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Abstract: The efficient development of oil reservoirs mainly depends on the comprehensive optimiza-
tion of the subsurface fluid flow process. As an intelligent analysis technique, artificial intelligence
provides a novel solution to multi-objective optimization (MOO) problems. In this study, an intel-
ligent agent model based on the Transformer framework with the assistance of the multi-objective
particle swarm optimization (MOPSO) algorithm has been utilized to optimize the gas flooding
injection–production parameters in a well pattern in the Middle East. Firstly, 10 types of surveillance
data covering 12 years from the target reservoir were gathered to provide a data foundation for
model training and analysis. The prediction performance of the Transformer model reflected its
higher accuracy compared to traditional reservoir numerical simulation (RNS) and other intelli-
gent methods. The production prediction results based on the Transformer model were 21, 12, and
4 percentage points higher than those of RNS, bagging, and the bi-directional gated recurrent unit
(Bi-GRU) in terms of accuracy, and it showed similar trends in the gas–oil ratio (GOR) prediction
results. Secondly, the Pareto-based MOPSO algorithm was utilized to fulfil the two contradictory
objectives of maximizing oil production and minimizing GOR simultaneously. After 10,000 iterations,
the optimal injection–production parameters were proposed based on the generated Pareto frontier.
To validate the feasibility and superiority of the developed approach, the development effects of three
injection–production schemes were predicted in the intelligent agent model. In the next 400 days of
production, the cumulative oil production increased by 25.3% compared to the average distribution
method and 12.7% compared to the reservoir engineering method, while GOR was reduced by 27.1%
and 15.3%, respectively. The results show that MOPSO results in a strategy that more appropriately
optimizes oil production and GOR compared to some previous efforts published in the literature.
The injection–production parameter optimization method based on the intelligent agent model and
MOPSO algorithm can help decision makers to update the conservative development strategy and
improve the development effect.

Keywords: injection–production optimization; artificial intelligence; multi-objective optimization;
attention; gas flooding

1. Introduction

Highly uncertain and disputable parameters are one of the main concerns in the pro-
cess of reservoir management and decision making. Influenced by reservoir heterogeneity
and unreasonable injection–production parameter combinations, the abundant remaining
oil is difficult to drive and becomes more dispersed. Therefore, the original development
plan is unable to achieve satisfactory performance. To improve the effectiveness of the
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development plan, the injectors are adjusted to reduce the inefficient or ineffective injection
volume. Reasonable optimization helps to increase the oil rate and control the risk warning
parameters, such as the water cut (WCT) and GOR. Therefore, a reasonable optimization
strategy is an effective strategy to improve reservoir development.

To optimize the overall structure, improve the final recovery factor, and reduce devel-
opment risks, the need to optimize the injection–production parameters has been proposed.
In the middle and later stages of development, the existing parameters face challenges,
such as unclear effectiveness and high development risks. Specifically, unreasonable pa-
rameters lead to fluid intrusion. On the one hand, this renders the remaining oil more
dispersed, which restricts the development effect; on the other hand, the unreasonable
adjustment of the injected fluid can easily lead to ineffective circulation and even result in
high-risk producers.

Water/gas injection is an effective displacement measure that can restore the reservoir
pressure and achieve a higher recovery factor. Therefore, the choice of injection fluid has a
strong impact on oil recovery. Khormali [1] used two different types of formation water to
simulate the effects of reservoir pressure, temperature, injection water, and pairing on inor-
ganic salt formation, and they proposed a reasonable ratio of injection water to formation
water, guiding the rational selection of optimized injection–production parameters.

One of the essential tasks in achieving efficient reservoir development is to obtain the
best combination of injection–production parameters quickly and accurately. There are four
commonly used methods (Table 1). The first method is to distribute the total production and
injection volume to all producers and injectors evenly [2], which is simple but carries many
disadvantages. Firstly, for strongly heterogeneous reservoirs, the development effectiveness
varies greatly between regions. Therefore, it is difficult for a simple uniform distribution to
reflect the actual conditions of the reservoir. Secondly, due to the irregular distribution of
the remaining oil, it is difficult to achieve efficient potential tapping in this way.

The second method is to allocate the parameters according to the reservoir characteris-
tics. An [3] selected the pore volume and remaining geological reserves as the distribution
index. Because the index has a certain physical meaning, this method helps to achieve
efficient potential tapping. Moreover, it can effectively suppress the risk of water and gas
invasion, ensuring the injection effectiveness simultaneously. However, this method also
has certain limitations. First, the appropriateness of the allocation has a strong relationship
with the accuracy of the RNS model. Because many basic data and complicated historical
fitting are required, it is difficult to reach high accuracy and ensure authenticity. Secondly,
the selection of indicators does not consider specific optimization objectives, so it is difficult
to determine whether the proposed strategy is the optimal solution.

The third method is based on RNS and statistical methods, represented by the re-
sponse surface methodology (RSM) [4]. The RSM helps to obtain the global optimal scheme.
Specifically, the RSM fits complex unknown functional relationships with relatively simple
first-order or second-order polynomial models, which reduces the computational complex-
ity. Secondly, compared with the orthogonal experimental design, the RSM can continu-
ously analyze all levels of the experiment in the process of optimization, which greatly
improves the feasibility of the model. Based on the RNS and RSM, Kang [5] designed
a optimization process for the EOR and many steam and gas push (SAGP) parameters
(including the injection gas type, injection time, injection gas mol, and volume). Based
on the results, the best combination of all factors was effectively determined, providing
a good reference for the improvement of reservoir development efficiency. Based on a
higher-order polynomial equation, Wantawinj [6,7] established a simpler and more efficient
reservoir agent model using the RSM. Compared with the commonly used quadratic form
model, this method shows higher accuracy in the direction of shale reservoir evaluation,
fracture characterization, and production prediction. However, the application of the RSM
is limited due to the slow computational speed of RNS models. In addition, if the range of
experimental points is not selected properly, it will be difficult to obtain good optimization
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results. Therefore, reasonable experimental factors and corresponding levels should be
determined before using the RSM.

The forth method is to optimize the parameters by defining the objective function and
embedding the optimization algorithm into the RNS model. The extreme optimal value
of the objective function is searched through iterations. This method can consider specific
objectives, further improving the relevance of optimization. Taking the Net Present Value
(NPV) as the objective function, Sarma [8] explored a new water injection optimization
strategy using the optimal control algorithm and verified it using the black oil simulation
model, which showed good application results. In addition, apart from the NPV [9–11],
different objective functions can be considered, such as GOR, WCT, and so on, depending on
the specific situation. However, it is still difficult to overcome some shortcomings, such as
the time-consuming process. On the other hand, commonly used optimization algorithms
such as particle swarm optimization (PSO) [12,13] and genetic algorithm (GA) [14–17]
mainly focus on a single objective, which limits the scope of application in the oilfield.
Instead, two or more objective functions should be taken into consideration.

Many studies have contributed to the MOO problem [18,19] in terms of on-site re-
quirements, which can be summarized into three aspects. The first is to assign weighting
factors to each objective, converting multiple objectives into a single function. In this
way, a single objective optimization technique such PSO or GA can be utilized to seek the
optimal results. This method is easy to understand but it is unable to provide an effective
solution for MOO, where the relative importance is not clear. The second is to consider
the relative importance of the objective function, called lexicographic optimization. This
type of method is suitable for problems where different objective functions have different
priorities. However, it cannot provide a comparative analysis of the tradeoffs between
different functions. To address the shortcomings of the above methods, the Pareto-based
method is favored because it can provide decision makers with a tradeoff analysis [20].
The basic idea is to iterate and plot the Pareto frontier by calculating the fitness, which is
suitable for problems where the importance of different objectives is unclear.

Table 1. Comparison of conventional injection–production parameter optimization methods based
on RNS.

Method Description Advantages Limitations

Uniform division Divided by uniform
conditions [2]

1. Simple.
2. Suitable for weakly

heterogeneous reservoirs.

1. Lack of physical basis.
2. Extremely poor applicability in
highly heterogeneous reservoirs.

Proportional division

Divided by reservoir
properties [3]

1. Considers the actual
conditions of the reservoir to a

certain extent.
2. Suppresses the risk of water
and gas invasion effectively.

1. Relatively dependent on the
accuracy of RNS models.

2. Difficult to determine whether
the result is the optimal solution.

Divided according to
statistical methods [5–7]

1. The main factors of the
reservoir could be obtained.

2. The computational
complexity is reduced.

3. Can continuously analyze
various experimental levels.

1. Constrained by the calculation
speed of RNS.

2. The optimization results rely
heavily on the selection of
experimental point ranges.

Divided using iterative
optimization [21–23]

1. Considers specific
objectives, improving the

relevance.
2. Obtains unique optimal

result of the objective function.

1. Relatively dependent on the
accuracy of RNS models.
2. Only one objective is

considered mainly.

Pareto-based optimization algorithms are often embedded in population-based evolu-
tionary algorithms, such as the non-dominated sorting genetic algorithm II (NSGA-II) and
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MOPSO [19,24–28]. Wang [29] designed a fracturing optimization scheme based on the
least squares support vector regression (LSSVR) and NSGA-II. They applied the proposed
framework to a shale gas reservoir, shortening the optimization time and improving the
accuracy, and the work provides a reference for subsequent fracturing operations. Desbor-
des [30] proposed a production optimization framework integrating three evolutionary
algorithms, namely NSGAII, MOPSO, and the multi-objective evolutionary algorithm based
on decomposition (MOEA/D). Due to the elimination of the population reinitialization
step, the method can achieve relatively high fitness with a lower computational cost. Due
to the limitations of RNS [31], there is an urgent need for a method that can compensate for
its shortcomings in various aspects [32].

Big data and artificial intelligence (AI) technology surpass the traditional physical-
driven research thinking and deeply explore the logical relationships existing within
data [33]. AI has the advantages of simplicity, high speeds, and high computational
accuracy because it can learn the inherent nonlinear mapping relationships of data directly.
Reservoir engineers can store and manage data and conduct in-depth mining and analysis
to propose development plans. Thanks to advances in computing power and the iterative
updating of algorithms, AI has also become a key technology for the intelligent exploration
of oilfields. These applications mainly focus on PVT prediction [34–36], missing value
regression [37], well location prediction [38,39], history matching [40–42], and production
prediction [43–48]. Many studies indicate that AI technology can improve the efficiency
and economic benefits. Therefore, AI technology is expected to alleviate the shortcomings
of RNS and play a greater role in oil exploration and development.

Transformer is a neural network that processes sequential data based on a self-attention
mechanism. The core of Transformer is the attention mechanism; similar to human selective
visual attention, it can learn information that is more critical to the current task goal
from a variety of information, which enhances the time series modeling ability. With this
ability, Transformer has achieved remarkable success in natural language processing and
computer vision, demonstrating its powerful time series modeling capabilities. Guo [49]
and Bai [50] predicted future traffic flows based on an attention-based graph convolutional
network. The prediction results showed that the attention-based model had higher accuracy
compared to traditional neural networks. Wang [51] proposed a short-term load forecasting
method based on an attention mechanism and the bi-directional long short-term memory
(Bi-LSTM) neural network to update data, assign weights, and perform model training
and prediction, respectively. After comparing the prediction results of actual datasets, the
results showed that the model with the attention mechanism had a lower calculation error,
indicating the superiority of the attention mechanism. Similarly, Liu [52] combined an
attention mechanism and the Bi-GRU neural network to optimize the hypertext transfer
protocol’s security. Niu [53] used an attention mechanism to predict wind power, achieving
good results. In the petroleum industry, attention mechanisms have also been applied
in production forecasting. Therefore, compared with existing deep learning methods,
attention-based methods significantly improve the prediction accuracy.

This article establishes a workflow for injection–production parameters’ intelligent
optimization considering the multi-objective tasks of the oilfield. The basic processes
include establishing an attention-based Transformer intelligent agent model, to perform
multi-objective optimization tasks via the Pareto-based population evolutionary optimiza-
tion algorithm. This article is divided into the following sections. In Section 2, we introduce
the methodology of the Transformer model and MOPSO algorithm. Section 3 introduces
the multiple objectives, the basic information of the target reservoir, the data preprocessing
process, and the architecture and evaluation criteria. In Section 4, the proposed method is
evaluated and compared with other methods. The discussion and conclusions are given in
Sections 5 and 6.
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2. Methodology
2.1. Transformer

Currently, many supervised learning algorithms can be used to build intelligent agent
models. These methods can be mainly divided into classification algorithms and regression
algorithms, represented by decision tree, support vector machine (SVM), random forest
(RF), etc. Because of their simple structures and fast speeds, classification algorithms are
also widely used in time series prediction. However, since the actual data are mostly
non-stationary, the simple structures of classification algorithms do not have the ability to
learn complex data. Therefore, this limits their application in time series prediction.

As another powerful tool in time series prediction, artificial neural networks (ANN)
are widely used to interpret and predict times series data. The most commonly used
deep learning methods for the processing of time series currently include the recurrent
neural network (RNN) and its variants, such as long short-term memory (LSTM), the gated
recurrent unit (GRU), Bi-LSTM, Bi-GRU, and so on. The RNN is a type of neural network
structure aimed at processing time series. The unique connections between hidden layers
in the RNN form a directed loop, which enables it to process time series well. As with
fully connected neural networks, the simplest RNN consists of three parts: an input layer,
hidden layer, and output layer. The value of the hidden layer in the RNN depends not only
on the current input xt but also the value of the previous hidden layer ht−1. The value of
the previous hidden layer ht−1 is determined by the input xt−2 and the previous hidden
layer ht−2. In other words, in an ideal situation, its hidden layer can store information for a
long time.

o(t) = g
(

Vh(t) + bo

)
(1)

h(t) = f
(

Ux(t) + Wh(t−1) + bh

)
(2)

where x(t) represents the input vector at time t; o(t) represents the output vector; h(t−1)

is the hidden cell state at time t − 1; bo and bh are the bias vectors; g() and f () are the
activation functions; U, W, V are the weight matrices used for input–hidden connections,
hidden–hidden connections, and hidden–output connections, respectively, with the same
weight values for the same types of weight connection. L shown in Figure 1 is the loss
function, and y is the label of the training set.
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To update the RNN weights with the optimal U, W, V, the partial derivatives of the
loss function for the three weight matrices are as shown below:

∂L
∂V

=
n

∑
t=1

∂L(t)

∂o(t)
· ∂o(t)

∂V
(3)

∂L(t)

∂W
=

t

∑
k=0

∂L(t)

∂o(t)
∂o(t)

∂h(t)

(
t

∏
j=k+1

∂h(j)

∂h(j−1)

)
∂h(k)

∂W
(4)

∂L(t)

∂U
=

t

∑
k=0

∂L(t)

∂o(t)
∂o(t)

∂h(t)

(
t

∏
j=k+1

∂h(j)

∂h(j−1)

)
∂h(k)

∂U
(5)

From Equations (3)–(5), it can be seen that there is no time dependency problem for
partial derivatives of V; however, for U and W, due to the long-term dependence of the time
series, h(t) will propagate forward with the time series. Due to the gradient vanishing and
the explosive linearity of the RNN, its prediction performance is average when processing
long sequence data.

To alleviate the gradient vanishing/exploding problem of RNN models, a series
of variants have gradually emerged. Information in neural networks represented by
LSTM [54] and GRU [55] is transmitted unidirectionally, and only past information can
be utilized, without the use of future information. The emergence of bi-directional neural
networks, such as Bi-LSTM [46,56] and Bi-GRU [57], has made it possible to consider both
past and future information simultaneously. Bi-LSTM connects the two hidden layers of
LSTM to the output layer. In this structure, both previous and future information can
be utilized at the output layer and this can significantly improve the model performance.
However, when using the RNN to process a vector sequence, it requires a “local encoding”
of the sequence. Therefore, the RNN has a short-distance dependency and it lacks parallel
processing capabilities.

Transformer consists of encoder and decoder stacks. The encoder and decoder of
Transformer are both composed of n identical layers [58]. Each encoder layer has two
sub-layers, consisting of a multi-head self-attention mechanism and feed forward neural
network (FFNN). Each decoder layer has three sub-layers, consisting of a multi-head
self-attention mechanism, multi-head attention over the output of the encoder stack, and
FFNN. The attention mechanism is the core of Transformer. It indicates the importance
of other tags in the input to the encoding of a given tag. The attention mechanism can
solve the two problems of the RNN and its variants mentioned above. In response to
the difficulty of obtaining long-term dependencies for the RNN and its variants, there is
no concept of distance when calculating the attention score. The attention score of each
unit and the current unit is independent of their distances, so it can avoid the problem
of difficult-to-obtain long-distance dependencies. Transformer can calculate the attention
score in parallel to obtain the context vector (Figure 2).

Specifically, we create three randomly initialized training parameter matrices, WQ,
WK, and WV first, and we multiply the encoder input vectors to obtain the corresponding
matrices Q, K, and V. Then, we calculate the attention score of each input variable and other
units in the data. The attention score represents the degree to which attention is focused on
other parts during encoding, and it is calculated by the dot-product of Q and K. Secondly,
dividing the score by the square root of the matrix K dimension helps to achieve more stable
convergence in training. Subsequently, a SoftMax function is applied to obtain the weights
of the values, and each SoftMax value is multiplied. Finally, we add the weighted value
vectors together as the corresponding output vectors in the self-attention layer. After the
vectors are correlated with each other in the self-attention layer, the corresponding vectors
are transferred to the FFNN layer. In the FFNN layer, each link has no correlation, so the
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FFNN layer can parallelize each input variable. The matrix of output can be computed as
in the formula below:

Attention (Q, K, V) = softmax
(

QKT
√

dk

)
V (6)

where dk denotes the queries and keys of the dimension.
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Multi-head attention is an improvement of the self-attention mechanism (Figure 3). It
enhances the model’s ability to focus on various positions by randomly initializing multiple
Q/K/V matrices and allows the self-attention layer to have a greater representation space.
The specific method is to multiply the calculated multiple output matrices by an additional
weight matrix, to obtain information that is the same size as the original and captures all
attention heads.

In addition, each self-attention and FFNN layer is linked through a residual and then
subjected to layer normalization operation. Furthermore, to read the position information
of each piece of data, Transformer adds a position encoding to the input embedding and
the final output vector. The calculation formula for the position encoding is as follows:

PE(pos,2i) = sin
(

pos/10, 0002i/dmodel
)

(7)

PE(pos,2i+1) = cos
(

pos/10, 0002i/dmodel
)

(8)

where pos is the position and i is the dimension.
Transformer introduces multi-head attention and self-attention modules to first “self-

associate” the source and target sequences, enriching the information contained in the embed-
ded representations of the source and target sequences themselves. Furthermore, the subse-
quent FFNN layers also enhance the model’s expressive and parallel computing capabilities.
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Therefore, it establishes a good theoretical basis for the subsequent establishment of the
intelligent agent model.
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2.2. MOPSO

MOO problems are mainly based on multiple conflicting objective functions. There-
fore, the optimal solution obtained for a certain goal will not consider other goals in the
optimal value and may even lead to degradation. The traditional MOO methods include
the weighted sum method, constraint method, objective programming method, distance
function method, minimax method, etc. Most of these methods decompose the problem into
a single objective problem, relying on different strategies, and single objective algorithms
are used to achieve optimization. Due to the reliance on prior knowledge and the inability
to select the optimal solution based on different needs, the above methods are not feasible
in certain contexts. For example, when MOO problems exhibit complex characteristics
such as nonlinearity and high dimensionality, traditional methods are not able to achieve
good results.

In recent years, evolutionary algorithms have enabled many breakthrough research
achievements in the field of combinatorial and numerical optimization. PSO is an evolu-
tionary algorithm inspired by the foraging behavior of bird populations in nature [27]. Due
to its advantages, such as simple implementation, an efficient search, and fast convergence,
it has been widely applied in various experimental tests and on-site practical applications.

As an evolutionary version of PSO, MOPSO is currently a popular method [19]. In
MOPSO, the individual’s position is treated as the solution to an optimization problem,
ignoring the individual’s mass and volume. The main principle is to continuously update
the information exchange between individuals in the group and the optimal individual.
Moreover, the entire group of individuals is guided to converge towards the optimal
individual, retaining their own diversity information.

The update particles are obtained through the organic combination of population
history optimal particles and individual history optimal particles. The velocity vg+1

i of
particle i at the next moment is determined by the current velocity vg

i , its own optimal
position Xg

i,pbest, and global optimal position Xg
i,gbest, which are jointly determined. After

updating, the speed changes from the current position Xg
i to a new position Xg+1

i . As the
iteration continues, the entire particle swarm, under the leadership of the leader, completes
the search for the optimal solution. The formula is shown below:

Xg+1
i = Xg

i + vg+1
i , i ⊂ Np and g ⊂ Ng (9)
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vg+1
i = ωIv

g
i + ωcR1

(
Xg

i,pbest − Xg
i

)
+ ωsR2

(
Xg

i,gbest − Xg
i

)
(10)

The final visual solution of the MOO problem utilizes the Pareto concept. Pareto
optimality refers to an ideal state of resource allocation. In the parameter space S, there is
a variable Y, and if there is no variable Y in S that makes all the corresponding objective
function values better than the corresponding objective function values, then Y is called the
Pareto optimal solution of the objective function, also known as the non-inferior solution.
Multi-objective optimization problems have more than one non-inferior solution, and
the set composed of all non-inferior solutions is called the non-inferior solution set. The
non-inferior solution set is mapped by the objective function to form the Pareto optimal
frontier or Pareto frontier surface of the problem. For a problem with two objectives, the
Pareto optimal frontier is generally a line.

3. Case Study
3.1. Basic Information of Target Reservoir

Our target is a typical carbonate reservoir in the Middle East, with an anticline reservoir
morphology and an initial reservoir pressure of 4425 psi. According to the tectonics of the
reservoir, it can be divided into two blocks: the crest area and the flank area. The crest
area is mainly developed by injecting miscible gas, and the flank area is mainly developed
by WAG. This paper focuses on the crest area. The porosity range is 5–25%, and the
permeability ranges from 1.3 to 6.3 mD. Lower permeability is attributed to the blocking
of the primary intergranular pore system caused by diagenesis. The specific fluid and
reservoir physical parameters are shown in Table 2.

Table 2. Fluid and reservoir physical parameters.

Reservoir Physical Property Value

Reservoir thickness 150–154 ft
Initial reservoir pressure 4425 psi

Initial bubble point pressure 2980 psi
Porosity range 5–25%

Permeability range 1.3–6.3 mD
Oil volume coefficient (at bubble point pressure) 1.44 rb/STB

Oil phase compression coefficient (at bubble point pressure) 15 × 10−6 1/psi

Carbonate reservoirs in the Middle East are mainly composed of porous bioclastic lime-
stone with low permeability, making them very different from fractured-cavity carbonate
reservoirs. The micropore structure of a carbonate reservoir is complex, the heterogeneity
is strong, and the interlayer and thief layer are generally developed. The reservoir has
combinations of platform–edge and reef–shoal, with various types of porous spaces, mainly
intergranular pores, while also developing intracrystalline pores, intergranular dissolved
pores, intergranular pores, and cavity pores. Such reservoirs are complex and diverse,
differing markedly in geologic features and development modes. Therefore, efficient gas
injection development is hindered by several challenges.

The crest area injects miscible gas through 11 reverse five-point well patterns, including
18 producers and 11 injectors, with a well spacing of 4100 ft. All wells are completed with
6-inch horizontal wells and open hole completion, with an average horizontal well length
of approximately 4000 ft. According to the development plan, as of 2006, the sustainable
production amounts to 60 Mbd/day, with a target injection rate of 100 MMscf/d.

3.2. Multi-Objective Function

Due to the presence of a gas cap, the GOR in the crest area continues to rise. While
the number of wells opened remains stable, the regional production capacity continues to
decline, making it difficult to achieve stable production of 60 Mbd/day. The average GOR
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of a single well in the reservoir is 1900–2500 scf/bbl. Since the comprehensive transition
to WAG development in 2019, the GOR has not significantly decreased. Some wells
have approached the shut-in targets set by resource countries, so efficient development is
hindered by several challenges.

The MOPSO algorithm is utilized to mathematically define an objective function for a
series of objectives in this paper. The final objective function F(x) is also called the fitness
function. In view of the difficulties in stabilizing the oil production and controlling the
GOR in the development of the top area, this paper defines the fitness function as below:

F(x) = exp

{
Q|BRF(d,k|Sn)

GOR|BRF(d,k|Sn) + 1

}
(11)

Q and GOR represent the oil production and GOR calculated by the intelligent agent
model. The exponential function is used to increase the sensitivity of the objective function.
The larger the objective function value, the higher the gas production and the lower
the GOR.

An increase in the gas injection volume will increase production, but it will also
correspondingly increase the costs. Taking the P-39 well pattern as an example, we first
calculate the historical average gas injection rate (GIR) of adjacent wells, as shown in Table 3,
and to make the iterative simulation values more realistic, this article adds a constraint on
the gas injection volume, as in Equation (12).

4

∑
1

GIRn ≤ 50, 000 Mscf/d (12)

In this paper, GIRn represents the gas injection rate of the n-th injector.

Table 3. Historical average gas injection volume.

Average GIR of I-14
(Mscf/d)

Average GIR of I-40
(Mscf/d)

Average GIR of I-74
(Mscf/d)

Average GIR of I-19
(Mscf/d)

Sum
(Mscf/d)

12,804 8471 12,238 12,804 46,317

3.3. Model Training and Data Preprocessing

To establish a high-precision intelligent agent model, 8 types of real parameters of
the reservoir were collected from 2006 onwards, including the gas injection volume and
injection pressure of 4 adjacent injectors. The output characteristics are the production
and GOR. It is worth mentioning that the shut-in state and choke size have a strong
improvement effect on oil production and GOR, but they are strongly influenced by human
factors. Therefore, to ensure the theoretical authenticity of the model, this article does not
consider these two characteristics.

There are four injectors around P-39, namely I-14, I-40, I-74, and I-19. The collected
dynamic data cover a range of 4500 days. The relevant characteristic curves of the well
group are shown in Figure 4. The heat map between variables is shown in Figure 5.

To improve the quality of the dataset, we sequentially perform data preprocessing
steps such as data standardization and data splitting. Due to the different sources of sample
features and measurement units, the scales vary greatly, so it is necessary to standardize the
sample and convert the features of each dimension into the same value range. Standardized
processing can not only reduce the impact of manual intervention in parameter adjustment
but also improve the convergence speed of the model. This article introduces a minimum–
maximum scaler to normalize the historical dynamic data, and the specific formula is
as follows:

xnor =
xi −min(xi)

max(xi)−min(xi)
(13)
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where xnor is the input variable after normalization.
The data used in this study are divided into a training set and a testing set, with a ratio

of 9:1. The data from the first 4000 days are used as a training set to train the model. The
data from the last 500 days are used as a test set to evaluate the prediction performance.
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3.4. Model Structure and Evaluation Criterion

The parameter settings involved in the process of building the intelligent agent model
based on the Transformer algorithm are shown in Table 4.

Table 4. Transformer model training parameter settings.

Parameters Value

Epoch 3000
Batch size 64
Time step 16

Learning rate 0.001
Number of hidden layers 2

Number of hidden neurons 60
Optimizer Adam

Loss function RMSE
Activation function ReLU

In addition, Table 5 lists the hyperparameters of the MOPSO algorithm. The population
size is 300, which means that there are 300 particles in each generation that need to be
optimized. The iteration number is 10,000, and the inertia weight is 0.7. The individual
confidence factor and group confidence factor are both 2.0.

Table 5. Multi-objective particle swarm optimization hyperparameters.

Parameters Value

Number of particle groups 300
Iterations 10,000

Inertia factor 0.7
Individual confidence factor 2.0

Group confidence factor 2.0

After the prediction, the model needs to be evaluated through statistical evaluation
indicators. This paper uses three commonly used error evaluation criteria to study the
accuracy of the model results: the root mean square error (RMSE), mean absolute error
(MAE), and median absolute error (MedAE). The formulas are as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (14)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (15)

MedAE = Median (|y1 − ŷ1|, . . . , |yn − ŷn|) (16)

where yi is the i-th actual value, ŷi is the i-th predicted value, and n is the number of
samples in question. yi is the average actual value of the sample.

To better compare the performance between algorithms, another criterion named
accuracy is defined as follows:

Accuracy = 1− 1
n

n

∑
i=1

(∣∣∣∣ ŷi − yi
yi

∣∣∣∣) (17)

4. Experimental Results
4.1. Performance in Prediction of Production and GOR

Different algorithms are used to predict the production and GOR of the P-39 well,
and the ability of the different algorithms to capture information in dynamic prediction is
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compared. The first is the temporal prediction ability of representative machine learning
algorithms. From the prediction results, the machine learning algorithm-based model is
not sensitive to changes in time series data, and it yields an almost smooth straight line,
with only significant changes occurring at some points (Figure 6). Secondly, in the first
200 days of prediction, the bagging algorithm and RF algorithm are relatively closer to the
real data in production and GOR prediction, but the error gradually increases in the later
stage. Thirdly, there are fluctuations in production and GOR between 200 and 270 days;
however, the machine learning algorithms are unable to capture this trend.
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Next, we performed the temporal prediction ability comparison of the neural network
algorithms represented by RNN, GRU, LSTM, Bi-LSTM, etc. From the prediction results
(Figure 7), the RNN algorithm and its variants are more sensitive to time series data
compared with machine learning algorithms. The prediction results have significant
fluctuations, similar to the true data, indicating a preliminary trend of capturing time series
information. However, due to the difficulty in obtaining long-term dependencies, in the
mid- to late stages of prediction, the effectiveness decreases.

By comparing the production and GOR prediction results of common neural network
algorithms, we have captured the following information. Firstly, from the overall trend,
the deep learning prediction results are more sensitive to time series, reflected in the large
fluctuations in production and GOR. Secondly, the GOR prediction trends of Bi-GRU are
more closely aligned with the true data; from the statistical error results in GOR prediction
(Figure 8b), the RMSE, MAE, and MedAE of Bi-GRU are reduced by 10%, 30%, and 41%,
respectively, compared to the RNN. This indicates that the Bi-GRU [55] methods have
alleviated the limitations of the RNN.
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The error comparison of common algorithms is shown in Figure 8. From the perspec-
tive of the production prediction performance, bagging, RF, GRU, Bi-GRU, and Bi-LSTM
perform well in terms of the error criteria; the above algorithms perform better than other
algorithms in MedAE especially, indicating that such algorithms have better robustness in
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production prediction. However, in the process of predicting GOR, the prediction error of
the AI methods fluctuates greatly. At present, the bagging, AdaBoost, RNN, and Bi-GRU
algorithms perform well in terms of the error criteria. Therefore, combining the prediction
results of the two development indicators, the bagging and Bi-GRU algorithms have higher
accuracy and will be discussed with the Transformer model further.

Finally, the prediction comparison regarding RNS, bagging, Bi-GRU, and Transformer
was performed. The prediction results of the Transformer model were compared with
those of the commonly used and highly accurate Bi-GRU algorithm. The comparison of the
GOR prediction results showed that, compared to Bi-GRU, the RMSE, MAE, and MedAE
of the Transformer algorithm were reduced by 28%, 42%, and 78%, respectively, while
the accuracy increased by 9%. From the prediction results (Figure 9), the Transformer
model [58] is mostly sensitive to time series data and shows better prediction performance
throughout the entire prediction stage compared with bagging and Bi-GRU, which, to some
extent, alleviates the problem of the traditional RNN being unable to obtain long-term
dependencies (Figure 10).

Next, the differences in computational time between different methods were compared.
The RNS methods and all intelligent algorithms were executed on professional workstations;
the main specifications were as follows: 2 × Intel® Xeon (R) Gold 6230 CPUs @ 2.10 GHz,
256 GB DDR4 memory, and an NVIDIA RTX A5000 graphics card with 24 GB GPU memory.
From Table 6, the computation time of RNS was 4600 s, while the computation time of the
intelligent algorithms was significantly reduced. The Transformer algorithm has the lowest
time consumption, reflecting the parallel computing ability of the attention mechanism.
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Table 6. Comparison of calculation time.

Method RNN GRU LSTM Bi-LSTM BPNN Bi-GRU DNN Attention RNS

Time (s) 960 830 890 970 1250 1080 1320 760 4600

In conclusion, compared with other methods, the intelligent agent model based on the
Transformer model has higher accuracy and a faster computing speed, which can lay the
foundation for further injection–production optimization.

4.2. Iteration Result of MOPSO

This section considers the integration of the MOPSO algorithm based on the agent
model to find the optimization scheme for the P-39, I-14, I-40, I-74, and I-19 wells. The MOO
fitness function integrating production and GOR is defined in Section 3.2, with the aim of
finding the optimal solution to achieve both high production and low GOR. Moreover, the
required hyperparameters in the MOPSO algorithm are given in Section 3.4.

After 10,000 iterations, the fitness curve and optimal particles of each generation are as
shown in Figure 11. Each particle represents the composite pattern of the injection amount
and the prediction effect. The horizontal axis represents oil production, and the vertical axis
represents the GOR. From the change curve of the fitness function, the fitness gradually
increased within 10,000 iterations and became stable in the later period, indicating that the
update of the non-dominated solution did not occur within the chosen number of iterations.

According to the above results, the Pareto frontier can be determined. From Figure 12,
the Pareto frontier can be divided into three parts, with the curves in part 2 being steeper
than those in other parts, indicating that as the oil production increases, the GOR will
significantly increase. In parts 1 and 3, the curve is relatively flat, indicating that the GOR
is not sensitive to an increase in oil production. Therefore, based on the Pareto frontier, the
injection method can be dynamically adjusted on-site. When the reservoir development
target is high production, the injection method of particles corresponding to the maximum
production rate can be selected. When the production well faces a high GOR, the injection
mode corresponding to the minimum GOR can be selected.

Moreover, three optimization schemes are proposed for the P-39 well pattern. Firstly, the
average allocation method is proposed based on the target injection volume (50,000 Mscf/d).
Secondly, from the perspective of reservoir engineering, the remaining geological reserves
in the plane distribution of each well in the simulation model are allocated. Finally, the
iterative results proposed in this article are utilized to predict the performance. Then, based
on the agent model, the development effects of different injection methods are predicted.
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The comparison of the injection and production parameters for different schemes is shown
in Table 7.
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Table 7. Injection and production parameters of different schemes.

Method GIR #1
(Mscf/d)

GIR #2
(Mscf/d)

GIR #3
(Mscf/d)

GIR #4
(Mscf/d)

Sum
(Mscf/d)

Average allocation 12,500 12,500 12,500 12,500 50,000
Reservoir engineering 4457 26,360 16,027 3154 50,000

Pareto result 8198 27,260 6662 7879 50,000

The prediction results of the intelligent agent model are shown in Figure 13. The
results indicate that in the next 400 days of production, the average method will face the
risk of a production reduction and increasing GOR, which are caused by unreasonable
injection parameters. The reservoir engineering method does not have significant produc-
tion fluctuations, but the development effect needs to be further improved. The method
proposed in this article results in higher production and lower GOR. In the next 400 days of
production, the cumulative oil production will increase by 25.3% compared to the average
distribution method and 12.7% compared to the reservoir method; GOR is reduced by
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27.1% and 15.3%, respectively. The method proposed in this article helps to consider the
actual situation and find the best injection production plan, which can not only ensure a
production increase but also reduce the GOR and development risks.
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5. Discussion

This paper selects the Transformer algorithm from many intelligent algorithms to
establish an intelligent agent model of an actual injection production well network. Through
correlation analysis, this article takes 10 variables, such as oil production data, GOR, the
gas injector volume, and the gas injection pressure, as characteristic variables, and the
production and GOR are the output variables. This article selects common machine learning
algorithms and neural network algorithms for comparison to verify the superiority of the
Transformer algorithm in predicting production and GOR. Through the comparison of the
evaluation criteria, including RMSE, MAE, MedAE, and accuracy, the Transformer model
based on the attention mechanism has a stronger time series data capture ability, higher
accuracy, and a faster calculation speed.

An intelligent multi-objective optimization method for well pattern injection–production
parameters based on the Transformer model is established. Among them, the optimization
objectives that are in line with the actual reservoir are defined, including simultaneously
maximizing oil production and minimizing GOR. In addition, the MOPSO algorithm is used
to perform 10,000 iterations to draw the Pareto frontier. Based on the Pareto frontier, it is
possible to search for the optimal solution under different development requirements. The
injection–production parameter results proposed in this article, and those of the traditional
uniform distribution method and reservoir physical property distribution method, are
input into the Transformer intelligent agent model. The model prediction results indicate
that the method proposed in this article can achieve higher cumulative oil production while
maintaining a low GOR. The workflow presented can provide a reference for reservoir
engineers to optimize the injection–production parameters.

In future work, there will be several trends as follows. Firstly, the number of opti-
mization goals will increase, including economic goals such as NPV and development
goals such as WCT. As the number of goals increases, the representation of the Pareto
boundaries will also become more complex. It is generally accepted that the Pareto frontier
of two targets is a curve, while the frontier of three targets will become a camber. Therefore,
in future work, we will continue to focus on the high-dimensional optimization goals of
Pareto’s cutting-edge visualization analysis. Secondly, we will consider more advanced AI
algorithms to achieve higher prediction accuracy and faster prediction speeds. For example,
the graph convolutional network (GCN) algorithm can simultaneously consider time series
and spatial relationships, which means that not only the dynamic connectivity between
different production wells can be considered, but also the specific flow of underground
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fluids can be considered. In addition, in future work, we will focus on situations that
include more production wells, rather than merely a five-point well pattern. Moreover,
based on a larger scope of consideration, risk prediction and real-time injection–production
strategy optimization can be further achieved.

6. Conclusions

This paper proposes an intelligent optimization process for well pattern injection–
production parameters based on an intelligent agent model and the MOPSO algorithm.
Firstly, the ability of common machine learning, neural networks, and the Transformer
algorithm in establishing agent models are compared. The Transformer algorithm has
higher accuracy and faster computational speeds compared with other methods, and it
improves the accuracy by 237% compared to RNS and reduces the computational time
by 505%. Secondly, the fitness function of MOO is defined, which aims to maximize
production while minimizing GOR. Then, the MOPSO algorithm is utilized to iterate the
injection–production parameters. After 10,000 iterations, the Pareto frontier is plotted and
divided into three stages according to the severity of the change in GOR during production
changes. Finally, three different optimization schemes are proposed, and the development
effects of different injection–production schemes are predicted in the intelligent agent
model. The prediction results show that the trends are consistent with the proposed
schemes. Considering the historical development capacity of the well pattern, the optimal
Pareto-based particles of the gas injectors are selected as the optimization values for the
development plan. After comparing the prediction performance of the different schemes,
it is concluded that the Pareto-based method proposed in this article can increase the
cumulative oil production by 25.3% compared to the average distribution method and
12.7% compared to the reservoir engineering method in the next 400 days; GOR is decreased
by 27.1% and 15.3%, respectively, which improves the development effect. The intelligent
optimization process for injection–production parameters proposed in this article can help
reservoir engineers to propose adjustment strategies efficiently and accurately when facing
different development scenarios.
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