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Abstract: In this work, deep reinforcement learning methodology takes advantage of transfer learning
methodology to achieve a reasonable trade-off between environmental impact and operating costs in
the activated sludge process of Wastewater treatment plants (WWTPs). WWTPs include complex
nonlinear biological processes, high uncertainty, and climatic disturbances, among others. The
dynamics of complex real processes are difficult to accurately approximate by mathematical models
due to the complexity of the process itself. Consequently, model-based control can fail in practical
application due to the mismatch between the mathematical model and the real process. Control
based on the model-free reinforcement deep learning (RL) methodology emerges as an advantageous
method to arrive at suboptimal solutions without the need for mathematical models of the real
process. However, convergence of the RL method to a reasonable control for complex processes is
data-intensive and time-consuming. For this reason, the RL method can use the transfer learning
approach to cope with this inefficient and slow data-driven learning. In fact, the transfer learning
method takes advantage of what has been learned so far so that the learning process to solve a
new objective does not require so much data and time. The results demonstrate that cumulatively
achieving conflicting objectives can efficiently be used to approach the control of complex real
processes without relying on mathematical models.

Keywords: intelligent control; model-free deep reinforcement learning; reusing policy; waste water
treatment plant

1. Introduction

Model-based controller design and analysis require mathematical models of the real
process to be controlled for successful development and implementation. Advanced control,
such as model-based predictive control (MPC), has provided stability, robustness, and good
performance to control systems. Basically, the mathematical models of complex non-linear
processes are approximation models of the real process. However, these approximation
models involve a model mismatch with the real process due to the complex dynamics
and uncertainties included in the process, which cannot be obtained quantitatively or
qualitatively by physical or identification modeling. Accordingly, model-based controllers
are not guaranteed successful performance in real implementations.

Wastewater treatment plants (WWTPs) involve complex nonlinear biological processes
impacted by weather disturbances, influent uncertainty, difficult-to-predict external factors,
and faulty sensors, among others. In recent years, interest in the problems of the operation
and control of wastewater treatment plants has increased due to the increasingly demanding
regulations on water quality. The activated sludge process (ASP) is the most widely
used biological process for mathematical models of wastewater treatment plants. In ASP,
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sludge is bacteria in suspension, called biomass, that remove contaminants. In particular,
the Activated Sludge Model nº1 (ASM1) introduces nitrogen and organic matter removal
based on oxygen and nitrate consumption. In these cases, the control of oxygen [1] is the
most studied by researchers due to its strong and rapid influence on the sludge within
the ASP [2]. Different model-based control strategies have been developed using ASM
models [3–5]. Nonetheless, the ASM models do not represent the real process models exactly.
Consequently, although MPC is a powerful tool for dynamically controlling processes,
control systems designed under these simulation models may fail in the real process due
to the high uncertainty caused by the biological process, making its deployment in real
applications difficult.

In real WWTPs control, a human field operator replies to uncertainty and all the above
factors, taking advantage of their experience. Accordingly, we considered it necessary to
develop computational intelligence systems proficient at recreating a control role similar
to the expert human operator to bring some autonomy to the operational performance of
wastewater treatment processes.

Reinforcement learning (RL) is a machine learning methodology that includes data-
driven techniques and algorithms to solve optimal control problems using sequential
decisions [6,7]. Instead of hard-programming the solution for the controllers, an RL agent
learns a desired decision strategy as a human brain through a trial-and-error process.
More precisely, this RL agent learns by interacting with the environment: the environment
sends a state, the agent responds with an action based on a decision strategy, and the
environment responds with a new state and a reward. The new state is the consequence
of the action. At the same time, the reward is a scalar value indicative of how good the
decision strategy of the agent is. The interaction aims to reach a decision strategy that
maximizes the cumulative discounted reward.

In fact, reinforcement learning is the meeting point between control theory and ma-
chine learning. On the one hand, RL control theory [7], basically dynamic programming and
Bellman optimality, allow for dividing a complex problem into sequentially sub-problems.
On the other hand, machine learning and deep learning provide deep neural networks
known to contain universal approximation properties. Therefore, from a broader per-
spective, deep reinforcement learning [8] can employ deep neural networks to address
complex a priori unknown environments within high dimension of states and action con-
tinuous. Deep reinforcement learning falls into two main categories, value-based and
policy-based. In the first one, it optimizes the Q function in search of the action with the
maximum Q value given a state applying a policy. The second directly optimizes the
policy that maximizes the cumulative discounted reward. For example, the value-based
deep Q-network algorithm approximates the Q function using a deep neuronal network.
The policy-based policy gradient algorithm approximates the policy using a deep neuronal
network. The policy is the decision strategy of the agent. Accordingly, the deep neural
network is iteratively optimized in policy-based algorithms. This self-adaptive nature of
model-free RL algorithms makes agents potentially competent at discovering near-optimal
solutions without the mathematical models of the process.

However, most RL algorithms face sampling efficiency problems [9], making learning
an optimal policy in complex dynamics difficult. Transfer reinforcement learning method
reduces the samples needed to achieve a policy by reusing previous knowledge. Basically,
transfer reinforcement learning method specifies which information is transferred and
how it is transferred in a reinforcement learning method context: [10] reward shaping [11],
learning from demonstration [12,13], mapping between tasks [14,15], representational
transfer [16,17], and policy transfer [18,19], among others. Transferring a policy can be
re-training a policy to achieve a similar objective to the one already achieved. Therefore,
this reusing policy approach could be useful in addressing a complex process composed of
conflicting sub-objectives.

In recent years, deep reinforcement learning has been applied to diverse engineering
fields, particularly in continuous control processes [20,21]. A review of applications of
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RL in continuous process control processes can be found in [22], and [23] summarizes
recent developments in RL and discusses its implications for the process control field.
The relationships between model predictive control and reinforcement learning are studied
in [24], highlighting their strengths and weaknesses.

Machine learning in wastewater treatment plants [25,26] stands out for predicting
the risk of violating pollution legal effluent limits. Thus, supervised networks usually
participate as predictors in control strategies focused on avoiding these violations [27,28].
In the case of the RL method, unlike the supervised machine learning method one, there
is no explicit knowledge of the desired inputs and outputs. Fundamentally, the desired
inputs and outputs are achieved using a reward that indicates the objectives as a guide
for the optimization. For example, ref. [29] considers LCA indices using multiagent deep
reinforcement learning (MADRL) in order to optimize dissolved oxygen simultaneously
and chemical dosage in a WWTP, while [30] gives a previous instruction to the reinforce-
ment learning agent before it acts on the plant for the trade-off between effluent quality
and operating costs.

The present proof-of-concept attempts to address multiple gaps and, in doing so, make
important contributions:

• This work extends the limited research of model-free reinforcement learning in
WWTPs control by implementing a simple policy gradient algorithm to achieve multi-
ple objectives.

• For the first time, it demonstrates transfer reinforcement learning in its basic
policy reuse format as an option to address multiple competing objectives in
WWTP efficiently.

In this work, controller RL agents are trained by a model-free policy gradient algorithm
to achieve a reasonable trade-off between the environmental impact and operating costs in
wastewater treatment plants. To this end, we reuse a policy to achieve the global control
objective by accumulating the fulfillment of competing sub-objectives: first, reducing the
environmental impact, and then operating costs, according to legal limits and performance
indexes. More precisely, the control is on the aerobic process to reduce ammonia and nitrate
pollution and the aeration energy cost. To demonstrate efficient learning, RL agents that
used previous experience are compared with those that did not reuse previous experience.
Furthermore, although the proposed agents will be trained and evaluated in Benchmark
Simulation Model nº1 (BSM1), they will also be evaluated in Benchmark Simulation Model
nº2 (BSM2) [31].

The rest of the paper is organized as follows: Section 2 presents the BSM1 in which
the controller RL agents are trained and evaluated, and the BSM2. Section 3 details the
problem statement to minimize environmental impact and operation costs. Section 4 defines
the deep reinforcement learning algorithm employed and the transfer learning approach.
Section 5 presents simulation results. Finally, Section 6 assembles concluding remarks.

2. Plant Description

In this section, protocol and benchmarking software tools used to evaluate the perfor-
mance and control strategies in waste water treatment plants (WWTPs) are presented.

2.1. Benchmark Simulation Model nº1

The Benchmark Simulation Model nº1 [32] includes the mathematical ASM1 model of
the activated sludge process (ASP) [33]. The ASP is a widely used biological treatment pro-
cess that removes pollutants through sludge composed of bacteria in suspension. The pol-
lutants can be nitrogen and/or phosphorus, in addition to organic carbon substances [34].
Nitrogen is removed in serial stages, de-nitrification, and nitrification, managed by anoxic
and aerobic conditions. Figures 1 and 2 show the ASM1 process variables in the BSM1
(except oxygen So and the alkalinity Salk) by the sequential relationship between the vari-
ables within the anoxic and aerobic processes, respectively. In particular, nitrogen can be
found as ammonium NH4+, nitrate NO3−, and nitrite NO2−. Basically, the process is as
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follows: first, in de-nitrification, nitrate is reduced to nitrogen gas by heterotrophic bacteria
(Figure 1). Then, in nitrification, the ammonia is oxidized to nitrate by autotrophic bacteria
(Figure 2). As stated, the role of bacteria is fundamental, but, to carry out its function, it
needs oxygen, especially in the nitrification process. Furthermore, it is important to note
that the reduction of ammonium involves nitrate increases.

Figure 1. ASP process variables in the anoxic condition.

Figure 2. ASP process variables in the aerobic condition.

The BSM1 includes three influent disturbance profiles: dry, rain, and storm weather.
The average influent dry weather flow rate is 18,446 m3/d. In particular, each profile con-
tains data from two weeks of simulation with samples every 15 min. The plant layout BSM1
is as follows: two anoxic reactors (denitrification) with 1000 m3 volume each, three aerobic
reactors (nitrification) with 1333 m3 volume each, and a secondary decanter (6000 m3).
In addition, it includes internal recirculation to ensure nitrates in the anoxic reactors from
the aerobic reactors [35] and external recirculation to ensure sludge from the secondary
decanter to the anoxic reactors. As for plant control, the default control in Figure 3 is based
on the PI control. More precisely, aeration factor KLa5 is manipulated in reactor 5, and the
internal recirculation is manipulated to arrive at reactor 2. Thus, the oxygen set point is
2 g·m−3, and the nitrate set point is 1 g·m−3.

Oxygen control is fundamental in the BSM1 control strategies [1], not only because it
is needed to ensure the presence of bacteria to remove pollutants but also because of the
operating cost linked to its presence. The aerobic process is oxygen-dependent and involves
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the removal of nitrogen in the structure of ammonia (Snh) in reactors 3, 4, and 5 (Figure 3).
The oxygen (So) is food for the bacteria in order to remove ammonia to nitrates, which,
by controlled recirculation, is converted to nitrogen gas in the anoxic reactors. Because of
the significant and quick effect of oxygen on bacterial growth, So concentration is the most
studied control in WWTP [36,37].

Figure 3. Benchmark Simulation Model nº1, plant layout and default control.

The mass balance for reactors is defined by the next general equation:

dZ
dt

=
l

Vi
(Qi−1Zi−1 + rZVi −QiZi), (1)

where Vi is the constant volume of the reactor i ∈ 2, 3, 4, 5, and the concentration Z with
flow Q, rZ is the conversion rate for the component Z. The particularized case of (1) defines
the dynamic of So according to the next equation:

dSo
dt

=
l

Vi
(Qi−1Soi−1 + (KLai)Vi(Sosat − Soi)QiSoi), (2)

where KLa is the So transfer coefficient, which is the manipulated variable to bring the
So concentration to desired levels, Sosat = 8 [g·m−3] is the saturation concentration for So,
and the conversion rate for the So is rSo. As observed in (Equation (2)), the So concentration
is defined by a complex non-linear dynamic model.

In addition, there is a strong shock of the disturbances in the process, mainly coming
from each weather condition. Furthermore, the ASM1 deal with thirteen state variables;
each variable is associated with a conversion ratio resulting from the combination of eight
basic processes that define the biological behavior of the system [32]. On the other hand,
as an example of the disturbances coming in to the process, Figures 4 and 5 display the flow
rate influent and ammonium influent Snh time evolution from day 7 to 14 and sampled
every 15 min.

2.2. Benchmark Simulation Model nº2

The Benchmark Simulation Model nº2 (Figure 6) is an extension of the BSM1. Con-
sequently, it represents the following treatments: primary treatment through a settler,
secondary treatment (BSM1), and sludge treatment. Also, unlike the BSM1, the plant is de-
signed for an average influent flow in dry weather of 20,648.36 m3/day and also considers
the temperature seasonal effects within the processes. The volume of each anoxic reactor is
1500 m3, and, for each aerobic reactor, it is 3000 m3. Furthermore, the secondary settler has
a volume of 6000 m3. In this case, there is a single influent comprising data corresponding
to 609 simulation days and considering temperature, dry, rain, and storm data.
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Figure 4. Influent flow rate disturbances into dry, rain, and storm weather conditions, respectively.

Figure 5. Influent ammonia Snh disturbances into dry, rain, and storm weather conditions, respectively.

Figure 6. Benchmark Simulation Model nº2 simplified plant layout.

2.3. Performance Indices

In order to evaluate the control strategies on plant performance, the BSM1 provides
the effluent quality (EQ) index and the operating cost index (OCI), also including limits for
the concentration of pollutants; Table 1.
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EQ is the weighted average of pollutant concentrations in the effluent:

EQ =
1

tobs · 1000

∫ t=14 days

t=7 days

(
BTSS · TSSe(t) + BCOD · CODe(t) + BNKJ · SNKJ,e(t)

+BNO · SNO,e(t) + BBOD5 · BODe(t))

)
Qe(t) · dt. (3)

In turn, OCI is defined as:

OCI = AE + PE + 5 · SP + 3 · EC + ME (4)

where AE is the aeration energy cost index,

AE =
Ssat

o
tobs · 1.8 · 1000

∫ t=14 days

t=7 days

5

∑
k=1

Vas,k · KLak(t)dt, (5)

PE is pumping energy, SP is sludge production, EC is external source carbon con-
sumption, and ME is mixing energy, all of them detailed in [32].

Table 1. Effluent quality limits.

Variable Value

Ntot (Total nitrogen) <18 g N·m−3

CODtot (Chemical oxygen demand) <100 g COD·m−3

SNH (Ammonia) <4 g N·m−3

TSS (Amount of solids in the system) <30 g SS·m−3

BOD5 (Biochemical oxygen demand) <10 g BOD·m−3

Concerning the limits of the effluent, the ammonia average effluent concentration
(SNHeav) is the sum of the discrete levels of SNHe divided by the total number of samples,
and total nitrogen (Ntot) is calculated as the sum of SNOe and SNKje , where SNKj is the
Kjeldahl nitrogen concentration.

3. Problem Statement

Respecting the legal limits of pollution in the effluent is the main objective of wastew-
ater treatment control. On the other hand, efficiently controlling the operation costs to
respect these limits is a complementary objective.

The previous section indicates that the BSM1 provides fixed influent disturbances
linked to each weather condition, but this is not the case in real WWTP, where other
uncertainties are also presented. Consequently, the control carried out by an expert human
operator relies on a decision strategy obtained from the accumulated experience according
to the operating states of the plant. Therefore, we employed an intelligent agent trained
under model-free deep reinforcement learning, taking advantage of previous experience.
The objective is the trade-off between effluent quality and operating costs: respecting the
legal limits for ammonium and total nitrogen in the effluent, and minimizing aeration
energy cost, effluent quality, and operating cost indices defined in the BSM1 [32].

The control strategy is based on the default control strategy (Section 2); in particular,
adding an upper layer to determine the oxygen set points of reactors 3, 4, and 5 (SPSo3,
SPSo4, and SPSo5) that the RL agent will provide. In this sense, controllers PI take the
oxygen reference and manipulate their reactor’s oxygen transfer coefficients, KLa3, KLa4,
and KLa5. On the anoxic loop side, the nitrate reference sets the constant to 1 g·m−3.

The oxygen presence leads to a couple of non-beneficial increases: the aeration energy
cost index (AE) required to inject oxygen and the nitrates (Sno) generated due to ammonia
(Snh) reduction. Therefore, the controlled variables are in reactor 5 and depend on Snh5
and Sno5 normalized by variable scaling, and related to SNHe and TotN, respectively, and
the oxygen set point (SPSo5), related to the aeration energy costs (AE).

For this purpose, it is necessary to consider a trade-off between Snh&Sno&AE, a par-
ticular case of the trade-off between environmental impact and operating costs in WWTPs.
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To address effluent quality, minimization of the squared errors of the Snh5 and Sno5 concern-
ing the legal limits of ammonia SNHe and total nitrogen TotN in the effluent, respectively,
is considered. These limits are considered references due to their relationship with each
controlled environmental impact variable. Instead, the energy cost of aeration linked to
operating costs must also be minimized. Each objective is normalized by variable scaling.
Therefore, the objective function J(Snh5, Sno5, AE) takes the following configuration:

J(Snh, Sno, AE) =

E f f luent quality elements︷ ︸︸ ︷
−
(

Snh5− Snh5re f

)2
−
(

Sno5− Sno5re f

)2
−

Operation costs element︷︸︸︷
AE2 (6)

Both sub-objectives (Equation (6)) involve conflicts of interest, i.e., the more effluent
quality (minimization of Snh5 and Sno5) we want, the more operating costs (more AE
cost) we will have. Consequently, we will approach the problem in two sequential stages.
First, an inexperienced RL agent solves the minimization of Snh5 and Sno5 concerning
its references. Second, taking advantage of the knowledge obtained to achieve the first,
we will approach the minimization of Snh5 and Sno5 concerning its references and the
minimization of AE. Nevertheless, also in this work, another RL agent will have as an
objective the discrete versions of the effluent quality index Equation (3) and the operating
cost index Equation (4) (only PE, AE, and SP are considered).

4. Methodology

The basic elements of training by reinforcement learning methodology are the envi-
ronment, agent, state, action, and reward. This machine learning methodology is based on
optimal control, which includes dynamic programming and Bellman’s optimality princi-
ple [7]. Thus, from the control theory outlook, the elements of RL methodology could have
their peers: the environment is the controlled system, the RL agent is the controller agent,
the states are the controlled variables, the actions are the manipulated variables, and the
reward is the cost function.

Considering a standard RL approach, the environment is modeled as a Markov de-
cision process, a tuple < S ,A,P ,R, s0 >, where S is the set of states s, A is the set of
actions a, P is the stochastic transition function, P : S XA X S → R, andR the reward
function, R : S XA → R, and s0 is the initial state. A training episode is a sequence of
discrete time steps t = 0, 1, 2, . . . , T, where T is the finite horizon. At t, the agent, according
to observed state st, sends an at and receives from the environment a state st+1 and a
reward rt+1, where r ∈ R: the state is the consequence of the action on the environment,
and the reward is the qualification of the policy behavior. Hence, the agent sends an
action based on a stochastic policy π as the definer of its behavior, which maps states to
actions (π : S→ A). The objective is to achieve a desired policy π(s, a) that maximizes the
cumulative discount reward.

The RL methodology has several algorithms to achieve the desired policy, especially
for unknown complex dynamics environments with continuous and high-dimensional
state S and action A spaces. In deep reinforcement learning, a deep neural network (DNN)
can be used as an approximation function of the policy.

4.1. Policy Gradient Algorithm

In this work, we use the policy gradient (PG) algorithm [38]. Because it uses deep
neural networks as a function approximation of a stochastic policy, it can learn policies in
prior-unknown complex environments with high-dimensional continuous action spaces.
In addition, due to its on-policy nature, it directly updates the parameters θ of the deep
neural network. The PG uses the ascendant gradient optimization method [39] to update
the parameters of a stochastic policy, a probability distribution of taking action a given a
state s, parametrized by an n-dimensional vector θ ∈ Rn and denoted as πθ(a|s) : S→ A.

The training consists of a set number of episodes: an episode generates the agent–
environment interaction trajectory {s0, a0, r1, s1, a1, a1, . . . , rT−1, sT−1, aT−1, sT , aT}, where
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the state s ∈ S, the action a ∈ A, r ∈ R is the scalar reward value, and T is the total number
of steps. For each time step in the episode, for t = 1, 2, . . . , T − 1, the expected cumulative
reward Gt is computed,

Gt =
T−1

∑
k=t

γk−trk, (7)

where rk is the reward in step t and γ is the discount factor. The discount factor makes
future rewards influence the expected cumulative reward more or less. The parametrized
policy is updated iteratively following the ascendant gradient that maximizes Gt. Gt
is a priori unknown because all possible trajectories are a priori unknown, and hence
model-free. Consequently, Gt is estimated by the Monte Carlo estimation method [6],
based on trajectory samples obtained up to now. Thus, the PG updates θ according to the
next equation:

θt+1 = θt + α∇logπ(at, st|θ) · Gt. (8)

where the expression ∇ log π(at, st|θ) is known as the score function, which allows for the
optimization without the environment dynamics model. PG updates θ to increase the at
probability that maximizes Gt given st. Conversely, the more accurate the Gt estimation,
the more accurately the weights updates will lead to a desired policy behavior. However, PG
needs many samples to perform an accurate Gt. Therefore, Gt has a high variance, resulting
in slow convergence and unreliable updates during training. Consequently, the baseline
method is employed within the PG algorithm to approach this issue. In particular and
summarizing, the parametrized baseline function b(s|σ), depending on st, gives a value that
is subtracted from Gt. At = Gt − b(s), where At is called the advantage function. Therefore,
with the baseline method, the PG function objective becomes α∇logπ(at, st|θ) · At.

4.2. Transfer Reinforcement Learning approach

We consider for the transfer learning (TL) context the domain D as the tuple
< S ,A,P >, and define a task, φ, as the tuple < D,Rφ >, where Rφ is the reward
function of the task φ. As detailed in Section 3, the trade-off problem is approached step-
wise by adding the operation cost, subtask φj, to the environmental impact, subtask φi.
Therefore, solving both conflicting subtasks is the objective task φt =

{
φi, φj

}
. The domain

for φi and φj and objective task φt is the same, Di = Dj = Dt. Nevertheless, since their
objectives are different, their rewards are also different,Rφi 6= Rφj 6= Rφt . Consequently,
the tasks are characterized as follows: φi as the tuple < Dt,Rφj > and φt as the tuple
< Dt,Rφt >, where the reward target isRφt = Rφi +Rφj .

The next step is to define what knowledge already achieved is transferred and how it
is transferred: The policy πi solves the sub-task φi and the policy πj solves the sub-task
φj. Furthermore, the policy target πt solves the target task φt =

{
φi, φj

}
. Since the target

task φt is made up of the conflicting subtasks φi and φj, the policy πt will be achieved by
taking advantage of the policy πi that already solves the task φi. In contrast, the policy πj
is assumed as unknown. In the next section, we explain how the PG algorithm is exploited
within our control context and benefits from the experience.

4.3. Controlling Agents

This section defines the elements to address the complex oxygen control problem
(Section 3) from the point of view of model-free reinforcement learning. The reward
indicates whether the policy has a desired behavior. Accordingly, our rewards involve a
trade-off between effluent quality (Rφi ) and operating costs Rφj , where the reward Rφi

depends on Snh5 and Sno5 and the rewardRφj depends on AE. Therefore, the following
two agents (AG) will resolve the environmental impact first.

AG1 Reward =

Rφi︷ ︸︸ ︷
−2 · (Snh5− Snh5re f )

2 − 0.1 · (Sno5− Sno5re f )
2 (9)
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AG4 Reward = −0.95 · (Snh5− Snh5re f )
2 − 0.05 · (Sno5− Sno5re f )

2 (10)

As observed, the rewards are shaped as a weighted quadratic error minimization
optimization problem. The difference between both rewards is the weighting weights.
Second, on the other hand, all the states s are variables controlled in reactor 5. The states
st linked to these rewards also differ between agents: the AG1 state has the following
errors vector:

sAG1 =
{

Snh5− Snh5re f , Sno5− Sno5re f , SPSo5
}

;

and the AG4 state vector is

sAG4 = {Snh5, Sno5, SPSo5},

where sAG1 and sAG4 ∈ R, Snh5re f = 4 (g·Nm−3) and Sno5re f = 18 (g·Nm−3) are legal
limits of average ammonia effluent concentration and average total nitrogen effluent
concentration, respectively. Clearly, states dependent on Snh5 and Sno5 will receive higher
rewards the closer sAG1 is to zero or sAG4 is to its references.

As discussed at the beginning of this section, the objective involves the environmental
impact and the operating cost linked to aeration energy cost AE. Therefore, the expe-
rience of AG1 and AG4 will be transferred to AG2 and AG5, which includes AE as the
objective. The transfer of experience is carried out as follows: taking into account that the
environmental impact task φi is a sub-task of the target task φt, the policy πi that solves the
environmental impact will be the starting point for the training until reaching the policy
πt, the one in charge of solving the environmental impact and the operation cost trade-off,
both as conflictive subtasks. For this purpose, it is assumed that policies πi and πt are
closer since one is a sub-task of the other. Considering the above, the policies of AG1 and
AG4 that involve the environmental impact tasks are directly reused to build the policies
AG2 and AG5, respectively. Finally, to indicate the target task φt to policy πi, the reward
target,Rφt depends onRφi andRφj , is as follows:

Rφt︷ ︸︸ ︷
AG2 Reward =

Rφi︷ ︸︸ ︷
−2 · (Snh5− Snh5re f )

2 − 0.1 · (Sno5− Sno5re f )
2−

Rφj︷︸︸︷
AE2 (11)

AG5 Reward = −0.95 · (Snh5− Snh5re f )
2 − 0.05 · (Sno5− Sno5re f )

2 − AE2 (12)

Noticeably, the new objective is to balance what has been achieved so far and the new
objective added. The following Figure 7 shows the proposed approach of transfer learning
in this control process context.

Figure 7. Schematic approach to transfer learning by reinforcement and reuse of the policy.
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As noticed, the trade-off has been approached as a multi-task optimization problem
by transferring experience. From now on, to approach the problem, we optimize based on
the indices of EQt and OCIt, Equations (7) and (8). Consequently, a single agent AG7 has
the next reward,

AG7 Reward = −EQ2 −OCI2. (13)

The state vector sAG7 =
{

Snh5− Snh5re f , Sno5− Sno5re f , Ss5− Ss5re f , SPSo5
}

,

sAG7 ∈ R, Snh5re f = 4 (g·Nm−3), Sno5re f = 18 (g·Nm−3), Ss5 is the readily biodegrad-
able substrate and Ss5re f = 0.9 (g·Nm−3). This new state is added because its influence
complements the other states in calculating the indexes above (Section 2.1).

In taking this perspective, to achieve the proposed objectives by controlling the states,
it is necessary to set up an oxygen reference to reduce Snh without significantly impacting
Sno and AE increments. For this purpose, the actions provided by all the RL agents are
three possible increments for the oxygen set point (SPSo5), at ∈ [−0.5, 0, 0.5], concerning
SPSo5t−1, being SPSo50 = 2 (g·Nm−3): SPSo5t = SPSo5t−1 + at. In addition, the set points
of reactors 3 and 4 are SPSo4t = SPSo5t/2 and SPSo3t = SPSo5t/2, respectively. As a
result, during training, the agent can reach the maximum and minimum oxygen set point
values, 0.5 and 6 (g·Nm−3). For these limits to be respected, the following penalty condition
is applied:

zt+1(SPSo5t) =



−(SPSo5t − 5)2 · 10 I f SPSo5t > 6

−22.5 I f SPSo5t == 0

−(SPSo5t − 1.5)2 · 10 I f SPSo5t < 0

(14)

As observed, the zt+1 is smaller the farther the oxygen set pot is from six (SPSo5 > 6)
or zero (SPSo5 < 0). In addition, minimum zt+1 is far from the minimum reward, indicating
that the penalized policy does not follow a desired strategy.

Once the plant description, the control objectives, the training algorithm, and our state
action reward are detailed, it will be easy to identify our agent–environment interaction
as shown in Figure 8: At t0, the agent receives the s0 = {Snh50 − Snh5re f , Sno50 − Sno5re f ,
SPSo5 = 2}, and responds with a0, which is one of the possible increments for SPSo5,
[−0.5 0 0.5] that added to 2 (the initial SPSo5 value) gives the SPSo50 = 2 + a0, and
also SPSo40 = SPSo50/2 and SPSo30 = SPSo50/2 are obtained. At t1, as a conse-
quence of the set points at t = 0, s1 =

{
Snh51 − Snh5re f , Sno51 − Sno5re f , SPSo50

}
and

a reward r1 value are obtained, and to this feedback, the agent responds by sending a1, so
SPSo51 = SPSPo50 + a1 is obtained, and also SPSo41 = SPSo51/2 and SPSo31 = SPSo51/2
are obtained. This interaction is repeated in each episode until the maximum number of
time steps t established for training is reached.

4.4. Deep Neural Network as Policy

The model-free RL benefits from deep neural networks as a function to approximate
the parametrized policy π(st, at|θ). In our case, we used the policy gradient (Section 4)
algorithm to update the weights of our deep neural networks until our control objectives
are achieved. The setup and structure of these deep neural networks are quite straight-
forward. Hence, for AG1−6 agents policy, five intermediate fully connected layers with
60|60|60|30|30 neurons are used, respectively. On the other hand, the AG7 policy con-
tains six fully connected layers, with 60|60|60|60|30|30 neurons, respectively. As Section 4
discusses, we used the baseline in PG. For this reason, we used a neural network as an
approximation function of the baseline function; more precisely, the AG1−6 baseline neural
network with three intermediate fully connected layers, composed by 30,30 and 15 neurons,
respectively. Furthermore, the AG7 baseline neural network contains four fully connected
layers, with 60|30|30|30 neurons, respectively.
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Figure 8. Control strategy and training approach by the PG algorithm, AG1.

The policy-DNN and the baseline-NN inputs are the states vector s, the policy-DNN
outputs the probability of selecting the action a given a state s, and the output of the baseline
network is the baseline value. Furthermore, the policy exploration follows a categorical
probability distribution. For this reason, its last layer is a Softmax activation function that
gives each neuron the probability of the action, [−0.5, 0, 0.5], concerning the state s. This last
layer normalizes the input value into an output vector of values that follow a probability
distribution, applying the following Softmax function to the input:

P(yi|x, θ) =
P(x, θ|yi)P(yi)

∑k
j=1 P(x, θ|yj)P(yj)

=
exp(ai(x, θ))

∑k
j=1 aj(x, θ)

(15)

where x is the vector values output of the prior layer, yi is one of our possible increments,
i ∈ [−0.5, 0, 0.5], P(yi|x, θ) is the probability of select an increment given x, k is the total num-
ber of possible increments, 0 < P(yi|x, θ) < 1, ∑k

j=1 P(yj|x, θ) = 1, ai = ln(P(x, θ|yj)P(yj)),
P(x, θ|yj) is the conditional probability of the increment of given x, and P(yi) is the prior
probability of the increment.

In addition, encountering a set of proper hyper-parameters for training a specific
problem is crucial for RL. Although automatically setting the hyper-parameters is an
option, we tuned them manually. The configuration of the AG1−6 is as follows: learning rate
policy-DNN set to 0.001, learning rate baseline-NN set to 0.01. For AG7, 0.0005 and 0.005
are set, respectively. Furthermore, an adaptive moment estimation (Adam) optimizer
was employed.

4.5. Performance during Training

The training of the RL agents was carried out on the BSM1: considering ideal sensors
and no noise, under dry conditions, with episodes of 14 days and sampling every 15 min,
making a total of 1345 RL time steps per episode.

4.5.1. Objectives Evolution

This subsection details the resolution of the sub-tasks along the training and re-training
episodes. Therefore, the following metrics are considered: Equation (16) as the integral
square error of ammonia in reactor 5 (Snh5) concerning Snh5re f , Equation (17) as the
integral square error of nitrate in reactor 5 (Sno5) concerning Sno5re f , and Equation (18) as
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the total aeration energy cost. Each training episode is 14 days of BSM1 simulation, these
14 days contain 1345 training time steps t.

Snh5ISE =
∫ 14 days

0
(Snh5− 4)2dt (16)

Sno5ISE =
∫ 14 days

0
(Sno5− 18)2dt (17)

AETot =
1345

∑
t=1

AE2 (18)

In order to compare the agents that benefited from the experience, agents AG3 and
AG6 are the same as AG2 and AG5, respectively. Nevertheless, AG3 and AG6 training
started without prior knowledge. All the agents are summarized in the following Table 2.
Table 2 shows the total number of training episodes, the items on which the reward depends,
and the items on which the state depends. The sub-index e indicates that the item is the
error concerning its reference.

In addition, to be clear with the minimization of the sub-task and to benefit from the
experience, the training analysis is divided into three fields: the first for agents AG1−3; the
second for agents AG4−6; and the last for agent AG7. Furthermore, to be precise with the
evolution of the sub-tasks within the reward throughout the training, Figures 9–11 show
Snh5ISE, Sno5ISE, and AETot obtained per episode. Regarding the agents, AG1 and AG4
(1000 episodes) are yellow lines, AG2 and AG5 (200 episodes) are red lines, and AG3 and
AG6 are blue lines (2000 episodes).

Table 2. Agents training by deep reinforcement learning.

Agent Episodes Reward Depends On State Involves

AG1 1000 Snh5e Sno5e

Snh5e Sno5e SPSo5AG2 200 (TL) Snh5e Sno5e AEAG3 2000 (No-TL)

AG4 1000 Snh5e Sno5e

Snh5 Sno5 SPSo5AG5 200 (TL) Snh5e Sno5e AEAG6 2000 (No-TL)

AG7 2000 EQ OCI Snh5e Sno5e Ss5e SPSo5

According to Figures 9 and 10, high values at the beginning of the training of the
agents that do not take advantage of the experience are shown. Despite the evident
continuous decrease in Snh5ISE, Sno5ISE, AETot do not show an upward trend as expected
because of the inverse relationship with Snh5ISE. Therefore, all this clarifies the continuous
improvement of the decision policies during training. Furthermore, the experience-learning
agents continue to learn for the new target stably, without divergence seen at the beginning
of the training of the non-experience-learning agents. It is worth noting that, for agents
that do not include AE in their reward, its AEISE evolves above those that do include AE.

Figure 11 shows AG7, whose reward depends on EQ and OCI. The variability of
the metrics is higher compared to AG1−6 because Snh5, Sno5, and AE in the EQ and OCI
indices have different influences, not as direct as in the rewards of AG1−6.
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Figure 9. Evolution of subtasks during AG1−3 training, metrics to assess policy convergence through-
out training.

Figure 10. Evolution of subtasks during AG4−6 training, metrics to assess policy convergence
throughout training.

Figure 11. Evolution of subtasks during AG7 training, metrics to assess policy convergence through-
out training.
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4.5.2. Oxygen Set-Point Evolution

In this subsection, the evolution of SPSo5 over the episodes is shown to visual-
ize the knowledge transfer. First, Figures 12 and 13 display the SPSo5 (mgN/l) dur-
ing the first 100 episodes of AG1 and AG3, and of AG4 and AG6, respectively. Second,
Figures 14 and 15 show the SPSo5 divided into groups of 100 consecutive episodes: the
last 100 episodes of agents AG1 and AG4, the first 100 episodes of agents AG2 and AG5 (TL
agents), and episodes 1000 to 1100 of AG3 and AG6. Each line is a SPSo5 throughout the
1345 steps of an episode.

The sub-figures of Figures 12 and 13 show the full scale and the −10 to 10 scale. These
figures highlight that the scan interval of the first episodes of the four agents is wide,
with high contraction violations. Also noteworthy are the very high set points at the start
of training, which, as we will see in the following figures, are not repeated due to the
effectiveness of penalties.

(a) Controller agents AG1

(b) Controller agents AG3

Figure 12. Oxygen set point of reactor 5 (SPSo5) during exploration in the first 100 training episodes,
regular and reduced axe y scale.

(a) Controller agents AG1

(b) Controller agents AG3

Figure 13. Oxygen set point of reactor 5 (SPSo5) during exploration in the first 100 training episodes,
regular and reduced y axis scale.
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Figure 14 shows agents AG1−3. The exploitation of prior knowledge can be explained
as follows: the last 100 episodes of AG1 show SPSo5 dynamics with no violations of bounds
0 and 6; AG2, which starts its training with the policy of AG1, continues the dynamics of
AG1. Moreover, this dynamic has SPSo5 peaks lower than in the case of AG1 because AG2
includes AE minimization. Thus, the set points of AG2 are comparable to AG3. Basically,
this situation is similar for the case of agents AG4, AG5, and AG6 in Figure 15. It is
important to clarify that the dynamics mentioned above, as will be seen in the results
section, are similar to those shown by Snh5, which is the element with the highest weight in
the rewards of these agents. The policy exploration keeps stable against the added objective
and respects the imposed restrictions learned during the previous policy training.

Figure 14. Controller agents AG1−3, continuation of learning from the point of view of the SPSo5
obtained with the at and the relationship of the dynamics of the SPSo5 with and without knowl-
edge transfer.

Figure 15. Controller agents AG4−6, continuation of learning from the point of view of the SPSo5
obtained with the at and the relationship of the dynamics of the SPSo5 with and without knowl-
edge transfer.
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As shown in the previous Figures, the SPSo5 varies roughly. Nevertheless, the filter ac-
cording to the following equation is added to avoid abrupt changes during the evaluations
for validation:

FiltSPSot = 0.7 · SPSot−1 + (1− 0.7) · SPSot. (19)

5. Results and Discussion

This section evaluates the agents under the same dry influent training and distur-
bances, such as the rain and storm influent in BSM1 and under the BSM2. We focus on the
differences between the agents trained without and with previous experience. The metrics
used are effluent average concentration (SNHeav (mgN/l)), effluent average total nitrogen
concentration (TotN (mgN/l)), updated aeration energy cost index (AE Equation (5)),
effluent quality index (EQ Equation (3)), and operation costs index (OCI Equation (4)),
considering data from the last seven days of simulation according to the BSM1 protocol.
The evaluation was performed in MATLAB/Simulink software, 14-day simulations, sam-
pling every 15 min, considering ideal and noiseless sensors, and under the same control
strategy as the training (Figure 8).

First, Figure 16 show the evolution of Snh5, Sno5, So5, and SPso5 obtained by the
AG1,2,4,5 agents over 7–14 days under dry weather conditions. The Snh5 and Sno5 involve
disturbances: maximums, minimums, and means levels at different intervals. On the other
hand, the evolution of SPSO5 follows the concentration on which it directly influences
the Snh5. Regarding the agents that include the AE minimization, it is observed that the
maximums of SPSO5 are lower than the SPSO5 of agents that do not include AE. The latter
is clearly because the higher the SPSO5, the higher the cost of AE.

Figure 16. Controlled concentrations in reactor 5 achieved by AG1−2−4−5 along 7 simulation days,
including oxygen levels (black discontinued line).

Second, in order to catch the disturbances on the evolution of the levels, Figure 17
(AG1,2) and Figure 18 (AG4,5) show the evolution of Snh5, Sno5, So5, and SPso5 during
specific time intervals for dry, rain, and storm weather conditions. According to Figure 17,
it is evident that both agents follow the Snh5 dynamics of the weather disturbances. This
situation is similar, although less evident, for agents AG3 and AG4 in Figure 18. It is
noted that the Snh5 and Sno5 dynamics reflect the disturbances in the influent. Therefore,
following this dynamic means that RL agents give increments that provide SPso5 peaks at
Snh5 peaks and low SPso5 values at low SPso5 levels, as required. In any case, Sno5 differs
between weather conditions due to the different perturbations within the influent. This
difference reverberates on Snh5, which has an inverse relationship with Sno5, specifying
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that, as the SPSo5 rises, Snh5 falls and Sno5 rises. Consequently, the agents respond to this
situation with high set points, bringing Sno5 closer to its reference (18 g·m−3).

Next, some BSM1 metrics are analyzed. Figure 19 gives scatters of SNHeav & TotN
under dry, rain, and storm weather conditions for AG1−7 agents. The AG1−3 values are
within the limits of ammonia effluent and total nitrogen effluent. On the other hand,
considering agents AG4−6, the AG5,6 (including AE minimization in its rewards) shows
the highest SNHeav. The inverse relationship between Snh and Sno is efficiently seen.
For example, AG1 shows lower SNHeav and high TotN than AG2 and AG3. Furthermore,
the values obtained are generally grouped into distinct scatter zones due to the different
impacts of dry, rain, and storm weather disturbances on plant performance.

Figure 17. Controlled concentrations along time in reactor 5 achieved by AG1−3, including oxygen
levels (black discontinued line).

Figure 18. Controlled concentrations along time in reactor 5 achieved by AG4−6, including oxygen
levels (black discontinued line).
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Figure 19. Average ammonia SNHeav and total nitrogen TotN concentrations in effluent by a scatter
graph for each weather condition.

The numerical values of the above figure are detailed in Table 3. According to Table 3,
the difference between the agents that exploited the experience and those that did not
is very small. Resultantly, for the AG2 and AG3 case, the difference in SNHeav is 0%
(DRY), 1.05% (RAIN), and 1.82% (STORM), and the difference in TotN is 0.50% (DRY),
0.34% (RAIN), and 0.45% (STORM), On the other hand, for AG5 and AG6, the difference in
SNHeav is 4.91% (DRY), 8.18% (RAIN), and 8.39% (STORM), while the difference in TotN
is 0.12% (DRY), 0.34% (RAIN), and 0.39% (STORM). Conversely, the difference between
the above and those that did not include the sub-task AE, AG1, and AG3 is significant
because of the inverse relation between AE and Snh. Under these circumstances, aeration
energy can be expected to be lower in agents including its minimization. In addition,
the table includes DF, which is the control strategy used by the agents, but with constants
SPSo5 = 2 (g·m−3).

Table 3. Average ammonia SNHeav and total nitrogen TotN concentrations in effluent by values for
each weather condition.

RL Controller Effluent Average SNH (mg N/l) Effluent Average Total N (mg N/l)
DRY RAIN STORM DRY RAIN STORM

AG1 3.21 3.56 3.53 16.14 14.48 15.41
AG2 3.43 3.75 3.77 16.00 14.4 15.31
AG3 3.43 3.79 3.84 15.92 14.35 15.24

AG4 2.80 3.73 3.38 16.79 14.64 15.76
AG5 3.63 4.76 4.39 16.17 14.29 15.27
AG6 3.46 4.40 4.05 16.19 14.34 15.33

AG7 2.77 3.41 3.26 16.71 14.74 15.76

DF 2.03 2.80 2.53 17.38 14.97 16.20

The following Figure 20 shows the aeration energy cost AE, a bar chart for each
weather condition, highlighting the difference between the agents that do not include AE
and those that include AE in their rewards, and the similarity between those that do include
AE in their rewards.
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Figure 20. Aeration energy AE cost index by bar graph for each weather condition.

Table 4 shows the percentage of operating time in which the SNH and TotN limits
were exceeded under DRY, RAIN, and STORM. Much similarity is observed in agents
whose reward includes the minimization of aeration energy cost (AE), and also the highest
SNHe percentage of violation time. In addition, ammonia violations are higher in RAIN
and STORM.

Table 4. Violations of the maximum effluent total ammonia level (4 mg N/l) and the maximum
effluent total nitrogen level (18 mg N/l) limits in percentage (%) of operation time.

RL Controller DRY DRAIN STORM
SNHe (%) TotNe (%) SNHe (%) TotNe (%) SNHe (%) TotNe (%)

AG1 28.571 13.542 36.458 6.994 36.161 11.756
AG2 34.524 12.946 41.369 6.5476 41.518 11.458
AG3 33.185 12.946 41.964 6.5476 43.899 11.161

AG4 20.833 16.518 38.244 9.9702 31.25 14.286
AG5 39.137 13.095 58.036 6.3988 55.357 11.607
AG6 35.565 13.393 53.720 6.5476 48.512 11.607

AG7 18.899 15.030 32.589 9.6726 28.720 13.393

DF 14.732 20.982 19.196 12.946 22.321 19.048

Since, in the states st of AG1,2,3, the agents’ SNHeav legal limit is present, Table 5
shows the SNHeav, TotN, and AE of agents AG1−3 setting Snh5re f = 3 (g·m−3) and
Snh5re f = 2 (g·m−3) in its states in order to add a stringent constraint on that concentration.
It is observed that, as Snh5re f decreases, SNHeav also decreases.

Table 5. Changes in the SNHeav (mgN/l) reference in the states of the agents AG1 AG2 AG3.

RL Controller Snh5re f = 2 mg N/l Snh5re f = 3 mg N/l
SNHeav TotN AE SNHeav TotN AE

AG1 3.0548 16.185 6171.8 3.1589 16.178 6132
AG2 3.2498 16.100 6011 3.3875 16.031 5943.1
AG3 3.2252 16.037 6054.2 3.3238 16.005 5997.6

Alternatively, Figure 21 depicts the evaluation indexes related to environmental impact
(EQ) and operating cost (OCI). Accordingly, these indexes include SNHe, TotN, and AE,
among others, noticed in Section 2. The upper scatter illustrates the values under all
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weather conditions in order to have a global perspective of the influence of the different
weather disturbances on the environmental impact and operating costs. Also, the lower
block of scatters presents the disturbances conditions separately. Hereof, for the agents that
include AE in its rewards, the OCI are lower and with their respective consequences on
EQ. According to this situation, agents AG2 and AG3 are the least affected. Regardless,
the agent AG7, whose reward was the minimization of EQ and OCI, reveals the best EQ.
However, on the other hand, AG7 displays high operating costs, except in DRY. Otherwise,
in addition to these scatters, numerical results are also detailed in Table 5.

As revealed in Table 6, it is evident that certain effluent quality and operating costs
are directly achievable. However, if we want precise objectives, including limits, to be
respected, they can also be achieved, as is the case for agents AG1−6, through TL.

Table 6. Effluent quality EQ index and operation cost index OCI by value for each weather condition.

RL Controller Effluent Quality Index (kg poll.units/d) Updated Total Operational Cost Index
DRY RAIN STORM DRY RAIN STORM

AG1 6228 8276 7323 15,942 15,707 16,930
AG2 6281 8349 7400 15,875 15,605 16,840
AG3 6270 8357 7415 15,874 15,594 16,833

AG4 6193 8398 7327 16,190 15,657 17,023
AG5 6385 8816 7655 15,853 15,311 16,679
AG6 6329 8655 7522 15,879 15,381 16,741

AG7 6168 8266 7280 16,145 15,794 17,045

DF 6016 8027 7064 17,693 17,303 18,564

Figure 21. Effluent quality EQ index and operation cost index OCI by scatter graph for all and each
weather condition.

As observed, the RL agents achieved the proposed objectives in their simple multi-
objective rewards, achieving sub-optimal policies capable of being reused to achieve new
objectives. There are no significant differences between the agents trained with and without
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previous experience, thus highlighting the efficiency of this simple format of reusing policy.
Furthermore, the number of episodes required to achieve good results employing transfer
learning is considerably smaller.

BSM2

Finally, the obtained agents were validated in the BSM2 platform: 609-day simulations,
sampling every 15 min, considering ideal and noiseless sensors, and under the same control
strategy of the training (Figure 8) were considered. The metrics were obtained from
days 245–609 and computed using full BSM2.

First, Figure 22 shows the evolution of Snh5, Sno5, So5, and SPSo5 over days 556 to
562. Snh5 and Sno5 involve particular trends but, unlike their peers in the BSM1 figures’
results, they are closer to zero because the BSM1 dynamic is not the same as the BSM2
dynamic. Therefore, the response of the agents is the consequence of Sno5 being so far from
its reference, causing the agent to trigger high SPSo5 to bring the Sno5 closer to its reference.
This situation is similar to the one seen in RAIN and STORM in Figures 18 and 19.

Second, the metrics SNHeav, TotN, and AE are detailed in Table 7. Agents that
minimize AE show a lower energy consumption. Consequently, these agents show a high
SNHeav and its respective consequence in TotN. Furthermore, from the general trend
of these results, AG7 stands out, showing the highest AE consumption and, of course,
the lowest SNHeav value. In fact, the objective of AG7 was to minimize the EQ but not the
minimization errors concerning the legal limits.

Figure 22. Controlled concentrations in reactor 5 achieved by AG1,2,4,5 along 556-562 days in BSM2,
including oxygen levels (black discontinued line).

Table 7. Average ammonia SNHeav (mg N/l) and total nitrogen TotN (mg N/l) concentrations in
effluent and aeration cost index AE according to BSM2 protocol.

Controller SNHeav TNeav AE

AG1 1.0595 10.559 4314.9
AG2 1.1866 10.289 4186.2
AG3 1.2372 10.163 4121.5
AG4 1.5206 10.068 3944.5
AG5 2.1709 9.9756 3701.3
AG6 1.9431 9.9070 3746.5
AG7 0.8269 11.179 4557.1

In fact, from a reinforcement learning context, the transition function of BSM1
(P(s, a|st+1)) is different from that of BSM2. Consequently, in the BSM2 evaluation,
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the state st+1 is known but not expected. According to its training, the RL agents re-
spond appropriately to these unexpected states. It is necessary to remark that, despite
being evaluated under disturbances and a dynamic not seen during training, the agents
provide set point increments that never exceed the restrictions established during training.

6. Conclusions

Due to the complex non-linearity, the relationship between variables, influent distur-
bances, and uncertainty of the real environment, and, more importantly, the inaccuracy of
the mathematical models that approximate it, controlling wastewater treatment processes
is challenging. This control problem has motivated researchers to propose methodologies
handled by control intelligence. Among them, reinforcement learning is a machine learning
methodology that, in addition to having control theory behind it, bases its learning as a
human brain would: an iterative trial–error process. A point yet to be resolved in RL is the
slow convergence of learning, which makes its applicability computationally inefficient.

In this work, we employed an RL agent as an intelligent controller for this complex
oxygen-dependent biological process in WWTPs. The training episodes require high com-
putation costs and time for this complex environment. Necessarily, we used a transfer
learning approach between RL agents to make the implementation computationally effi-
cient. More precisely, once an agent has achieved a sub-task, it is re-trained to achieve a
new task that turns out to be complementary and a counterpart to the one already achieved.
In fact, the most notable difference between agents without and with prior experience is
1.82% for effluent average SNH concentration. To this end, the RL controller can handle
the dynamic process without prior knowledge of the dynamic process to perform favorable
results, as was demonstrated, achieving the proposed multi-objectives during training
and evaluation. Indeed, the evaluation induced the adaptability of RL under different
disturbances of the process, despite not training in those unfavorable situations. As an
important remark, the RL controllers learned the constraints online and respected them in
their evaluation. Therefore, our results are consistent with the motivation to implement
model-free reinforcement learning and take advantage of transfer learning.

Another main consideration of the implementation is that, even though the RL agent
has an optimal control theory background, it is simple to define its training elements,
especially the design of the reward function, and implement them to approach this control
problem, as demonstrated. The deep reinforcement learning methodology emulates the
human learning strategy; for this reason, the trial–error training principles can be easily
understood by those who are not control specialists.

Author Contributions: Conceptualization, O.A.-R., M.F., R.V., P.V. and S.R.; formal analysis, O.A.-R.,
M.F., R.V. and S.R.; funding acquisition, M.F. and P.V.; investigation, O.A.-R. and P.V.; methodology,
P.V.; project administration, M.F. and P.V.; resources, M.F. and P.V.; software, O.A.-R.; supervision,
M.F., R.V. and S.R.; validation, O.A.-R. and P.V.; visualization, O.A.-R.; writing—original draft, O.A.-
R.; writing—review and editing, M.F., P.V. and S.R. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by projects PID2019-105434RB-C31 and TED2021-129201B-I00 of
the Spanish Government and Samuel Solórzano Foundation Project FS/11-2021.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, D.; Zou, M.; Jiang, L. Dissolved oxygen control strategies for water treatment: A review. Water Sci. Technol. 2022, 86, 1444–1466.

[CrossRef] [PubMed]
2. Sheik, A.G.; Tejaswini, E.; Seepana, M.M.; Ambati, S.R.; Meneses, M.; Vilanova, R. Design of Feedback Control Strategies in a

Plant-Wide Wastewater Treatment Plant for Simultaneous Evaluation of Economics, Energy Usage, and Removal of Nutrients.
Energies 2021, 14, 6386. [CrossRef]

http://doi.org/10.2166/wst.2022.281
http://www.ncbi.nlm.nih.gov/pubmed/36178816
http://dx.doi.org/10.3390/en14196386


Processes 2023, 11, 2269 24 of 25

3. Revollar, S.; Vega, P.; Francisco, M.; Vilanova, R. A hierachical Plant wide operation in wastewater treatment plants: overall
efficiency index control and event-based reference management. In Proceedings of the 2018 22nd International Conference on
System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 10–12 October 2018; pp. 201–206, ISSN 2372-1618. [CrossRef]

4. Vega, P.; Revollar, S.; Francisco, M.; Martín, J. Integration of set point optimization techniques into nonlinear MPC for improving
the operation of WWTPs. Comput. Chem. Eng. 2014, 68, 78–95. [CrossRef]

5. Revollar, S.; Vega, P.; Francisco, M.; Meneses, M.; Vilanova, R. Activated Sludge Process control strategy based on the dynamic
analysis of environmental costs. In Proceedings of the 2020 24th International Conference on System Theory, Control and
Computing (ICSTCC), Sinaia, Romania, 8–10 October 2020; pp. 576–581, ISSN 2372-1618. [CrossRef]

6. Sutton, R.S.; Barto, A.G. Reinforcement Learning, Second Edition: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
7. Bertsekas, D. Reinforcement Learning and Optimal Control; Athena Scientific: Nashua, NH, USA, 2019.
8. Mousavi, S.S.; Schukat, M.; Howley, E. Deep reinforcement learning: An overview. In Proceedings of the SAI Intelligent Systems

Conference (IntelliSys) 2016, London, UK, 21–22 September 2016; pp. 426–440.
9. Zhang, J.; Kim, J.; O’Donoghue, B.; Boyd, S. Sample Efficient Reinforcement Learning with REINFORCE. Proc. AAAI Conf. Artif.

Intell. 2021, 35, 10887–10895. [CrossRef]
10. Devlin, S.M.; Kudenko, D. Dynamic potential-based reward shaping. In Proceedings of the 11th International Conference on

Autonomous Agents and Multiagent Systems, Valencia, Spain, 4–8 June 2012; pp. 433–440.
11. Harutyunyan, A.; Devlin, S.; Vrancx, P.; Nowé, A. Expressing arbitrary reward functions as potential-based advice. In Proceedings

of the AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; Volume 29.
12. Yang, M.; Nachum, O. Representation matters: Offline pretraining for sequential decision making. In Proceedings of the

International Conference on Machine Learning. PMLR, Virtual, 18–24 July 2021; pp. 11784–11794.
13. Hester, T.; Vecerik, M.; Pietquin, O.; Lanctot, M.; Schaul, T.; Piot, B.; Horgan, D.; Quan, J.; Sendonaris, A.; Osband, I.; et al.

Deep q-learning from demonstrations. In Proceedings of the AAAI Conference on Artificial Intelligence, Orleans, LA, USA,
2–7 February 2018; Volume 32.

14. Gupta, A.; Devin, C.; Liu, Y.; Abbeel, P.; Levine, S. Learning invariant feature spaces to transfer skills with reinforcement learning.
arXiv 2017, arXiv:1703.02949.

15. Ammar, H.B.; Taylor, M.E. Reinforcement learning transfer via common subspaces. In Proceedings of the Adaptive and Learning
Agents: International Workshop, ALA 2011, Taipei, Taiwan, 2 May 2011; pp. 21–36.

16. Rusu, A.A.; Rabinowitz, N.C.; Desjardins, G.; Soyer, H.; Kirkpatrick, J.; Kavukcuoglu, K.; Pascanu, R.; Hadsell, R. Progressive
neural networks. arXiv 2016, arXiv:1606.04671.

17. Fernando, C.; Banarse, D.; Blundell, C.; Zwols, Y.; Ha, D.; Rusu, A.A.; Pritzel, A.; Wierstra, D. Pathnet: Evolution channels
gradient descent in super neural networks. arXiv 2017, arXiv:1701.08734.

18. Czarnecki, W.M.; Pascanu, R.; Osindero, S.; Jayakumar, S.; Swirszcz, G.; Jaderberg, M. Distilling policy distillation. In Proceedings
of the 22nd International Conference on Artificial Intelligence and Statistics, Naha, Japan, 16–18 April 2019; pp. 1331–1340.

19. Ross, S.; Gordon, G.; Bagnell, D. A reduction of imitation learning and structured prediction to no-regret online learning.
In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, FL, USA,
11–13 April 2011; pp. 627–635.

20. Dogru, O.; Wieczorek, N.; Velswamy, K.; Ibrahim, F.; Huang, B. Online reinforcement learning for a continuous space system
with experimental validation. J. Process Control 2021, 104, 86–100. [CrossRef]

21. Powell, K.M.; Machalek, D.; Quah, T. Real-time optimization using reinforcement learning. Comput. Chem. Eng. 2020, 143, 107077.
[CrossRef]

22. Faria, R.d.R.; Capron, B.D.O.; Secchi, A.R.; de Souza Jr, M.B. Where Reinforcement Learning Meets Process Control: Review and
Guidelines. Processes 2022, 10, 2311. [CrossRef]

23. Shin, J.; Badgwell, T.A.; Liu, K.H.; Lee, J.H. Reinforcement learning–Overview of recent progress and implications for process
control. Comput. Chem. Eng. 2019, 127, 282–294. [CrossRef]

24. Görges, D. Relations between model predictive control and reinforcement learning. IFAC-PapersOnLine 2017, 50, 4920–4928.
[CrossRef]

25. Corominas, L.; Garrido-Baserba, M.; Villez, K.; Olsson, G.; Cortés, U.; Poch, M. Transforming data into knowledge for improved
wastewater treatment operation: A critical review of techniques. Environ. Model. Softw. 2018, 106, 89–103. [CrossRef]

26. Pisa, I.; Morell, A.; Vilanova, R.; Vicario, J.L. Transfer Learning in Wastewater Treatment Plant Control Design: From Conventional
to Long Short-Term Memory-Based Controllers. Sensors 2021, 21, 6315. [CrossRef] [PubMed]

27. Pisa, I.; Santín, I.; Vicario, J.L.; Morell, A.; Vilanova, R. ANN-Based Soft Sensor to Predict Effluent Violations in Wastewater
Treatment Plants. Sensors 2019, 19, 1280. [CrossRef] [PubMed]

28. Pisa, I.; Santín, I.; López Vicario, J.; Morell, A.; Vilanova, R. A recurrent neural network for wastewater treatment plant effuents’
prediction. In Proceedings of the Actas de las XXXIX Jornadas de Automática, Badajoz, Spain, 5–7 September 2018; pp. 621–628.
[CrossRef]

29. Chen, K.; Wang, H.; Valverde-Pérez, B.; Zhai, S.; Vezzaro, L.; Wang, A. Optimal control towards sustainable wastewater treatment
plants based on multi-agent reinforcement learning. Chemosphere 2021, 279, 130498. [CrossRef]

30. Hernández-del Olmo, F.; Gaudioso, E.; Dormido, R.; Duro, N. Tackling the start-up of a reinforcement learning agent for the
control of wastewater treatment plants. Knowl.-Based Syst. 2018, 144, 9–15. [CrossRef]

http://dx.doi.org/10.1109/ICSTCC.2018.8540676
http://dx.doi.org/10.1016/j.compchemeng.2014.03.027
http://dx.doi.org/10.1109/ICSTCC50638.2020.9259637
http://dx.doi.org/10.1609/aaai.v35i12.17300
http://dx.doi.org/10.1016/j.jprocont.2021.06.004
http://dx.doi.org/10.1016/j.compchemeng.2020.107077
http://dx.doi.org/10.3390/pr10112311
http://dx.doi.org/10.1016/j.compchemeng.2019.05.029
http://dx.doi.org/10.1016/j.ifacol.2017.08.747
http://dx.doi.org/10.1016/j.envsoft.2017.11.023
http://dx.doi.org/10.3390/s21186315
http://www.ncbi.nlm.nih.gov/pubmed/34577522
http://dx.doi.org/10.3390/s19061280
http://www.ncbi.nlm.nih.gov/pubmed/30871281
http://dx.doi.org/10.17979/spudc.9788497497565.0621
http://dx.doi.org/10.1016/j.chemosphere.2021.130498
http://dx.doi.org/10.1016/j.knosys.2017.12.019


Processes 2023, 11, 2269 25 of 25

31. Jeppsson, U.; Pons, M.N.; Nopens, I.; Alex, J.; Copp, J.; Gernaey, K.; Rosen, C.; Steyer, J.P.; Vanrolleghem, P. Benchmark simulation
model no 2: General protocol and exploratory case studies. Water Sci. Technol. 2007, 56, 67–78. [CrossRef]

32. Alex, J.; Benedetti, L.; Copp, J.; Gernaey, K.V.; Jeppsson, U.; Nopens, I.; Pons, M.N.; Steyer, J.P.; Vanrolleghem, P. Benchmark
Simulation Model no. 1 (BSM1). In Proceedings of the IWA World Water Congress 2008, Vienna, Austria, 7–12 September 2008.

33. Ahansazan, B.; Afrashteh, H.; Ahansazan, N.; Ahansazan, Z. Activated sludge process overview. Int. J. Environ. Sci. Dev. 2014,
5, 81.

34. Gernaey, K.V.; van Loosdrecht, M.C.M.; Henze, M.; Lind, M.; Jørgensen, S.B. Activated sludge wastewater treatment plant
modelling and simulation: state of the art. Environ. Model. Softw. 2004, 19, 763–783. [CrossRef]

35. Santín, I.; Vilanova, R.; Pedret, C.; Barbu, M. New approach for regulation of the internal recirculation flow rate by fuzzy logic in
biological wastewater treatments. ISA Trans. 2022, 120, 167–189. [CrossRef]

36. Revollar, S.; Meneses, M.; Vilanova, R.; Vega, P.; Francisco, M. Quantifying the Benefit of a Dynamic Performance Assessment of
WWTP. Processes 2020, 8, 206. [CrossRef]

37. Revollar, S.; Vilanova, R.; Francisco, M.; Vega, P. PI Dissolved Oxygen control in wastewater treatment plants for plantwide
nitrogen removal efficiency. IFAC-PapersOnLine 2018, 51, 450–455. [CrossRef]

38. Williams, R.J. Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning. In Reinforcement
Learning; Sutton, R.S., Ed.; The Springer International Series in Engineering and Computer Science; Springer US: Boston, MA,
USA, 1992; pp. 5–32. [CrossRef]

39. Agarwal, A.; Kakade, S.M.; Lee, J.D.; Mahajan, G. Optimality and Approximation with Policy Gradient Methods in Markov
Decision Processes. In Proceedings of the Thirty Third Conference on Learning Theory, Graz, Austria, 9–12 July 2020; pp. 64–66,
ISSN 2640-3498.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.2166/wst.2007.604
http://dx.doi.org/10.1016/j.envsoft.2003.03.005
http://dx.doi.org/10.1016/j.isatra.2021.03.028
http://dx.doi.org/10.3390/pr8020206
http://dx.doi.org/10.1016/j.ifacol.2018.06.136
http://dx.doi.org/10.1007/978-1-4615-3618-5_2

	Introduction
	Plant Description
	Benchmark Simulation Model nº1
	Benchmark Simulation Model nº2
	Performance Indices

	Problem Statement
	Methodology
	Policy Gradient Algorithm
	Transfer Reinforcement Learning approach
	Controlling Agents
	Deep Neural Network as Policy
	Performance during Training
	Objectives Evolution
	Oxygen Set-Point Evolution


	Results and Discussion
	Conclusions
	References

