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Abstract: Two kinds of slit pore carbon materials, namely activated carbon (AC) and 3D graphene ma-
terials (3D-GS), were purchased to examine their methane storage capabilities. The structural analysis
and characterization of AC and 3D-GS were carried out using X-ray diffraction (XRD), scanning elec-
tron microscopy (SEM), the X-ray energy dispersive spectrum (EDS), and N, adsorption/desorption
isotherms. Additionally, a thermodynamic framework was employed in the Henry’s law region to
evaluate the potential well between the adsorbed fluid and adsorbent. The adsorption behavior of
methane on two materials at room temperature and high pressure was also investigated. The results
show that the Toth equation is the most suitable model for predicting adsorption isotherms than the
Langmuir and L-F equations and determines that the absolute uptake of methane storage on AC and
3D-GS are, respectively, 7.86 mmol-g~! and 8.9 mmol-g~! at 298 K and 35 bar. In the Henry’s law
region, the isosteric heat of methane adsorption on 3D-GS is larger than that of AC. Meanwhile, the
potential well between methane and carbon-based materials decreases as the temperature increases.
This indicates that the capacity of methane uptake is enhanced at lower temperatures, which is
consistent with the measurements of adsorption isotherms. The research concludes that the 3D-GS
is more suitable as a material storage medium than AC. This study provides valuable theoretical
guidance for exploring the potential of methane storage on slit pore carbon-based material.

Keywords: methane storage; adsorption; activated carbon; 3D graphene materials; carbon-based
materials

1. Introduction

Methane is one of the most important energy sources in natural gas and biogas [1],
but the low volumetric and gravimetric storage capacities of methane at room temperature
still restrict its application as fuel in mobile vehicles [2,3]. It is still a challenge to safely
and effectively improve the capacity of methane storage [4]. Traditional methane storage
includes liquefied natural gas (LNG) and compressed natural gas (CNG). Although LNG
can store methane with commendable energy density, the additional energy must be
consumed for cooling at 112 K [5]. CNG consumes a lot of energy to pressurize over 20 MPa
for compressing natural gas since methane is a supercritical gas at room temperature [6].
Adsorbed natural gas (ANG) is considered an alternative method of natural gas storage
because it can store natural gas at room temperature and medium pressure (34 MPa) [7,8].

Methane adsorption on sorbents with high surface areas, such as carbon materials [4,9],
MOFs [10-12] and other porous materials, has been extensively researched due to its light-
ness, fast kinetics, and full reversibility. Developing suitable and excellent adsorbent
materials remains a bottleneck issue for the large-scale use of ANG as an energy carrier.
Compared with MOFs, the outstanding advantages of carbon materials such as ease of
preparation, low cost, chemical and mechanical stability and controllable porosity are
important features of their wide availability [13]. According to the pore structure classifi-
cation, carbon-based materials can be divided into graphite plates (e.g., graphite, carbon
black and graphene sheets [14,15]), slit pores (e.g., coal and activated carbon [1,15-18]), and
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cylindrical pores (e.g., CMS, nanotubes [19] and nanofibers [20-23]). Considering the low
price, ultra-high specific surface area and easy preparation of activated carbon, it has been
widely studied for ANG since the 1980s [24]. However, most activated carbons exhibit a
methane adsorption capacity of 50-160 v/v under standard conditions [25,26], which does
not meet the goals set by the U.S. Department of Energy (DOE) [27]. In order to maximize
the storage capacity of methane, it is still feasible to adjust the pore size distribution and
increase the specific surface area of activated carbon [9,28]. Recent research showed that
the premix of polypyrrole (PPY) and biomass-derived air-carbonized date seed carbon has
been successfully used to adjust the porosity of activated carbon, which achieved higher
gravimetric and volumetric methane uptake than MOFs [29]. However, the preparation
process is relatively complex compared to commercial activated carbon.

Recently, the family of nanostructured carbons has been expanded to include graphene-
related materials as an adsorbent, which have been reported to adsorb methane [30,31].
In general, graphene sheets (GS) have smaller surface areas and micro-pore volumes
than activated carbon, and it is often assumed that they have a maximal surface area of
about 2630 m? /g, which is many times greater than those in previously published studies
performed only on reduced graphene oxide (r-GO) samples [14,30,31]. In a previous
study [15], we found that GS and activated carbon have similar isosteric heat of methane
adsorption and interaction energy between adsorbates. Therefore, the development of
GS-related adsorbents should focus on expanding their specific surface area and pore
volume. Activation of graphene promotes the creation of a 3D structure made up of linked
(i.e., 3D graphene materials), highly imperfect graphene sheets with a greater surface area
required for increased methane adsorption [32]. Due to the ultra-high specific surface area
and excellent conductivity, 3D graphene materials are widely studied in energy storage [33].
But the capacity of methane adsorption for 3D graphene materials has not been investigated.
Therefore, for this study, we purchased commercial activated carbon and 3D graphene
materials to investigate their capacity for methane storage for ANG.

In this paper, the behavior of methane adsorption on activated carbon and 3D graphene
materials was studied for the development of a storage medium for ANG. Firstly, the struc-
tures of AC and 3D-GS were analyzed and characterized by XRD, SEM, EDS and N
adsorption/desorption isotherms. Secondly, the thermodynamic framework was used to
evaluate the potential well between adsorbents and slit pore adsorbents in the Henry’s law
region. Finally, the absolute capacity of methane adsorption on carbon-based materials at
room temperature and high pressure ~8 MPa was studied based on engineering applica-
tions. This work provides a useful effort to explore the potential of methane storage on
carbon-based materials.

2. Materials and Methods
2.1. Materials

Considering engineering applications, carbon materials are all commercial products.
The activated carbon and 3D graphene materials used in this paper were, respectively,
purchased from Ningde Xinsen Activated Carbon Ltd. (Ningde, China) and ENN Group
(Langfang, China) instead of being synthesized. The activated carbon was a kind of coconut
shell activated carbon, which was named AC. The 3D graphene materials were named
3D-GS. The three gases that were employed were ultra-high quality (methane, nitrogen,
and helium 99.999%). The used gases, LN and LAR, were acquired from Xiamen Linde Gas
Co., Ltd. (Xiamen, China).

2.2. Characterization

Both carbon materials were, respectively, studied for their microstructure and compo-
sition by SEM and EDS, as shown in Figure 1.

The SEM image in Figure 1 reveals that 3D-GS is composed of a multilayer graphite
plate, and its structure is quite different from that of activated carbon. The elemental
analysis results of desiccant material from the EDS image are listed in Table 1.
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Figure 1. The SEM and the EDS images of carbon material. (a): AC; (b): 3D-GS.
Table 1. Elemental analysis results of carbon materials by the EDS.
AC 3D-GS
Element Atom Concentration/% Element Atom Concentration/%
C 95.91 C 67.00
(@) 4.09 O 32.24
- - Cl 0.31
- -- K 0.15
- - Cr 0.30
Total 100 Total 100

As shown in Table 1, the content of carbon atoms in the 3D-GS is only 67%, and that of
the AC is 95.91%. The above results are similar to our previous studies on graphene sheets
and carbon black [14].

In order to evaluate the structure of carbon-based materials, a Rigaku MiniFlex 600
X-ray diffraction instrument was used to analyze the crystal structure of carbon-based
materials with a scanning step size of 0.02° in the 20 range of 5-90°. Figure 2 shows the XRD
spectra of activated carbon AC and porous graphene material 3D-GS. The characteristic
peaks of activated carbon and 3D-GS obtained indicate that the two peaks observed on
activated carbon are at 26.2° (002) and 44.3° (101), while the most obvious peak of GS
is at 24° (002). A peak of 44.3° (101) also exists but is not obvious. The results indicate
that both carbon-based materials have amorphous characteristics with a slight crystal
structure [34,35].

In this work, the distance of interlayer d in carbon materials is determined utilizing
Bragg’s law, d = A/2sine. Here, A = 0.15406 nm. The calculation results show that the
distance of the activated carbon interlayer is 0.34 nm, which is consistent with the theoretical
distance of the graphite interlayer [36]. Therefore, it is assumed to be a slit pore composed
of two graphite plates.

The distance of the 3D-GS interlayer is 0.37 nm, which indicates that during the
preparation process, the interlayer distance of graphene increases. This implies some char-
acteristics of nano-carbon materials, such as graphene sheets and carbon nanotubes [37].
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Figure 2. XRD pattern of carbon-based materials AC and 3D-GS.

2.3. Gas Adsorption Measurements

Micromeritics 3Flex was used to measure N adsorption isotherms at 77 K, from which
the BET specific surface area, pore size distribution, and pore volume were determined.
Before each test, the samples were subjected to vacuum at 393 K for 24 h to remove any
moisture. The specific surface area has been calculated from isothermal data using the BET
method. The pore size distribution (PSD) of both carbon-based materials was determined
by the 2D-NLDFT method. The detailed process can be found in our previous work [38].

Approximately 0.0338 g AC and 0.0287 g 3D-GS were selected for methane adsorption
measurements at low pressure and 283-303 K. Equilibrium data were also volumetrically
obtained by Micromeritics 3Flex.

About 0.2581 g AC and 0.2283 g 3D-GS were selected for methane adsorption mea-
surements at high pressure. The adsorption equilibrium data under high pressure were
volumetrically measured by Setaram PCTPro E & E, an instrument for accurately measur-
ing gas adsorption equilibrium within a temperature—pressure range, respectively, from
77-673 K and 0-20 MPa, and more testing details can be found in our previous research [39].

Prior to each adsorption test using Micromeritics 3Flex and PCTPro E & E, the sample
was placed in a vacuum at 393 K for 12 h to degas any moisture from it. To ensure the
accuracy of the experimental data, the test was repeated twice in a bath of liquid nitrogen
or oil.

3. Results and Discussion
3.1. Pore Structures

The N, adsorption data at 77 K were measured by Micromeritics 3Flex; the adsorption
isotherms of both carbon-based materials were as shown in Figure 3. The adsorption
isotherms of Ny on both carbon materials are typical type I adsorption isotherms according
to the IUPAC classification [40]. The adsorption amounts of AC samples are close to
saturation after P/Py = 0.2. It is possible to see that the AC is a typical microporous material.
But the desorption isotherm on 3D-GS has an obvious ‘hysteresis loop” phenomenon, and
the desorption isotherm on AC is inconspicuous. It implies that the 3D-GS sample has some
mesopores and micropores, and AC can be considered a typical microporous material.

Table 2 shows the results of calculating the Sggr of both carbon-based materials
using the relative pressure P/Py = 0.05-0.3; detailed information can be found in the
Supplementary Materials.
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Figure 3. Adsorption isotherms of N at 77 K on the carbon-based materials AC and 3D-GS.

Table 2. Textural parameters of the as-prepared HKUST-1 samples.

Simple 3D-GS AC

BET specific surface area Sggt/ m?. g*1 2045 1637
Micropore volume (<2 nm)/cm3.g~! 0.544 0.65
Mesopore volume (>2 nm)/cm?.g~1 0.838 0.142

As listed in Table 2, the Sggt of 3D-GS is around 2045 m2~g_1, which is larger than
that of AC (1629 m?-g~1). It can be found from Figure 3 that the capacity of N adsorption
on 3D-GS is also larger than that of AC, which indicates that it has a larger specific surface
area and pore volume. For supercritical adsorption, the adsorption capacity is positively
correlated with the specific surface area [4]. Therefore, 3D-GS may have a better adsorption
potential than AC.

For the characterization of PSD of carbon materials, its pore structure is often approx-
imated as a 1D pore structure. For example, the slit pores of activated carbon are only
related to the pore width [41]. When NLDFT was used to solve the PSD of activated carbon
in the early stage, it was considered that the fluid was distributed on the graphite plate
with a uniform energy distribution, but the surface energy distribution of activated carbon
and other porous materials was in fact heterogeneous, which would lead to the deviation
between the predicted results and the experimental values. For this reason, Ustinov and
Do further consider the surface energy heterogeneous term of a 1D energy distribution
in the solution process of NLDFT [42]. Ravikovich et al. regard the rough carbon crystal
surface as the carbon atom in the quenched phase state, proposed the QSDFT theory [43,44],
solved the contribution of the binary hard sphere fluid repulsion term by using the FMT
theory, and predicted the adsorption-desorption equilibrium of nitrogen and argon on the
ordered porous silica gel MCM-41 [45]. However, the above research based on NLDFT or
QSDEFT with a 1D function still cannot accurately describe the surface energy heterogeneous
distribution on the adsorbent, so it is necessary to further establish a 2D or 3D surface
energy distribution model.

As early as 2013, Jagiello and others studied the 2D-NLDFT [46]. They consider two 2D-
NLDEFT models: energetically heterogeneous and geometrically corrugated of the graphite
plane [47], and the results show that the PSD results of the two hypotheses are similar. This
indicates that for activated carbon, the 2D gas—solid surface model can be used to analyze
the two basic characteristics of the sample’s micropore geometry and heterogenous surface
energy. The quantitative improvement of the original slit pore model can significantly
improve the analysis results of the PSD of activated carbon. Subsequently, they used
2D-NLDFT to characterize cylindrical pores such as silica gel and carbon nanotubes. The
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characterization gases used were nitrogen, oxygen, argon and hydrogen. The model was
widely verified [48].

Therefore, considering the heterogeneous surface energy of carbon-based materials,
the 2D-NLDFT method was employed to determine the PSD and cumulative micropore
volume as shown in Figure 4. The mean pore width of two carbon materials was calculated
and is listed in Table 2.
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Figure 4. PSD of two carbon materials determined by 2D-NLDFT.

It can be found from Figure 4 and Table 2 that the PSD of activated carbon is con-
centrated in micropores, and its characteristic pores are concentrated at 0.64 nm, 0.91 nm,
1.3 nm and 2 nm, respectively. However, the micropore volume of 3D-GS is smaller than
that of mesopores, and the micropores are mainly concentrated at about 0.91 nm. Accord-
ing to the research [9], methane is suitable for storage in pores 2-3 times the molecular
diameter (i.e., between 0.76 and 1.15 nm), while the pore volume of 3D-GS in this region is
0.338 cm?®- g_1 and that of activated carbon is only 0.185 cm®. g_l. Combined with the Sggr
value in Table 2, 3D-GS is 1.25 times that of AC, which shows that 3D-GS seems to be more
suitable for methane storage. In addition, the mesopores of 3D-GS are concentrated in the
range of 2-6 nm, while the activated carbon is concentrated in the range of 2—4 nm.

3.2. Adsorption Equilibrium at Low Surface Coverage Region

The adsorption isotherms for methane at 283-303 K, which were measured using
Micromeritics 3Flex within the low-pressure range of 0-100 kPa, are plotted in Figure 5.
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Figure 5. The excess amount of methane adsorption on both carbon-based materials at 0-100 kPa
and 283-303 K. (a): AC; (b): 3D-GS.
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Figure 5 shows that all isotherms of methane adsorption on carbon materials appear
to be characteristic of the type I isotherm of adsorption, and .. of methane adsorption on
the AC is smaller than that on the 3D-GS at 100 kPa and all test temperatures (283-303 K).
According to Table 2, the Sggt of 3D-GS is larger than that of AC, which means that an
adsorbent with a larger Spgr has a larger methane uptake. In addition, it also indicates
the same interaction mechanism between methane and the aforementioned carbon-based
adsorbents, with their specific surface area and microporous volume being important
contributors to methane adsorption.

3.2.1. Adsorption Equilibrium

According to Gibbs’ definition of adsorption, excess adsorption #.y. and absolute
adsorption 1,4, can be correlated as follows:

Mexc = Naps — PbulkVa 1)

where v, is the volume of adsorbed phase for carbon-based materials and pp,,jy is the density
of the bulk gas phase. Here, the density of the bulk gas phase can be found in the NIST
data [49].

3.2.2. Isosteric Heat of Adsorption

Aimed at more accurately comparing the adsorption behavior of methane on carbon-
based materials AC and 3D-GS, the isosteric heat of adsorption at zero surface coverage g%
was determined by experimental data as shown in Figure 4.

In the region of Henry’s law, the excess adsorption is proportional to the equilibrium
pressure of adsorption [50],

Hexe = HpP )

where Hp is the Henry’s law constant. The process to determine the Hp by the equilibrium
data at 0-1.5 kPa is shown in Figure 6.
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Figure 6. The uptakes of methane adsorption on the carbon-based materials for the temperature
ranging from 283 K to 303 K and pressures up 1.5 kPa. (a): AC; (b): 3D-GS.

qY is determined by Hp as [51],

Gst = R—757 /) €)

Results are also listed in Table 3. The g, of methane adsorption on AC and 3D-GS
is about 19.93 kJ-mol ! and 23.23 kJ-mol !, respectively. It implies that, in addition to a
contribution from a larger Sgpt of the 3D-GS, the more activation sites of 3D-GS adsorbing
methane may be another important reason for its larger adsorption capacity.
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Vit (2) = Assf{ {;

Table 3. Parameters calculated by methane uptake on the AC and 3D-GS in Henry’s law region.

/K Hy/mmol-g~! kPa™! BysE+6/m3.g~1

AC 3D-GS AC 3D-GS
283 0.01758 0.01706 41.3633 40.1398
293 0.01362 0.01327 33.1783 32.3257
303 0.01004 0.00887 25.2921 22.3448

As listed in Table 3, the parameters of H, were determined using Equation (2) using
the experiment data as shown in Figure 6, which decrease as the temperature increases.
Since activated carbon has more ultra-micropores (<0.7 nm) as shown in Figure 4, the
parameters of H, for AC are slightly higher than those of 3D-GS at all test temperatures.

3.2.3. Thermodynamic Framework for Potential Well between Methane-Adsorbent

For a slit pore model of activated carbon and 3D-GS, it cannot be directly solved as a
graphite plane as in previous work [14]. In this paper, we introduce 2D-NLDEFT to solve
the integral adsorption isotherm equation (IAE) of PSD [41],

_ Wmax d w;
Nexe = excf w = Znerc 4)

Wmin

where w is the pore width, f(w) is a function about pore size distribution as shown in
Figure 3, and n%, is excess adsorption capacity with pore width w.

At very low coverage, the adsorbate molecules can be regarded as the Boltzmann
distribution relative to the slit pore with the pore width of w.

—Vext(z
Mabs = Pbulk /v exp [kli()} dv 5)

The bulk density of fluid under low pressure can be approximated to an ideal state,
Obulk = %, and according to Gibbs’ definition of adsorption as listed in Equation (1),

e = vﬂ{exp[;:;()]—l}dv—R/{ { ext(Z)}_l}dz 6)

where V,t(z) is the interaction between fluid and adsorbent in the slit pore with a pore
width of w. The 10-4-3 potential [52] was selected to determine the Viy¢(z), which defines
the pore width H measured between the centers of carbon atoms composing the surface
planes of the opposite walls, H = w+05s.

! )

Osf>m (Csf)4 (?f 2( Osf )10 < Osf )4 (sf
3 5\H—-z H-z _ 3
z z 3A(Z +0.61A) SA(H z+ 0.61A)

where A = 2mrszfpsA, ps and A are the density and interlayer distance of graphite. For

R

methane adsorption on carbon materials, we set the solid—fluid interaction parameters as
05r = 0.3605 nm. But the potential well between adsorbate-adsorbent ¢ is considered as
a variable to be determined as follows.

The excess adsorption 7,y can also be associated with the Virial equation [53]

Nexe = Bos (;T) (8)
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where Byg is the second Virial constant. In the very low surface concentration region, one
can obtain the following expression from Equations (4), (6), and (8) as

Bys — i(/OH {exp [_‘i’;(z)] - 1}dz>f(wi)Aw )

i

The variation in €57 has a function relationship between ;:—% with Byg as shown in Figure 7.

-8

In(B,s)

-13 I I L L
0.16 0.20 0.24 0.28 0.32

8sf/ (kT)

Figure 7. Plot of the normalized second Virial constants B,g determined by the AC and 3D-GS.

As shown in Figure 7, In(Bys) and &5 have a satisfactory linear relationship. Then,
the adsorbate-adsorbent well depth potential es¢ could easily be determined by linear
interpolation via linear plot [54]; the results are listed in Table 4.

Table 4. The potential well between methane and carbon-based materials.

SIK
T/K k
AC 3D-GS
283 68.67 65.64
293 68.14 64.73
303 66.66 62.11

Aslisted in Table 4, the well depth potential &7/ k is around 62.11-68.67 K, which is close to
that of using the Lorentz-Berthelot combining rules [55], &5¢ = , /€ss€/7 (€57 /k = 64.4 K). This
indicates that 2D-NLDFT is accurate in characterizing the PSD of carbon-based materials.

Meanwhile, the well depth potential e¢/k between fluid and AC as well as between
the 3D-GS is, respectively, about 68.14 K and 64.73 K at 298 K. This suggests that the
interaction energy between methane molecules and the AC is likely stronger than that
between 3D-GS. This may be due to the fact that activated carbon has more micropores and
provides more adsorption sites at very low pressure. AC has a greater number of methane
adsorption activation sites compared to 3D-GS, resulting in a higher well depth potential
esf/k for AC at zero surface coverage. Another significant factor contributing to higher
adsorption energy is the smaller mean pore width of AC compared to 3D-GS, as indicated
in Table 2.

Meanwhile, the potential well &;¢/k between methane and carbon-based materials
decreases as the temperature increases. This indicates that the capacity of methane uptake is
enhanced at lower temperatures, which is consistent with the measurements of adsorption
isotherms as shown in Figure 5.
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However, 3D-GS will show a stronger adsorption capacity for methane with the
increase in equilibrium pressure. The isosteric heat of adsorption at 0-100 kPa was deter-
mined by the Clausius-Clapeyron equation:

As shown in Figure 8, the isosteric heat of methane adsorption on AC is approximately
17.9-19.93 kJ-mol~!, while that of 3D-GS is around 19.3-23.23 k]-mol~!. According to
Figure 8, the change trend in adsorption heat gs; with the adsorption uptake also suggests
the adsorption of methane on the carbon materials with a heterogeneous energy surface,
wherein gs; decreases with the increase in adsorption uptake. At higher pressure, the energy
heterogeneity on the surface of 3D-GS is stronger than that on the AC surface. This may be
due to the fact that the main component of AC is carbon atoms, then the adsorbent surface
is uniform. Meanwhile, the carbon atom content of 3D-GS accounts for about two-thirds
and the oxygen content accounts for 32.24%, as listed in Table 1, indicating that it has a
large number of functional groups, enhancing the energy heterogeneous of the surface.
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Figure 8. The isosteric heat of methane adsorption on carbon-based materials at low surface coverage.

3.3. Adsorption Equilibrium at High Pressure

According to DOE storage requirements for ang commercial applications, the storage
temperature is room temperature and the storage pressure is 35-80 bar [27]. The experi-
mental data measured by PCTPro E & E were set as the test condition with high pressure
0-8 MPa and 298 K, and the results are shown in Figure 9.

10

Amount of adsorbed CH,/mmol-g™

0 1 1 1 1 1 1 1

0 1 2 3 4
P/MPa

Figure 9. Isotherms of excess amount of methane adsorption on the AC and 3D-GS at 0-8 Mpa and
298 K.
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Considering that the absolute adsorption capacity must be determined in engineering
applications, the static volumetric measurement determines the excess adsorption capacity.
Therefore, we selected the Langmuir, L-F and Toth equations for monolayer adsorption,
determined the absolute adsorption capacity from the experimental data, and determined
the appropriate model from their accuracy.

Mexe can be determined by the Langmuir, L-F and Toth equations [56], which are:

_ bf Poulk
Nexe = nOl T bf <1 - 0n > (11)
bf)t .
S
bf Pbulk
Mexe = y————2—— (1 — Pk (13)
1+ @f)'] / < P )

where ) is the saturation adsorption capacity, p, is the density of adsorbed phase, f is the
bulk gas fugacity, and b and t parameters that can be nonlinearly determined by fitting the
experimental data via Equations (11)—(13).

The accuracy of fitting was evaluated by the mean deviation &:

1 nlye — 0l

s=—y e cll v 100% (14)
N; nzexc

The results are shown in Table 5 and Figure 10.

Table 5. Parameters of Langmuir, L-F and Toth equation determined by non-linear fit of the experi-
mental data of methane adsorption on the carbon materials.

Langmuir Equation L-F Equation Toth Equation
Parameters
AC 3D-GS AC 3D-GS AC 3D-GS
ng/mmol g_l 9.9161 12.292 12.758 17.875 16.498 24.1
b/mmol g*1 MPa—! 0.8907 0.6365 0.5086 0.2918 0.8682 0.5227
t - - 0.8191 0.8052 0.5832 0.554
Oa /mol-L~1 45,230 113.86 36.252 22.8248 25.31 19.513
/% 0.8191 0.7835 0.1648 0.2657 0.1622 0.2342
12
10 +
TbD Tm 10
S 5l 3
£ .
el el
A z
3 g er
b ® data - = data
B 4 n,,._toth 5 n,,_toth
s | /0 - n,p_toth 2 4r /0 e ny,_toth
3 n, LF 3 n,. LF
5 2 == n,,,_Langmuir E 2L ’,/ - =n,,,_Langmuir
[] 1 1 1 [] 1 1 1
0 2 4 6 8 0 2 4 6 8
P/MPa P/MPa
(a) (b)

Figure 10. Isotherms of excess and absolute amount of methane adsorption on carbon materials.
(a): AC; (b): 3D-GS.

As shown in Table 5, the J of the Toth equation is the smallest of the three equations,
which verifies the accuracy of the fitting equation. The values of parameter t determined
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by L-F and the Toth equation for AC and 3D-GS are similar. This shows that the structural
parameters of the two materials are similar because they are both carbon materials. The
adsorption of methane on the carbon-based materials at supercritical temperature is similar
to that of compressed gas. After calculating the absolute adsorption capacity and determin-
ing the density of the adsorption phase of methane, it is found that the adsorption phase
density of methane on the test sample is smaller than that of liquid methane using the Toth
equation. This indicates that methane molecules gather in a state similar to compressed gas.
However, the parameters of p, determined by Langmuir and L-F equations may be larger
than 26.5 mol/L of the liquid methane. The results also verify the rationality of the Toth
equation. Therefore, when selecting the adsorption model, we should consider whether
the assumptions made by the model on the adsorption phase of supercritical methane are
reasonable.

As shown in Figure 10, the methane storage capacities of the carbon-based materials
AC and 3D-GS are 7.86 mmol-g ! and 8.9 mmol-g~! at 298 K and 35 bar. This indicates that
under high-pressure adsorption conditions, the Spgr is still the main factor determining the
adsorption amount.

4. Conclusions

This study comparatively investigated the behavior of methane adsorption on carbon-
based materials, with the aim of developing a storage medium for adsorbed natural gas
(ANG), and the conclusions reached can be summarized as follows:

(1) The 3D-GS is a more promising storage medium for ANG than AC in terms of the spe-
cific surface area and pore volume. The limit isosteric heat of methane adsorption on
the AC and 3D-GS is about 19.93 k] /mol and 23.23 k] /mol, respectively. The methane
storage capacities of both carbon-based materials AC and 3D-GS are, respectively,
7.86 mmol- g’1 and 8.9 mmol- g’1 at 298 K and 35 bar. Meanwhile, the Sggt of 3D-GS
is around 2045 m?-g~!, which is larger than that of AC (1629 m?-g~1). It can therefore
be concluded that under high pressure, the Spgr is still the main factor determining
the adsorption amount.

(2) The potential well between methane molecules and the AC is larger than that in
the 3D-GS. Considering the heterogeneous surface of carbon-based materials, the
framework to determine the potential well between adsorbate—adsorbent is built by
PSD determined by 2D-NLDFT. Using Boltzmann distribution approximation for the
fluid density on the heterogeneous surface, the adsorption potential well between
methane molecules and the AC and 3D-GS was shown to be, respectively, about
68.14 K and 64.73 K. Both values are close to that of using the Lorentz—Berthelot
combining rules (64.4 K); this indicates that 2D-NLDFT is accurate in characterizing
the PSD of carbon-based materials. Meanwhile, the potential well between methane
and carbon-based materials decreases as the temperature increases. This indicates
that the capacity of methane uptake is enhanced at lower temperatures.

(38) The Toth equation is the most suitable model for predicting methane adsorption on
carbon-based materials than that of the Langmuir and L-F equation. After determining
the values of the parameters by nonlinearly fitting on the experimental data covering
the pressure range from 0 to 8 MPa at 298 K, the Toth equation can predict the
experimental data of hydrogen adsorption on the carbon-based materials AC and
3D-GS with mean relative deviations of less than 0.25% and can determine that the
density of the adsorbed phase is less than 26.5 mol/L of the liquid methane. This
indicates that methane molecules gather in a state similar to compressed gas. The
results also verify the rationality of the Toth equation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pr11082487/s1, Figure S1: BET surface Area plot for AC; Figure S2:
BET surface Area plot for 3D-GS; Table S1: The parameters of BET specific surface area for AC;
Table S2: The parameters of BET specific surface area for 3D-GS ([57]).
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Nomenclature

Symbols

Byg the second Virial constants (m3- gfl)

b parameter for Langmuir, L-F and Toth equations (mmol g~! MPa™1)
d the distance of interlayer determined by Bragg’s law (nm)

f the bulk gas fugacity (MPa)

H the pore width for 10-4-3 potential (nm)

Hp Henry’s law constant (mmol-g~1-kPa~1)

Number of states, 1,2,3. ..

Boltzmann constant (J-K~1)

sum

the amount of adsorption (mmol-g~1)
pressure (MPa)

adsorption heat (kJ-mol—1)

Constant for gas

temperature (K)

external potential (])

pore width (nm)

the distance from carbon atom at surface (nm)
Greek Symbols

NE<H®RD wR oz
=

A the association strength (nm)

€ energy well depth for L-J fluid and solid (J)
7 the weighted packing fraction profile

0 degree (°)

0 density (nm~—3)

o size well depth for L-J fluid and solid (nm)
Subscripts and superscripts

0 saturation

a adsorbed phase

abs absolute

bulk bulk density of fluid

exc excess

Vi fluid—fluid

ss, sf solid-solid, solid—fluid

Abbreviations

2D-NLDFT 2D non-local density functional theory
EDS energy dispersive spectrum

PSD pore size distribution

SEM scanning electron microscopy

XRD X-ray diffraction
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