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Abstract: Oxygen is an important energy medium in the steelmaking process. The accurate dynamic
prediction of oxygen demand is needed to guarantee molten steel quality, improve the production
rhythm, and promote the collaborative optimization of production and energy. In this work, a analysis
of the mechanism and of industrial big data was undertaken, and we found that the characteristic
factors of Basic Oxygen Furnace (BOF) oxygen consumption were different in different modes, such
as duplex dephosphorization, duplex decarbonization, and the traditional mode. Based on this, a
dynamic-prediction modeling method for BOF oxygen demand considering mode classification is
proposed. According to the characteristics of BOF production organization, a control module based
on dynamic adaptions of the production plan was researched to realize the recalculation of the model
predictions. A simulation test on industrial data revealed that the average relative error of the model
in each BOF mode was less than 5% and the mean absolute error was about 450 m3. Moreover, an
accurate 30-minute-in-advance prediction of dynamic oxygen demand was realized. This paper
provides the method support and basis for the long-term demand planning of the static balance and
the short-term real-time scheduling of the dynamic balance of oxygen.

Keywords: steelmaking; basic oxygen furnace mode; oxygen demand; dynamic prediction; big data

1. Introduction

Steel is the world’s most important engineering and construction material [1]. Low-
carbon and intelligent are the trends of the steel industry [2]. Under the strategy of Industry
4.0, Europe has begun to develop hydrogen metallurgy, direct-reduction ironmaking,
electric arc furnace, and digitization to provide technical support for the development
of the steel industry [3]. However, traditional Basic Oxygen Furnaces (BOFs) were still
responsible for approximately 70% of steel production worldwide in 2021 [4].

During the BOF process, scrap and hot metal are charged into a BOF, and an oxygen
jet is injected at supersonic speed from the top through the lance onto the surface of the
metal bath. As carbon, silicon, manganese, phosphorus, sulfur, and other elements are
oxidized and removed, the hot metal is heated and smelted into molten steel. With the
improvement in the requirements for the composition and temperature at the end of BOFs,
the functions of traditional BOFs, such as “three desorption” and heating, have been
gradually decomposed into dephosphorization–decarbonization duplex technology [5,6].
This technology not only reduces the cost but also brings challenges to the energy guarantee
and production organization of the BOF steelmaking process [7,8].

Oxygen is one of the most important energy sources in the BOF steelmaking pro-
cess and plays an important role in the production rhythm and component temperature
control [9,10]. Due to the function of different BOF modes, they have different oxygen
demands. At the same time, intermittent production and multi-ladle superposition orga-
nization lead to a large fluctuation in oxygen demand, which contradicts the continuous
and stable production of oxygen generators, leading to a mismatch in oxygen supply and
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demand [11,12]. When the supply is less than the demand, oxygen cannot meet the require-
ments for normal BOF blowing, affecting the production rhythm. On the other hand, when
the supply exceeds the demand, to ensure the safety pressure of the oxygen pipe, excess
oxygen has to be dispersed, resulting in economic losses. Therefore, it is very important to
accurately predict oxygen demand in the BOF steelmaking process [13–16].

At present, the oxygen prediction models for BOFs mainly include static prediction
and dynamic prediction. Dynamic prediction mainly depends on auxiliary monitoring
technology and gas analysis technology to revise a BOF’s terminal point in real time [17–19].
However, most of the dynamic prediction models aim at a BOF’s endpoint to optimize
the process operation, which results in oxygen demand prediction only serving as the
optimization means of composition and temperature rather than providing the scheduling
of the oxygen pipe network balance. Research on oxygen balance, however, is still focused
on the energy side, which is mainly static balance. For example, Ruuska et al. [20] built a
multivariate coupled model based on mass balance to predict the distribution of chemi-
cal elements in BOFs. Daniela et al. [21] established a model based on thermodynamics
and kinetics to simulate liquid steel composition, oxygen consumption, and other factors
during the BOF process. However, the thermodynamic and kinetic conditions of the BOF
process are complicated, leading to difficulties in the theoretical calculation of reactions
such as element oxidation, auxiliary material melting, and furnace lining erosion. With
its fast response speed and high prediction accuracy, the data-driven intelligent model
has gradually become a new method to improve the prediction accuracy and efficiency of
BOF modeling. For example, Liu et al. [22] proposed an effective mechanical-data fusion
modeling method for an energy (physical heat, reaction heat, and consumption heat of
molten steel)-informed restricted Boltzmann machine to accurately track the BOF process
and dynamically optimize operation control. Peng et al. [23] optimized the structural
parameters of a Support Vector Machine (SVM) with an optimization algorithm and es-
tablished a prediction model of oxygen consumption in BOFs. Jiang et al. [24] used the
mixed model of multiple linear regression (MLR) and Gaussian process regression (GPR)
to predict the oxygen consumption of BOFs. Nevertheless, the above models all improved
the model by optimizing the algorithm instead of employing theoretical interpretation,
resulting in insufficient applicability. And the application effect of the same algorithm in
different BOF modes was quite different.

Moreover, oxygen demand in the BOF steelmaking process fluctuates greatly due to
the BOF modes and complex organization. The adjustment based on the static balance of the
oxygen network has a time delay, leading to imbalances in oxygen supply and demand and
affecting the production stability. Optimal oxygen scheduling based on the collaboration
between the production system and the energy system has become a new study direction.
In this field, Zhang et al. [25], Kong et al. [26], and Xu et al. [27] considered the oxygen
system characteristics of production, storage, buffering, and consumption and established
an optimal oxygen scheduling model based on the operational constraints and scheduling
rules of steelmaking. They made some useful attempts to design production-energy multi-
system collaborative modeling methods. However, these oxygen models did not accurately
predict the oxygen demand in each period of the BOF process in combination with the
production plan and the BOF mode. As a result, the models could only predict statically
rather than dynamically under the real industrial condition where the BOF production plan
changed frequently. And it was difficult to provide effective support for the strategy to
ensure the optimal scheduling of the oxygen pipe network to establish a dynamic balance.

Consequently, this work combined the BOF steelmaking mechanism and industrial
big data to analyze the characteristics of oxygen consumption under different BOF modes.
The oxygen demand prediction models were established by a neural network algorithm
for duplex dephosphorization, duplex decarbonization, and traditional mode. On this
basis, considering the production organization and the dynamic scheduling, a dynamic
optimization module was developed using the data dynamic interaction technology to
realize the dynamic prediction and correction of the real-time oxygen demand, which would
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support the stable BOF steelmaking rhythm and the oxygen optimization scheduling to
establish a pipe network dynamic balance.

2. Materials and Methods

The subject of this work was to establish a prediction model of oxygen demand of
converter based on the characteristics of duplex dephosphorization, duplex decarburization,
and traditional modes, to provide decision-making support for oxygen scheduling. The
practical section was divided into three parts. The first part was the theoretical analysis
which described the BOF oxygen demand characteristics combined with the mechanism and
historical data analysis. The second part described the process of establishing the prediction
model and its operating logic. The last part described the industrial data preprocessing
methods. All the data were from a Chinese steelmaking plant. About 50,000 heats were
collected.

2.1. Analysis of BOF Oxygen Demand Characteristics Combined with the Mechanism and Data
2.1.1. Analysis of Oxygen Consumption Mechanism in BOF

In the process of BOF steelmaking, the oxygen was mainly from oxygen lance (mO2, blow)
and carried by auxiliary materials ( ∑

ingredients
m[O], j) such as iron ore, lime, dolomite, etc.

The consumption of oxygen was mainly divided into three categories: ∑
oxidation

m[O], i, the

oxidization of elements in hot metal such as [Fe], [C], [Si], [Mn], [P]; m[O], brasque, the ox-
idization of carbon-containing materials in furnace lining; and mO2, dissipation, the excess
oxygen taken away by furnace gas.

The auxiliary materials containing oxygen mainly included lime, iron ore, dolomite.
According to their main components, they could be simplified as (CaO), (FeO·Fe2O3),
(CaCO3·MgCO3). Then,

∑
ingredients

m[O], j = MO ·
mlime
MCaO

+ MO · 4
mironstone

MFeO·Fe2O3

+ MO · 6
mdolomite

MCaCO3·MgCO3

(1)

where mi is the amount of each auxiliary material; Mi is the molar mass of each substance.
In the hot metal, the oxidation of [Fe] produces (FeO) and (Fe2O3). The oxidation of

[C] produces {CO} and {CO2}. The oxidation of [Si] produces (SiO2). The oxidation of [Mn]
produces (MnO). The oxidation of [P] produces (P2O5). As a consequence, ∑

oxidation
m[O], i

could be simplified by Equation (2).

∑
oxidation

m[O], i = MO ·
∆m[Fe, FeO]

MFe
+ MO · 1.5

∆m[Fe, Fe2O3 ]
MFe

+ MO ·
∆m[C, CO]

MC
+ MO · 2

∆m[C, CO2 ]
MC

+

MO · 2
∆m[Si]

MSi
+ MO ·

∆m[Mn]
MMn

+ MO · 2.5
∆m[P]

MP

(2)

The oxygen consumed by the carbon in the BOF lining material could be simplified as:

m[O], brasque = MO ·
m[C, CO]

MC
+ MO · 2

m[C, CO2]

MC
(3)

The oxygen taken away by furnace gas needed to be detected by the flue gas of the
BOF.

According to the above analysis, oxygen consumption in the BOF steelmaking process
could be simplified as Equation (4). In this equation, ki is the simplified expression of
a series of coefficients of the complex relationship between each element of hot metal
and oxygen consumption; kj is the simplified coefficients of the complex relationship
between auxiliary material, such as lime, iron ore, dolomite, and oxygen input; and K is the
empirical coefficient of furnace lining oxidization and excess oxygen dissipation. Due to the
complicated temperature and equipment conditions, it was difficult and costly to accurately
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measure the above coefficients in different production environments. For example, to
calculate the oxidation coefficient of [C] (kc), the furnace gas detection equipment was
needed to analyze the ratio of decarbonized products CO and CO2, which had a high cost
and limited accuracy. It was also necessary to compare the furnace lining erosion before and
after production, which made it difficult to establish the fast production rhythm. However,
for most variables, such as the amount, the content, or the temperature of hot metal or
molten steel, the BOF steelmaking process was equipped with relatively mature detection
methods, which could accurately obtain the real industrial production data. Therefore,
among the influencing factors of the BOF oxygen consumption listed in Equation (4), the
mature acquisition conditions in industrial sites such as miron, [i%]iron, msteel, [i%]steel, and
T were preliminarily selected as the oxygen demand prediction modeling factors.

mO2, blow =
i=Fe,C,Si,···

∑
oxidation

ki · (mhot metal · [i%]hot metal + mscrap · [i%]scrap −msteel · [i%]steel)/100−
j=CaO,FeO,···

∑
ingredients

kj ·m(j) + K (4)

2.1.2. Analysis of BOF Mode Based on Industrial Big Data

The statistics of oxygen consumption rates of more than 25,000 heats in a Chinese
steelmaking plant is shown in Figure 1. According to the function, the BOF process could
be divided into three modes: duplex dephosphorization (I), duplex decarbonization (II)
and traditional mode (III). Mode I was mainly used to complete the de-[P] task and transfer
hot metal into semi-steel. Mode II was to transfer the semi-steel from Mode I into qualified
molten steel, which mainly completed the de-[C], de-[S], and temperature-rising tasks.
Mode III directly transferred the hot metal into molten steel in a BOF to complete the de-[P],
de-[C], de-[S], and temperature-rising tasks at the same time. Figure 1 shows that the
oxygen consumption was concentrated around 4000 m3, 11,000 m3, and 14,000 m3, which
corresponded to BOF Mode I, II, and III. From the perspective of hot metal input conditions,
as shown in Figure 2a, both de-[C] and tonnage were positively correlated with oxygen
consumption, and this relationship was consistent in the three BOF modes. However, the
influences of temperature, as shown in Figure 2b, differed in the three BOF modes. For
Mode I duplex de-[P], the BOF input was hot metal with large temperature fluctuations
while the output was semi-steel with a stable temperature. A higher temperature in BOF
was not conducive to the thermodynamic conditions for de-[P], so its oxygen consumption
was lower than that at a lower temperature of hot metal, showing that temperature and
oxygen consumption were negatively correlated. For Mode II duplex de-[C], the BOF input
was semi-steel and the output was molten steel with different end-point temperatures. Since
de-[C] is an exothermic reaction, the higher terminal temperature is, the more thoroughly
the reaction proceeds. Therefore, the temperature was positively correlated with oxygen
consumption. For Mode III, the thermodynamic and kinetic conditions were more complex,
so there was no obvious rule of temperature and oxygen consumption.
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tions.

The relationship between the main oxidation in hot metal and oxygen consumption
is shown in Figure 3. Under different BOF modes, there were different influence rules
between each element and oxygen consumption. For [Si], it was usually oxidized rapidly
in the early stage of BOF steelmaking, so there was a significant positive correlation with
oxygen consumption in both Mode I and Mode III. However, Mode II was the de-[C] stage
of the duplex, and [Si] was mostly oxidized in the former de-[P] stage. Therefore, [Si] in
Mode II had no obvious correlation with oxygen consumption. Similar to [Si], [Mn] was
oxidized rapidly in the early stage. However, due to the increase in temperature and slag
basicity at the later period, Mn reversion occured. The correlations between Mn and O2
consumption under the three modes were not obvious. [P] was mainly oxidized by (FeO)
and fixed by (CaO) as calcium phosphate into the slag, and this reaction was an exothermic
reaction. In Mode I, the temperature was relatively low (about 1450 ◦C), which resulted
in a slow rate of decarbonization. The [Fe] oxidation led to an increase in (FeO) content
in the slag, which is conducive to dephosphorization. Therefore, Mode I had an obvious
correlation with de-[P]. While the decarbonization reaction was intense in mode II and III,
they had no obvious correlation. For [S], due to its low content, there were no obvious
correlations between the three modes.
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In conclusion, different BOF modes had different effects on oxygen consumption due
to different input materials, operations, functions, and targets. To achieve an accurate
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prediction of oxygen consumption, it is necessary to construct different prediction models
according to BOF mode, and to further refine corresponding characteristic factors and their
influence rules on oxygen consumption to complete the modeling. For example, according
to a correlation analysis of industrial data, the hot metal tonnage was a modeling factor
for Mode I and II because it was an input to Mode I and II and had a clear correlation
with oxygen consumption. For semi-steel weight, there was a correlation with oxygen
consumption in Mode II, so this was a modeling factor in Mode II. Similarly, the corre-
sponding characteristic factors of each mode can be obtained, as shown in Table 1. In
addition, in the real industrial BOF steelmaking process, there could be one or more BOFs
working at the same time based on the production plan, which led to dramatic fluctua-
tions in oxygen flow demand. Therefore, in addition to the characteristic factors of the
furnace oxygen consumption, the time characteristics should also be included to realize the
real-time oxygen consumption flow prediction through the superposition of each furnace
oxygen consumption.

Table 1. Characteristic factors of oxygen consumption in BOF.

Characteristic Factors Mode I Mode II Mode III Unit

Hot metal tonnage
√ √

t
Semi-steel tonnage

√
t

Hot metal temperature
√ ◦C

Semi-steel temperature
√

De-[C]
√ √ √

%
De-[Si]

√ √
%

De-[P]
√

%
Start oxygen blowing time

√ √ √
hh:mm:ss

End oxygen blowing time
√ √ √

hh:mm:ss

2.2. Prediction Modeling of Oxygen Consumption in BOF
2.2.1. Model Theory

As shown in Figure 4, the consumption curve of oxygen flow for a single BOF consists
of a rising stage, a stable stage, and a falling stage. However, in the real production process,
there were still several BOFs working together with different modes. Therefore, this work
intended to establish a model to predict the oxygen consumption flow of a single BOF and
the key time nodes of oxygen blowing, and then calculate the oxygen consumption flow of
the steelmaking process by accumulating the oxygen consumption flow of each BOF.
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Figure 4. The relationship between the oxygen consumption of single BOF and that of steelmaking
process.

For a single BOF i, the piecewise function of oxygen consumption flow Qt
O2,i during the

working process is shown in Equation (5). In the industrial BOF steelmaking process, the
constant pressure operation was mostly adopted for oxygen lance, so it could be assumed
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that the oxygen flow rate of each BOF in the stable blowing stage was constant, and the
oxygen flow rate in the rising stage and the falling stage changed linearly. According to the
industrial data, the average time in the rising stage (t1) was 1.5 min, and that in the falling
stage(t2) was 0.5 min. Similar to the calculation of trapezoid area, the St

i could be calculated
by oxygen consumption volume in BOF Vt

O2,i and oxygen blowing time Ti according to
Equation (6). The whole steelmaking process involving the production of multiple BOFs
at the same time could be obtained by superposition of the oxygen flow rate of a single
BOF according to the production plan. As shown in Equation (7), the oxygen flow demand
Qt

O2,total at the time of t was the sum of the oxygen flow Qt
O2,i consumed by all BOFs being

produced at that time.

Qt
O2,i =



St
i

t1
· (t− osti), osti ≤ t ≤ osti + t1

St
i , osti + t1 ≤ t ≤ oeti − t2

St
i

t2
· (oeti − t), oeti − t2 ≤ t ≤ oeti

0, else

(5)

where osti and oeti are the start and end blowing time for BOFi, respectively; St
i is the

oxygen flow rate at the stable stage, m3/min; t1, t2 represent the average time in the rising
stage and the falling stage respectively, min.

Vt
O2,i =

1
2
(Tt

i
+ Tt

i
− 1.5− 0.5) · St

i = (Tt
i
− 1) · St

i (6)

Qt
O2,total = ∑

i
Qt

O2,i (7)

2.2.2. Model Algorithm Framework

In this work, a BP neural network model with double hidden layers was adopted, as
shown in Figure 5. A BOF mode recognition algorithm was added before the main body of
the model to determine the input variables according to the BOF mode. First, the BOF mode
was determined according to the plan data; then, the corresponding characteristic variables
were extracted according to the BOF mode as the input of the BP neural network model,
and the model output the prediction of the oxygen consumption of the furnace; finally, the
oxygen consumption of the furnace was converted into the oxygen flow rate according to
Formulas (5)–(7). The input was the important process parameters that affected oxygen
consumption, and the output was the Vt

O2,i. Moreover, the Qt
O2,i was obtained according

to the oxygen-blowing duration. Finally, the multi-furnace oxygen blowing flow rate was
superimposed according to the time needed to obtain the total oxygen consumption flow
of the steelmaking process in real-time. After repeated optimization, the number of nodes
in the hidden layer of the model was 20, the initial weight and threshold were randomly
assigned between (0, 0.6) and (0~1), and the learning rate was 0.01.

The dynamic operation framework of the model included the parallel thread of pre-
diction, clock, and training to improve the efficiency of the model. At the same time, a
database was built to realize dynamic data interaction, as shown in Figure 6. The prediction
thread was mainly used for loading the training model and outputting the results according
to the trigger condition. The training thread was mainly responsible for completing the
model training and storing it according to the trigger condition. The clock thread was the
dynamic operation core of the model, which was used to store information such as the real
clock, production schedule change mark, prediction and training trigger mark, etc. For
example, when the clock ran to a certain time, the pre-made BOF production plan was
changed due to the disturbance, the change flag of the production plan was triggered, and
the model sample was updated. Finally, the model prediction thread updated the results to
realize the dynamic prediction.
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2.3. The Establishment of Model Samples from Plan Data by Historical Big Data Preprocessing
Method

It can be seen from Table 1 that the BOF mode, information of hot metal/semi-steel
(tonnage, component, temperature), information of the BOF terminal (component, tempera-
ture), and time information (start/end time of blowing) was required to obtain a complete
sample of the prediction model. The above data were recorded in the performance data
after production. However, the plan data before production generally included only station,
BOF number, steel grade, start/end time, etc., which were quite different from the data
items required by the model sample. Therefore, it is necessary to preprocess the production
plan data to obtain reliable model learning samples.

2.3.1. Sample of Component and Temperature Characteristics

To calculate the de-[C], de-[Si], de-[P], and T, the real initial composition and temper-
ature of hot metal/semi-steel and that at the BOF terminal must be obtained. Although
there were no component and temperature data in the plan data, the hot metal sample
would be measured and transmitted to the big data platform at the end of the KR process.
In other words, at a certain time before the BOF process, the real initial composition and
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temperature could be obtained in real-time through dynamic data interaction technology.
The component and temperature at the BOF terminal depended on the steel grade. Ac-
cording to the analysis of historical big data, the [C%] at the BOF terminal of a certain steel
grade with different BOF modes was approximately normal, as shown in Figure 7 (sample
number 7633). Therefore, The BOF terminal [C%] could be filled by the most probable
component of the actual historical data for the same steel grade in the same BOF mode. In
fact, in the historical data of the BOF, the real component and temperatures after the BOF
process of 31 steel grades with three BOF modes were recorded in detail, which provides a
rich data basis for supplementing the plan data on component and temperature.
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2.3.2. Sample of Time Characteristic

At present, the plan data only consisted of the start time of the whole BOF process
whiley the did not consider the operation time, the addition of scrap steel, addition of hot
metal, and other operations before oxygen blowing. It is obviously unreasonable to directly
regard the start time of the BOF process in the plan data as the start time of oxygen blowing.
The time information of each BOF operation stage was recorded in detail in the historical
performance data. As shown in Figure 8 (sample number: 55,887), according to whether
scrap steel was added or not, the actual operation time before the oxygen blowing of the
BOF was approximately normally distributed. Therefore, the operation time before oxygen
blowing could be filled by the most probable period of the actual historical data, and then
the BOF start time in the plan data could be modified to obtain the planned start and end
time of oxygen blowing.
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2.3.3. Model Sample Building Based on BOF Plan Data

The original BOF plan data could be preprocessed according to the above principles.
At the same time, for data anomalies, the z-score standardized method was adopted to
normalize data distribution, and abnormal data outside the 3σ (three standard deviations)
distribution was screened out. More than 40,000 model learning samples were obtained.
Some original data and processing examples are shown in Tables 2 and 3. Due to the huge
sample number, 2000 samples were randomly selected from the sample bank for each
experiment, 80% of which were used as the training group and 20% as the test group. The
test group was used to test whether overtraining occurred. When the prediction accuracy
of the test group was basically the same as that of the training group, the model could be
used.

Table 2. Original BOF plan data for model feature items.

Plan ID BOF ID BOF Start Time BOF End Time Steel Grade Msteel

- - - - - kg

5028360 203B03848 15:57:56 16:24:56 BN378001 288,832.00
5028363 202B03844 13:00:45 13:27:45 BE05C011 287,436.00
5028378 203E04790 14:45:48 15:12:48 BC09C011 309,581.00
5028379 203E04792 16:44:03 17:11:03 BC06A001 297,670.00
5028380 201D04508 15:22:48 15:42:48 BC06A001 297,670.00
5028380 202A04508 16:32:52 17:02:52 BC06A001 297,670.00
5028381 203E04791 15:19:48 15:46:48 AC064001 297,670.00
5028382 203E04793 17:20:57 17:47:57 AC064001 297,670.00
5028383 203E04794 18:07:22 18:34:22 AC064001 297,670.00
5028384 203A04509 18:44:24 19:11:24 AC064001 297,670.00
··· ··· ··· ··· ··· ···
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Table 3. Processed samples of model feature items.

Time Dynamic Variables Model Input Variables Model
Output

Plan ID ost Duration BOF
Mode De-[C] De-[Si] De-[P] mhot metal/semi-steel Thot metal/semi-steel VO2

- - - - % % % t ◦C m3

5028360 16:05:21 15.0 3 4.02 0.17 - 277.00 - 12,954.00
5028363 13:06:05 11.7 2 3.17 - - 301.00 1401 10,861.00
5028378 14:53:28 15.5 3 4.78 0.47 - 286.00 - 15,699.00
5028379 16:50:02 15.5 3 4.22 0.30 - 283.00 - 14,286.00
5028380 15:29:58 8.5 1 1.08 0.42 0.04 309.11 1351 3992.00
5028380 16:37:11 11.3 2 3.20 0.01 - 318.00 1392 10,397.00
5028381 15:24:55 15.5 3 3.98 0.14 - 283.00 - 14,499.00
5028382 17:28:12 15.5 3 4.19 0.15 - 285.00 - 15,630.00
5028383 18:17:14 15.5 3 4.02 0.10 - 284.00 - 14,181.00
5028384 18:50:33 15.5 3 4.09 0.12 - 280.00 - 14,241.00
··· ··· ··· ··· ··· ··· ···

3. Results
3.1. Prediction Effect of Oxygen Consumption in a BOF

The prediction effect of oxygen consumption in a BOF was tested under a Chinese
steelmaking plant for 2 days with a production capacity of about 58,000 tons. Figure 9
shows a comparison between the model prediction results and actual results. The diagonal
line indicated that the predicted value was equal to the actual value. This meant that the
closer the point was to the diagonal, the closer the prediction was to the actual values. The
gray area indicated that the relative error was within ±5%. The predicted results were
strictly distributed at 4000 m3, 11,000 m3, and 15,000 m3, followed by the three BOF modes.
Most of the samples (100%, 99.9%, and 89.6% for the Mode I, II, and III, respectively) fell in
the gray area, indicating that the probability of a model prediction error of less than 5%
was more than 90%. The maximum average absolute error was about 450 m3. The lower
the absolute oxygen consumption was, the higher the prediction accuracy was.
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3.2. Prediction Effect of Oxygen Consumption Flow in the Whole Steelmaking Process

According to the oxygen blowing time of BOF and the superposition plan of multi-
furnace blowing, the predicted results of the total oxygen flow demand curve of the
steelmaking process in the coming 8 h are shown in Figure 10. On the whole, the prediction
results were in accordance with the real fluctuation tendency. However, the predicted curve
was not in good agreement with the actual oxygen flow curve, and the mean absolute
error (MAE) and root mean square error (RMSE) were as high as 577.98 m3/min and
851.54 m3/min, respectively. From the perspective of cumulative oxygen consumption, the
absolute error of oxygen demand at the end was 22.5 km3, and the relative error was only
3.05%, indicating that the model in this work still maintained high precision in predicting
oxygen consumption volume.
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plan in the next 8 h.

To analyze the reasons for the poor prediction accuracy of oxygen flow, the prediction
effect in the next 0–2 h, 2–4 h, 4–6 h, and 6–8 h were compared, as shown in Figure 11.
Figure 11a shows that the predicted curve had a good agreement with the real curve in the
first 30 min, and then the real curve started to leave the predicted curve. Moreover, with
the extension of the prediction period, the delay in the real curve became more obvious.
In the period of 6–8 h, as shown in Figure 11d, the maximum delay time of the real curve
was more than 10 min compared with that of the predicted curve, with a maximum MAE
and RMSE of 965.99 m3/min and 1195.78 m3/min respectively. Therefore, it could be
inferred that the time sequence mismatch between the predicted curve and the real curve
was the direct cause of the poor accuracy of oxygen flow curve prediction. In fact, the
model input samples in this work were the BOF plan data at the current moment. Within
30 min from the prediction trigger time to the future, the BOF plan was basically fixed,
and the prediction accuracy of the model was high. However, in future, the BOF plan
would be adjusted due to the disturbance of the seelmaking process, that is, dynamic
scheduling, which led to an advance or delay in the BOF plan start/end time. Therefore,
the dynamic scheduling of BOF plan was the key cause of the poor accuracy in oxygen flow
curve prediction. Nevertheless, the time from oxygen pipe network to BOF was only about
2~3 min. During dynamic operation, the model in this work could accurately predict the
future oxygen flow demand 30 min in advance, which had the potential to maintain the
dynamic balance of oxygen with short-term supply.
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4. Discussion

A dynamic prediction model of BOF process has been reported in many studies. Most
of them focused on the accurate tracking of the BOF process and the dynamic optimization
of the operation control. The oxygen demand is only a boundary condition in the dynamic
control model, which can be dynamically modified but cannot be predicted in advance,
and provides decision support for oxygen scheduling. The Industry 4.0 strategy requires
the steel industry to transform to low carbon. Establishing an accurate prediction model
and realizing the dynamic balance of oxygen is a key measure to strengthen the production
and energy management in iron and steel enterprises under the situation of overall energy
savings and consumption reductions. In addition, most of the current oxygen prediction
models took historical production performance data as input data, which could be evalu-
ated afterward, but they were difficult to predict before production and struggled to meet
the requirements for the dynamic prediction of oxygen.

Therefore, the oxygen consumption mechanism, model algorithm, and other aspects
were reasonably simplified in this work, and the industrial production plan data with
less information were supplemented and improved. Based on the dynamic database, the
model-running framework of prediction, clock, and training multithreading was designed
to improve the model efficiency and realize the dynamic prediction of oxygen demand.

In the aspect of production plan data preprocess, a total of eight variables in three
categories were determined by combining oxygen consumption mechanism and industrial
big data characteristics. Among them, variables such as steel composition and temperature
after the end of blow, as well as oxygen-blowing time, were not included in the production
plan data. Since the composition, temperature, and oxygen-blowing time were related to
steel grade and BOF modes, this work was based on historical production performance data.
The end composition distribution, temperature distribution, time distribution, and oxygen-
blowing duration distribution of each steel grade were analyzed under different BOF
modes. The historical data distribution of the steel in this mode was used to supplement
the missing key variables of the model sample in the production plan data. The results
revealed that the average relative error of the prediction based on the production plan
data was less than 5%, which could satisfy the precision demands of oxygen consumption
prediction in industrial production. This proved the feasibility of modeling based on
production plan data and the rationality of the data-filling method used in this work.
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Under the premise that the production plan was basically fixed (within 30 min), the
model in this work maintained a good prediction accuracy. However, with the scheduling
of the production plan, the prediction accuracy obviously decreased, which indicated
that the production plan was eventually executed or not was the limiting factor of the
prediction accuracy in this work. The dynamic scheduling of the production plan was
inevitable in the actual BOF production process, which meant that the production plan
data input to the model must be refreshed in real-time. Therefore, in model framework
design, in addition to the conventional model training and prediction thread, the model
clock thread synchronized with the dynamic database was specifically developed. At the
same time, this thread was also set to store information such as the real clock, plan change
flag, prediction and training trigger flag. Once the production plan was changed, the model
was run and output the result. The last result was overwritten to dynamically correct
the model prediction result. Under the experimental conditions used in this work, the
dynamic prediction results of the model could accurately reflect the fluctuation of oxygen
flow demand in the next 30 min, which could provide a scheduling basis and support
for the dynamic balance of oxygen in the production-energy system, thus reducing the
pressure fluctuations and oxygen release of the oxygen pipe network, saving energy and
reducing consumption from the perspective of the system.

5. Conclusions

In this work, through an analysis of the reaction mechanism and industrial big data, it
was determined that duplex dephosphorization, duplex decarbonization, and traditional
mode were affected by material, operation, target, function, etc., and their oxygen con-
sumption characteristics were different. Because of the lack of key information such as
composition and temperature in the plan data, the dynamic prediction model samples for
different modes were established based on historical big data mining.

Based on the industrial data simulation from a Chinese steelmaking plant, the results
revealed that the average relative error of the model was less than 5% and the maximum
average absolute error was about 450 m3, which could meet the accuracy requirements
regarding the static balance in the long-term prediction of the BOF oxygen consumption.

The dynamic adjustment of the actual production plan was an important factor affect-
ing the predict accuracy of the oxygen consumption flow. In this work, a time sequence-
matching control thread based on a dynamic database was developed to synchronize the
production plan schedule in real-time and dynamically revise the model prediction results.
Under the experimental conditions in this Chinese steelmaking plant, the model could
accurately predict the BOF oxygen flow demand 30 min in advance, which could provide
a scheduling basis and support for the short-term oxygen demand plan and the dynamic
balance in the production-energy system.
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