper understanding of its crucial role in self-assembly is
needed. Additionally, efforts should be made to couple theoretical results from equilibrium
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states to non-equilibrium environments. In future research, a unified approach between
experimental and simulation studies should be pursued to overcome these challenges,
providing clear theoretical guidance for the construction of programmable materials in
various environments and the study of biological and physical processes.
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