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Abstract: Due to variables like wellbore deviation variation and flow rate, the local flow velocity in
the output wellbore of horizontal shale oil wells varied significantly at various points in the wellbore
cross-section, making it challenging to calculate the total single-layer production with accuracy.
The oil-water two-phase flow rate calculation techniques for horizontal wells developed based on
particular flow patterns and array spinners had excellent applicability in their respective niches but
suffered from poor generalizability and demanding experience levels for logging interpreters. In this
study, we employed five spinners in a triangular walled array instrument to create the multi-decision
tree after figuring out how many leaf nodes there were and examining the defining characteristics
of the observed values gathered under various experimental setups. The construction of the entire
oil-water two-phase flow prediction model was made possible when the random forest regression
approach was used with it. The total oil-water flow rate at each perforated layer was predicted using
the model in sample wells, and the mean square error with the third party’s interpretation conclusion
was 1.42, indicating that the model had an excellent application effect. The approach, which offered
a new interpretation method for calculating the oil-water two-phase flow rate of horizontal wells
based on multi-location local flow rate, required less interpretation knowledge from the interpreter
and had a stronger generalization capacity.

Keywords: horizontal well; oil-water two-phase; multi-location local flow velocity; flow rate prediction;
random forest algorithm

1. Introduction

Chinese continental shale oil has an enormous amount of potential for development [1-3].
Because of its multiple thin layers, the horizontal well volume fracturing exploitation
method is commonly utilized [4-6]. Due to the early application of broad water injection
techniques to enhance the recovery ratio, many existing wells were already enduring
substantial water cut [7]. Conduct output profile logging is used to identify the high-
producing water layer in order to plug water and boost production. Stratified flow and
scattered flow are the two primary two-phase oil and water flow types in near horizontal
wells. The distribution condition of oil and water in the wellbore fluctuated significantly
due to variations in well trajectory, gravity’s effect, and flow rate near different production
layers [8]. As a result, the water holdup distribution and velocity distribution are complex
and varied. Traditional single-probe logging instruments with centered measurements did
not accurately depict the fluid flow state in the wellbore. As a result, array capacitance,
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array resistance, and array fiber are frequently used to measure local holdup, while array
spinner is frequently used to measure local velocity. These methods more correctly reflect
the local flow information in the wellbore [9-13]. For total oil-water flow rate and fractional
phase flow rate inversion calculations, among other things, stratified flow models and drift
models are frequently created [14-16]. These explanatory models, however, typically only
apply to particular flow types and have weak generalizability.

Wellbore deviation and fluid viscosity can cause different measurement deviations at
different locations, which may affect the spinner response, increasing errors in flow rate
interpretation and complicating logging interpretation. Local flow velocity measurements
at various locations using various spinners are also influenced by these factors. The correct
spinner response coefficients (slopes) and start-up speeds (the minimum fluid flow rate
necessary for the spinner to start rotating) must be chosen for the interpretation in order
to calculate accurate results when the fluid flow rate is calculated using conventional
methods because various factors affecting the spinner response need to be compensated
and corrected to ensure the accuracy and reliability of the interpretation model. The
selection of slope, however, necessitated expert logging interpretation skills and was
frequently prone to error. Currently, machine learning methods were frequently used to
understand exploration log data [17-20] and production log output profiles [21]. As a
form of machine learning technique, random forests provide predictions by constructing
several decision trees. To lower the risk of overfitting and to increase the accuracy and
stability of prediction, each decision tree is constructed using randomly chosen training
data and features. Using distinct decision trees, the random forest algorithm learns and
generates predictions individually before combining the output of many decision trees.
This method is highly suited for handling challenging traffic prediction problems since
it handles high-dimensional information and nonlinear interactions with effectiveness.
In order to avoid the issue that the traditional production logging interpretation may be
affected by a number of factors, which results in an inadequate generalization ability of
the prediction, this paper attempts to use the random forest algorithm to predict the total
oil-water two-phase flow rate of horizontal wells. It improves the universality of the
interpretation approach and lessens the difficulty of production logging interpretation.

In this study, a multi-location array spinner instrument was used for data acquisition,
and the experimentally gathered data points were used as training and test data to analyze
the significance of each parameter, determine the number of decision trees and the number
of leaf nodes, and finally establish an accurate predictive model of oil-water two-phase
flow total flow rate in horizontal wells based on the random forest regression algorithm,
which has high predictive ability and is widely used in practice.

2. Data Analysis
2.1. Experimental Setup

In this study, the diameter of the wellbore utilized in the experiment was 124 mm, and
experiments were performed using a flow loop simulation device under various conditions
of wellbore deviation of 85° and 90°, flow rates of 30, 40, and 50 m?®/d, and water cut of 50,
70, and 90%. The array instrument employed in this study is shaped like a triangle arm with
five spinners; the distribution of the spinners is shown in Figure 1. It can effectively cover
the wellbore’s cross-section and gather data on the flow velocity of the entire borehole.

The flow rate at a single borehole cross-section was usually calculated when calculating
the flow rate in the borehole, which led to the calculation of the flow rate for the entire
borehole. Figure 2 depicts how the spinner is distributed across the wellbore cross-section.



Processes 2023, 11, 2346 30f13

Spinner

e
e

Figure 1. Schematic diagram of spinner distribution.
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Figure 2. Schematic diagram of the spinner in the wellbore section.

The height of each spinner at the wellbore cross-section is calculated as in Equation (1).
y; =CAL/2— (CAL/2 —y;) X cosROT; 1)

whereiis 0, 1, 2, 3, 4. yl’- is the height of the ith turbine after rotation, mm. CAL is the
diameter of the well, mm. y; is the height of the ith spinner caused by the instrumental
process, mm. ROT; is the rotation angle of the ith probe, °.

2.2. Local Flow Velocity Calculation Method

The flow rates of the oil and water phases in horizontal wells differed as a result of
the different densities of the oil and water phases. In order to calculate flow rate, three
variables must be measured: flow velocity, time, and area. The rotating speed of the spinner
can be transformed into the actual flow velocity of the fluid over a given length of time,
representing the magnitude of the overall flow rate in the wellbore. A crucial sign for
determining the flow rate in the wellbore visually is the spinner’s rotating speed in terms
of magnitude. Similar to the relationship between windmill rotational speed and wind
speed, there is a relationship between turbine rotational speed and flow rate. The turbine’s
rotating speed rises in lock step with the wellbore fluid flow rate, much like a windmill
does in the face of heavy winds. With this knowledge, we move on to start translating
spinner RPM to fluid flow rate.

The calculation of the spinner speed and spinner local flow rate is calculated as
Equation (2).

Vi = SPIF;/K; — SPEED + Vy 2)

where V; is the ith spinner’s calculated local flow velocity, m/min. SPIF; is the ith spinner’s
response value, rps. K; is an experimentally calibrated coefficient, dimensionless. SPEED
is the cable’s speed, m/min. Vj; is the experimentally calibrated start-up velocity of the ith
spinner, m/min.
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The relationship between the fluid flow velocity and spinner speed is a straight line
through the origin in the ideal situation. However, when the fluid flow velocity is low,
the mechanical friction and fluid viscosity cause the relation between the spinner speed
and fluid flow rate to be curved, deviating from the straight line of the ideal condition.
The influence of the mechanical friction decreases dramatically as the fluid flow rate rises;
however, the main influencing element of the fluid viscosity causes the fitted straight line
of the spinner speed and fluid flow rate to deviate slightly from the straight line in the
ideal state [22]. Due to the influence of the mechanical friction and fluid viscosity, the fitted
straight line and the ideal state of the fitted straight line of the offset are the spinner start-up
speed V.

The cross plot of the cable speed and spinner speed can be used to calculate the
spinner response coefficient (K), which is dictated by the manufacturing process. In the
cable speed-turbine speed cross plot, the slope of the straight line fitted through the data
points is then the spinner response coefficient K, and the intercept of the straight line with
the horizontal axis is the minimum fluid flow velocity required for the spinner to start
rotating, V};,. The spinner response coefficient of the same spinner differs slightly in the
real application process due to variations in temperature, pressure, fluid characteristics,
production conditions, etc. The full-flow layer and zero-flow layer must be used as the
calibration layers in the actual logging interpretation process in order to draw a rendezvous
diagram between the cable speed and the spinner speed and then calculate the spinner
response coefficient (K) and start-up speed (V};,). Calibration layer selection and calculating
the spinner response coefficient (K) are both qualitative processes that depend on the
interpreter’s previous experience. A cross plot of the spinner 0 response data and cable
speed for three full-flow and three zero-flow layers chosen for a specific application is
displayed in Figure 3.
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Figure 3. Cable speed and spinner speed cross plot.

“Full-Flow Layer” is Full-Flow Layer, and “Zero-Flow Layer” is Zero-Flow Layer,
as seen in the Figure 3. “DN” stands for Downward Pull Measurement, and the cable
speed is positive. “UP” stands for Upward Pull Measurement, and the cable speed is
negative. “SPIFQ” is the Oth spinner’s response value. “SPEED” is the cable’s speed. The
spinner response coefficient (K) is the average of the slopes of the fitted straight lines for the
downward pull measurement and the upward pull measurement in the same scale layer in
the cross plot of the cable speed and spinner speed. The intercept on the horizontal axis of
the fitted straight line for measurements of downward pull and upward pull in the same
calibration layer is averaged to obtain the start-up speed of the spinner, Vy,.

At this stage, a decision is required to select the suitable result because the spinner
response coefficient (K) and start-up speed (V) fitted by the cross plot are different for the
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different calibration layers. As a result, there is uncertainty and potential for error in the
calculation of the spinner response coefficient (K) and startup speed (V).

2.3. Analysis of Flow Velocity Influencing Factors

Equation (1) is used to compute the local flow velocity of each spinner after determin-
ing its response coefficient (K) and start-up velocity (V};,). The flow velocity curve of the
wellbore cross-section is fitted by the local flow velocity of each spinner using the quartic
polynomial. The fitting procedure is as follows: a quadratic polynomial fitting function is
used to eventually fit the local flow velocity profiles at various heights throughout the well-
bore cross-section, using the height y/ of the five turbines on the wellbore as the dependent
variable and the local flow velocity V; as the independent variable.

Next, the integral is used to calculate the average flow velocity on the wellbore cross-
section. Finally, the total flow rate of the horizontal well is calculated. The flow velocity
curve in the wellbore cross-section is affected by the cable speed and wellbore deviation
as shown in Figure 4. As shown in Figure 4, where the horizontal axis is the fluid flow
velocity and the vertical axis is the height of the wellbore section, “DEV” is deviation, and
stands for wellbore deviation, “CW” stands for water cut, “QT” stands for total oil-water
flow rate and “SPEED” for the cable speed. The values of the vertical axis coordinates of
the red hollow dots correspond to the height of the spinner in the wellbore cross-section in
the experimental photographs.

DEV 85° CW50% QT30m3/d " DEV 85° SPEED-14m/min » DEV 85° SPEED-20m/min
E 85002 g

V(m/min) V(m/min)
DEV 90° CW50% QT30m¥d " DEV 90° SPEED-14m/min » DEV 90° SPEED-20m/min

0.43979
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Figure 4. Wellbore cross-sectional flow velocity curve.

The area filled by the o0il and water phases is comparable at a wellbore deviation of
90° with 50% water cut, as shown in Figure 4. The lighter mass oil phase has a larger
flow velocity when the wellbore deviation is 85°, and the local flow velocity is greatest at
the height where spinner 4 is situated. The fitted curves demonstrate that the local flow
velocities at the heights of spinner 1 and spinner 4 are similar when the wellbore deviation
is 90° and the cable speed is lower. The flow velocity of the oil phase is greater than the
flow velocity of the water phase in the whole wellbore cross-section as the absolute value
of the cable speed rises, meaning that the local flow velocity at the height where spinner 4
is positioned is greater than that at the height where spinner 1 is located.
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2.4. Characteristic Parameter Analysis

It is known from the previous section that several variables, including the cable speed,
turbine response value, and well slope, have an impact on the calculation of the overall
flow rate of horizontal wells. In order to create the flow rate prediction model based on the
random forest regression technique, the data for the wellbore deviation, the cable speed,
and the five spinners response values are employed as input characteristic parameters. The
raw data must be cleaned and processed, and any potential outliers must be identified and
dealt with in order to assure the consistency and dependability of the data. To ensure that
the input characteristics are complete, missing value data are filled in if they exist in the
data. Outliers are also removed in order to avoid interfering with the model’s training
and prediction. Table 1 displays the characteristics of the input parameter. In the table,
“SPEED” is the cable speed, “SPIF” is the spinner response value, and “DEV” is the wellbore
deviation. The training set was drawn from a randomly chosen 70% of the dataset, while
the test set was drawn from the remaining 30%.

Table 1. Characteristic parameters for predicting oil-water two-phase flow total flow rate in.

Characteristic Range Mean Value Standard Deviation
Parameter
SPEED (m/min) —21.18~—10.18 -17.73 2.64
SPIFO (rps) —7.44~—-0.41 —3.24 1.01
SPIF1 (rps) —7.52~0.42 —4.47 1.76
SPIF2 (rps) —9.02~—1.47 —4.93 1.53
SPIF3 (rps) —8.53~4.68 —-3.92 1.23
SPIF4 (rps) —5.64~1.67 0.22 1.38
DEV (°) 85~90 88.21 2.40

The interpretability of the random forest algorithm is primarily due to its capacity
to assess the significance of each input variable and determine the extent to which each
input parameter influences the prediction outputs. The process of determining importance
typically involves first categorizing the input parameters, then choosing the best features
for node splitting by comparing their Gini coefficients before and after splitting, and
finally determining the extent to which feature splitting improved the model by using the
Out-of-Bag (OOB) error to determine the relative importance of each feature.

The Gini coefficient is calculated as in Equation (3).

G=1-Y" (P)> (3)

where C is the number of categories. P; is the proportion of samples belonging to category i
in this node.

For each sample 7 in the random forest, assuming that there are T trees in the random
forest model and sample i is not sampled in the tth tree (which is an OOB sample), its
prediction can be calculated as 7!. Its OOB error is calculated as in Equation (4).

0=1TY,, Ly i} @)

where O denotes the OOB error for the sample i. T; denotes the number of times sample i
is in all tree photos as a sample. L(y;, §}) is a loss function that measures the error between
the predicted value 7! and the true value y;. For regression problems, the squared loss is
usually used and is calculated as in Equation (5).

L(yi, 91) = (vi - 9})° ©)

Figure 5 displays a histogram of the significance of each characteristic parameter on
the flow rate forecast, which demonstrates that the important values for spinners 1 and 4
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are higher, which is more in line with the pattern in Figure 3 overall. The calculation of the
horizontal well’s total flow rate is influenced by the cable speed, spinner response value,
and wellbore deviation.

1.8

Importance
o o o = = -
- - TS T S

=
[~ ]

=

Input Parameter

Figure 5. Histogram of the importance of feature parameters.

3. Random Forest Algorithm and Model Construction
3.1. Principle of Random Forest Algorithm

In the area of machine learning, random forest belongs to the field of integrated
learning. Its distinctive quality is that it creates a potent predictive model by constructing
numerous separate decision trees. Each decision tree in random forest is created using a
randomly chosen collection of features and training data. By introducing this randomness,
the model’s accuracy and generalizability are improved as redundant features have less
of an impact on the prediction outcomes. The sample data utilized in the random forest
training process for constructing each decision tree are also collected by random sampling,
further enhancing the model’s diversity. As each decision tree is trained using a different
subset of features and data, they have a high degree of independence and are less likely to
overfit. The construction procedure is as follows:

(1) A finite number of samples may be drawn numerous times, and selecting is performed
from the original dataset; the gathered samples are the same size as the original dataset.

(2) Assume that M attribute features make up the sample and that m of those features is
chosen at random for node splitting, with m being substantially smaller than M.

(3) Use step (2) to continue splitting the selected nodes until a stopping condition is
fulfilled. This stopping condition may be that the maximum depth of the decision tree
has been reached or the number of samples in the node is below a threshold etc.

(4) Keep repeating steps (2) and (3) to create a multitude of decision trees that eventually
combine to form a random forest.

Depending on the tree’s initial data, each decision tree chooses the best splitting
method. The decision tree outputs from each decision tree are ultimately averaged or
weighted to provide the prediction results of the random forest. With less reliance on the
initial data, this method produces more accurate predictions. Figure 6 displays the random
forest’s schematic diagram.
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Figure 6. Schematic diagram of random forest principle.

3.2. Model Construction

When creating a single decision tree, the importance of the input feature parameter
was used to determine the probability that the feature parameter would be chosen at
random as the next leaf node. Once the predetermined number of leaf nodes is reached,
the split proceeds downward until the algorithm’s optimal decision tree depth is reached.
The optimal number of leaf nodes and decision trees must be identified before building
the oil-water two-phase flow total flow prediction model for horizontal wells based on the
random forest regression algorithm. In this study, the performance of the model is tested
by testing different numbers of leaf nodes, which are set to 3, 5, 10, 20, 100, and 200. The
mean square error under different numbers of leaf nodes and decision trees is evaluated,
and the mean square error is determined as in Equation (6). Figure 7 displays the mean
square error for various leaf nodes and decision tree counts.

MSE =1/N x Y (y — 9)? (6)

where MSE denotes mean square error. N denotes sample size. y denotes true value.
1§ denotes predicted value.

Figure 7 shows that when the number of leaf nodes is set to 3, the mean square error
drops to its lowest value. When there are roughly 60 decision trees, the mean square error
of each curve no longer declines. Therefore, the choice is made to build the flow prediction
model in this research using a combination of 3 leaf nodes and 60 decision trees.

A flow prediction model built on the random forest method can be created by setting
the number of leaf nodes, the number of decision trees, and the regression technique. Use
the existing flow prediction model to input the horizontal well logging data for the cable
speed, response value, and wellbore deviation to calculate the total oil and water two-phase
flow rate.
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Figure 7. Plot of mean square error with different leaf nodes and number of decision trees.

Figure 8 compares the actual flow rate for the experimental total oil-water flow test
sets of 30, 40, and 50 m3/d to the model-predicted flow rate. The training set’s test data,
which were acquired by randomly selecting 30% of the total sample data, are represented
in the figure by the blue data points. The model’s predicted flow rate is represented by the
horizontal coordinate in the graph, while the test data’s actual flow rate is represented by
the vertical coordinate. The red solid line’s points indicate that predicted and actual flow
rates are equal. The 10% error line between a predicted flow rate and the actual flow rate is
represented by the red dashed line. From the figure, it can be seen that the prediction errors
are essentially within the range of 10%, indicating that the prediction results of the model
were relatively accurate. However, when the predicted flow rate is in error, the predicted
flow rate is always greater than 30 m®/d when the true flow rate is 30 m3/d, while the
predicted flow rate is always less than 50 m3/d when the true flow rate is 50 m®/d. This
phenomenon occurs because the flow rate of the training data used to build the random
forest model is between 30 and 50 m?/d, causing the model to have a tendency to converge
the flow prediction results to the 30 to 50 m®/d interval during the prediction process.
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Figure 8. Comparison of test flow rate and predicted flow rate.
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In this paper, the performance of the developed model is evaluated using the mean
square error and the coefficient of determination, which is calculated as follows.

SST =Y (vi—7) @)

where SST means the total variance of the sample. y; means the true value of the i th
sample. ¥ means the mean of the true value of the sample.

SSE = Y (vi — )’ ®

where SSE means the sum of squared residuals. y; means the true value of the th sample.
¥; means the th model predicted value.

R?> =1— (SSE/SST) )

where R? is the coefficient of determination of the model. SSE denotes the sum of squared
residuals. SST denotes the total variance of the sample.

As shown in Table 2, the model’s mean squared error, which is 2.77, represents a
decent overall prediction performance. The model has a high degree of interpretability, as
indicated by the coefficient of determination of 0.95. In conclusion, the model’s predicted
flow rate shows good explanatory accuracy.

Table 2. Table of error results.

Mean Squared Error Decision Coefficient

2.77 0.95

4. Example Verification

The horizontal shale oil well known as well A had eight perforation layers, sixteen
perforation clusters, a wellbore deviation between 78 and 89 degrees, a total flow rate
of 56 m3/d, and severe fluid accumulation in the wellbore with a water holdup of more
than 90%. The cable pull measurement was used, and the measurement included three
upward pull measurements and three downward pull measurements, for a total of six trips
to measure the speed data, and the measurement data is shown in Figure 9.

A total of 132 sets of data were collected from values gathered close to the perforation
cluster. In this study, the flow rate was forecasted using a flow rate prediction model
based on the random forest regression technique. The flow rate results for well A were
predicted using the cable speed, spinner response value, and wellbore deviation data.
Schlumberger’s well logging interpretation findings are concluded by the interpreters’
interpretation expertise following a number of procedures like curve data quality control,
spinner calibration, and interpretation technique selection. The mean square error between
the flow rate results predicted in this paper and interpreted by Schlumberger is 1.42. A
comparison of the flow rate is shown in Figure 10.

According to the model developed in this study, the horizontal coordinates in the
image indicate the total oil-water two-phase flow rate at each layer of well A, whereas
the vertical coordinates show Schlumberger’s interpretation results. The red dashed line
represents the 10% error line, and the points on the red solid line show that the flow rate
determined in this study matches Schlumberger’s flow rate interpretation results exactly.
According to the graph, when the total flow is between 30 and 50 m?/d, both errors are
often less than 10%, demonstrating the great accuracy and usefulness of the flow forecast
model. However, a portion of the data has a higher inaccuracy when the flow rate is less
than 30 m3/d.
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Figure 9. Measurement curve of well A.
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Figure 10. Comparison of predicted flow rate of well A and calculated flow rate of SLB.

5. Conclusions

Shale oil horizontal well output profile logging is influenced by a variety of circum-
stances, making the typical logs interpretation approach difficult, requiring highly skilled
interpreters, and inadequately generalized. In this study, the oil-water two-phase flow
total flow prediction model for horizontal wells was developed utilizing the random forest
regression technique based on the measurements of the multi-position array spinner, cable
speed measurement, and wellbore deviation data. Using experimental data, the model was
tested, and the test mean square error is 2.77, with good overall prediction outcomes and
accuracy of forecast. When the model was applied correctly to an example, the mean square
error of the model’s predicted flow is 1.42, and the difference between Schlumberger’s
interpretation and prediction results is essentially 10%, which is an excellent application
result. The model performed better at flow rates between 30 and 50 m®/d, and the accuracy
will be decreased in other flow rate ranges, as determined by the properties of the training
data. As a result, the follow-up work should carry out more pertinent tests to enhance the
model and boost forecast accuracy.
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