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Abstract: New requirements for terminal production and operation have emerged as a result of the
increase in container terminal throughput. Traditional terminals’ manufacturing capabilities fall
short of the expanding service needs. By constructing a digital twin yard for container terminals, the
production capacity of terminals can be effectively improved, and the production operation process
can be optimized. This paper firstly constructs a digital twin yard system for container terminals,
proposing that it is mainly composed of physical space, virtual space, data, services, and intelligent
agents. This paper elaborates on the core technologies of digital twin yards and finally takes the
container delivery and loading process as an example to solve the production bottlenecks of the yard
in the container delivery business by reorganizing the operation process and targeting it, which can
improve the terminal production efficiency to a certain extent.
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1. Introduction

As the global marine sector expands quickly, the increase in throughput necessitates
increasing demands for terminal production capacity. As the core production resource of
container terminals, there is an urgent need to improve the current operational bottlenecks
of yards by enhancing intelligent operation capabilities. The following requirements now
exist for container terminal operations:

1. The process of terminal production and operation cannot be analyzed retrospectively;
2. The production and operation of the terminal cannot be visualized;
3. The terminal production and operation process cannot be effectively improved;
4. The level of terminal intelligence cannot be effectively evaluated;
5. The intelligent module of the terminal cannot be effectively iterated;
6. The terminal cannot effectively preview the future time state.

Container terminals are able to visually monitor production issues, evaluate difficulties,
and envision solutions in the past. The fundamental phase of terminal process improvement
is production process optimization, but it cannot be adjusted immediately during real
production, which may easily result in disorganized terminal production activities. Most
terminals have begun the process of intelligent transformation, but under the present
conditions, it is impossible to evaluate the reliability and effectiveness of the intelligent
module; it can only be evaluated through realistic production operations over a long period
of time, which can easily lead to production accidents due to the intelligent module. The
most important point is that as the terminal operations are increasingly busy, a targeted
advanced layout of production operation equipment is an effective way to solve production
conflicts. Since most choices are still made manually under the existing structure of terminal
production, it is impossible to anticipate and plan ahead for the future tense of terminal
production activities.

In order to deal with the present issues with terminal manufacturing, a digital twin
system for container terminals is built in this article. It can eventually replace manual
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decision-making and raise the intelligence of the terminal through the ongoing optimization
of the intelligence inside the digital twin architecture.

2. Related Work

The digital twin was first proposed by Michael Grieves in 2003 at a product lifecycle
conference, and he pointed out that the digital twin consists of three parts: the physical
entity, the virtual space, and the connection between them [1]. Tao Fei first proposed that
in industry, the digital twin should consist of five parts, physical, virtual, connected, data,
and services, and he described the core digital twin technology [2–4]. Scholars’ current
research direction is focused on smart manufacturing and Industry 4.0 and less on the
application of digital twins in container terminals. Li et al. constructed a digital twin
model based on 3D architecture with 3DMAX and U3D technology and used the AdaBoost
algorithm to train and optimize the DT mechanism model [5]. Wang et al. focused on the
characteristic scenes and key parameters of ship engine systems and ship containers during
operation and established a DT-based model and platform based on the basic modeling
of Maya and scene rendering of Unity 3D [6]. Jakovlev et al. studied the physical space
of digital twins and demonstrated the functionality of the virtual framework from the
perspective of cyber–physical security. Additionally, the dynamic changes of both physical
and virtual systems were qualitatively presented [7]. Oliveira et al. built a digital twin
platform for 3D and real-time geographic reference visualization of container parks, as
well as the location of hazardous container cargo. The tool combines different modules,
allowing further visualization of information related to containers, their movement, and
surrounding areas [8]. Zhao et al. have implemented a microbioreactor digital twin system
for cell culture using the open-source digital twin framework, with realizable automated
rocking rate and angle control and in-place optical cell density measurement [9]. Li et al.
provide an overview of the important manufacturing technologies, production modes, and
manufacturing processes based on digital twins in the lifecycle of aeroengine mainshaft
bearings, including the metallurgical process, heat treatment process, and grinding pro-
cess. They present the core technologies and future research directions of the lifecycle of
mainshaft bearings based on digital twins and give a defect diagnostic and life analysis of
the mainshaft bearings of aeroengines [10]. Kazała et al. present the evolution and role of
the digital twin concept as one of the key technologies for implementing the Industry 4.0
paradigm in automation and control and emphasized the importance of integration [11].

In the digital twin of container terminals, Wang et al. established a system framework
for intelligent port management based on DT, which is divided into five layers: physical
layer, data layer, model layer, service layer, and application layer. Additionally, methods
for addressing technical, data security, and management challenges were proposed [12].
Yang et al. comprehensively analyzed the challenges and requirements for the operation
of automated container terminals (ACTs) from the perspectives of equipment and oper-
ation management and summarized the advantages of digital twins [13]. Wang et al.,
Yang et al. and Zong et al. analyzed the characteristics of large integrated port operations
and proposed a digital twin application system framework. The construction methods
and technologies for digital twin modeling, global ubiquitous sensing, data mapping, and
model integration were analyzed [14–16].

Some scholars have conducted some applied research on this basis. Koroleva et al.
based their work on a high rack container storage system, a marine wireless charging
system with automatic ship mooring, drones, automatic cranes, automatic doors, and
unmanned transport to build a digital maritime container terminal system [17]. Bielli
et al. and Mi et al. simulated the terminal production operations and measured the opti-
mization algorithm strategy to enhance the optimization strategy through the simulation
platform [18,19]. Szpytko and Duarte constructed a digital twin model for container termi-
nal cranes by adding transportation and maintenance plans to the digital twin model to
ensure stability in the environment and assess the operational risk of the crane through
Monte Carlo Markov chains to construct a comprehensive maintenance decision model [20].
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Derse and Göçmen calculated the planning model with minimum transportation cost and
minimum time consumption at the container terminal through simulation [21]. Gao et al.
proposed a digital twin-based method to optimize the energy consumption of automated
stacking cranes (ASCs) in handling containers and developed a virtual container yard
that was synchronized with the physical container yard in the ACT digital twin system
for observation and validation [22]. Ding et al. developed a decision support system
(DSS) based on digital twin and big data technologies to provide optimal operational plans
and ship delay warnings using a big data engine for real-time monitoring and efficiency
analysis, further enabling real-time operational decision-making [23]. Zhao et al. proposed
a DT-driven method for energy-saving multi-crane scheduling and crane quantity selection.
The approach considers energy consumption and formulates the scheduling problem ac-
cordingly [24]. Zhou et al. developed a system that utilizes a digital twin of a port crane as
its core combined with multi-sensor data collection methods, OPC UA information models,
and plug-in programming to achieve the integration of virtual and real data from multiple
heterogeneous sources [25].

Although the retrospective analysis and visualization presentation issues can be
resolved in terminals using the five-dimensional digital twin framework [2], there are
still limitations in terms of optimization iteration, production preview, and the decision-
making of intelligent modules in production. In order to make a digital twin yard system
applicable to container terminals, this paper primarily enhances the five-dimensional
model, highlights the significance of the intelligent body for the first time, and suggests a
“decision-simulation-feedback-optimization” interaction between the intelligent agents and
the virtual space. This interaction mode enhances the usefulness of the virtual environment
while also extending the original three-dimensional display function, which is exclusively
available in the virtual space, and encourages the optimization and upgrading of the
intelligent agent.

3. Container Terminal Yard Digital Twin Framework
3.1. Architecture System

The digital twin yard (DTY) of container terminals consists of five parts: physical
space (PS), virtual space (VS), data (DD), services (SS), and intelligent agents (IAs). The PS
is a collection of physical entities. There are more physical entities involved in the yard,
including yard bridges, forklifts, internal trucks, external trucks, containers, space resources,
etc. The VS is a collection of models formed by modeling the physical space entities, which
is a mapping of the physical space and simulates the intelligent agent in response. DD
is the foundation that drives the operation of the digital twin yard, which contains the
physical space, virtual space, services, and data generated by the intelligent agent, and
it drives other components. Services are the various production systems required in the
terminal production operation, such as the Container Terminal Operating System (TOS),
the Yard Crane Maintenance System (YMS), the Yard Crane Remote Control System (YRCS),
the Container Delivery Reservation System (DRS), the License Plate Recognition System
(LPRS), and Container Number Identification System (CIS), which control the production
operation in the physical space. The IA is a crucial component of the digital twin yard,
which directs the production operations of the terminal yard and optimizes itself through
the organic integration of physical space, virtual space, data, and services.

DTY = (PS, VS, DD, SS, IA) (1)

The overall process of digital twin yard operation is shown in Figure 1. The PS is
modeled and mapped into the VS. When the state of the PS is changed, the VS is changed
correspondingly. At the same time, the SS is targeted to fit the production system according
to the production business requirements and issue instructions to the IA. The IA combines
the DD with the PS state for calculation and the VS for simulation, and then feeds back
to the IA after the simulation is completed, and the IA judges the decision instructions.
This process can be repeated several times until a better decision instruction is selected,
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and feedback is given to the SS, which issues the final decision instruction to the PS. After
the physical space completes the instructions, the intelligent agent compares, iterates, and
optimizes itself based on the data generated by the physical space, the virtual space, and
the service. The process is based on the existing container terminal production, combined
with the five-dimensional framework of the digital twin, to achieve a real sense of “virtual
to promote the physical”.
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Figure 1. The process of digital twin yard operation.

A container terminal is a typical discrete logistics system with many business types
and complex production processes. The terminal production requires manual intervention
at the planning level, such as the allocation plan, berth plan, and scheduling level, such as
dispatching and unloading. Therefore, the key element of the intelligent decision agent is
added to the digital twin yard, which is the biggest difference from the current twin system
in Industry 4.0.s

3.2. Core Technology

The digital twin yard system contains five parts: physical space, service, data, in-
telligent agent, and virtual space. There are further digital twin technologies involved,
including spatial model construction, virtual space model iteration and display, service
system dynamic fusion, data warehouse, and intelligent agent decision optimization.

3.2.1. Spatial Model Construction

The container terminal yard has many entities such as containers, yard cranes, forklifts,
internal trucks, and external trucks. The physical entities in the digital twin yard need
sensing modules and network modules in order to passively take the operating instructions
while actively sensing the equipment’s status. As shown in Figure 2, the various colors
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represent various ports of discharge and the physical entities can be divided into different
types according to the type of equipment.
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Figure 2. Different types of entities.

The physical space model contains a geometric model (GM), physical model (PM),
behavioral model (AM), and rule model (RM), where the geometric model is used to build
the contents of the field bridge such as length, width and height, shape, structure, etc.
Building the physical model will include factors like engine speed, wear level, engine
temperature, steel stress, and tension, among others. The behavioral model is used to
explain how the yard crane operates, including how commands are carried out, how the
yard bridge is moved around, how it is maintained, etc. The regulations established in the
yard operation, such as the span height operation restriction and the speed limit for yard
bridge movement, constitute the rule model. In the virtual space, the GM is necessary and
the other models depend on it, so the virtual entity (VE) can be expressed as:

VE = GM + α1PM + α2AM + α3RM (2)

where αi denotes the weights of the four-dimensional model.
Fine granularity modeling is necessary since the forklifts, inner trucks, and yard

bridges at container terminals have active perception and passive acceptance. Containers,
outer trucks, yard roads, yard ranges, etc., belong to non-active perception entities; hence,
only geometric models may be built for them using coarse granularity modeling; let α1,α2,
α3 = 0. Industry 4.0 has common digital twins for beat-to-beat manufacturing systems that
typically call for an extremely high level of isomorphism between the digital and physical
worlds. It is not necessary to require ultra-high isomorphism in various decision-making
and simulation processes. Entity models with different granularity can be built under
different business types or scenarios, thus reducing energy consumption to a certain extent,
speeding up the operation of the digital twin yard, and improving its responsiveness.
It is the first instance of a virtual space with configurable isomorphism in the container
terminal system.

Thus, the virtual space can be expressed as follows:

VS =
I

∑
i=1

J

∑
j=1

VE (3)

where i denote the set of types for which modeling needs to be performed and j denotes
the number of models that need to be modeled in each type.

The modeling process is shown in Figure 3 and is divided into cell type selection, cell
characteristics selection, meshing, model checking, boundary condition definition, and
calculation correction. The cell type can be classified according to shape, such as point, line,
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and surface cells, and according to cell order, such as linear, quadratic, and P cells. After
selecting the cell type, it can be corrected according to the solid characteristics. By dividing
different numbers of meshes, different accuracy models can be built. After the model is
constructed, the model can be calculated, verified, and corrected by a finite element, a
higher-order singular value decomposition method, etc., to ensure consistency with the
physical space.

Processes 2023, 11, x FOR PEER REVIEW 6 of 14 
 

 

where i denote the set of types for which modeling needs to be performed and j denotes 

the number of models that need to be modeled in each type. 

The modeling process is shown in Figure 3 and is divided into cell type selection, cell 

characteristics selection, meshing, model checking, boundary condition definition, and 

calculation correction. The cell type can be classified according to shape, such as point, 

line, and surface cells, and according to cell order, such as linear, quadratic, and P cells. 

After selecting the cell type, it can be corrected according to the solid characteristics. By 

dividing different numbers of meshes, different accuracy models can be built. After the 

model is constructed, the model can be calculated, verified, and corrected by a finite ele-

ment, a higher-order singular value decomposition method, etc., to ensure consistency 

with the physical space. 

 

Figure 3. Model flow diagram. 

3.2.2. Dynamic Integration of Service Systems 

The operation of a container terminal yard requires the support of various service 

subsystems, as shown in Figure 4. 

 

Figure 4. Service integration. 

Figure 3. Model flow diagram.

3.2.2. Dynamic Integration of Service Systems

The operation of a container terminal yard requires the support of various service
subsystems, as shown in Figure 4.
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The PS generally requires a command-and-control system, remote control system,
identification system, etc. The VS requires a 3D display system, dynamic modeling system,
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monitoring system, etc. The DD requires a data system conversion system, storage, etc.
The SS is a collection of systems that need to be used in the production process of the yard.

SS = {servicePS, serviceVS, serviceDD} (4)

Consider a container delivery operation as an example. To complete a container
delivery operation, it is necessary for the cooperation of several systems including the
container delivery reservation system, the big data platform, the 3D display platform
system, the truck number identification system, the container number identification system,
the terminal operation system, the field and cranes remote operation system, and the
intelligent container delivery agent.

A common data transfer format must be specified since different service systems
must communicate with one another when the service platform summons them for varied
production needs.

Apis =
(
Names, Times, Datas, Types

)
(5)

The interface consists of the service system name, time, data, and data type. The
service platform needs to unify the management of interfaces for each subsystem and
complete data exchange. Dynamic service fusion unifies all of the services in the terminal
into a common interface, making it easier to invoke services in different systems and laying
the groundwork for IA utilization.

3.2.3. Data Warehouse

The digital twin yard data contains physical data generated by the physical space,
simulation data generated by the virtual space, business data generated by the service
platform, and simulation data generated by an intelligent agent.

DD = (DDPs, DDVs, DDSS, DDIA) (6)

Physical data (DDPs) mainly contains data generated by the production process, includ-
ing production factors, production process, production environment, production quality,
and other data, which are the real results and standard data of production. Simulation
data (DDVs) contains data simulated in the virtual space after the instructions generated
by the intelligent agent, including simulated production factors, simulated production
process, simulated production environment, simulated production quality, and the control
data generated in the three-dimensional presentation. Operational data (DDSS) is the data
generated in the process of terminal operation, such as the ledger of container delivery
records generated in the container delivery reservation system, the instruction dispatch
data generated in TOS production, and the box number identification information gen-
erated at the gate exit. The simulation data (DDIA) contains the simulation decision data
generated in the intelligent agent in the current situation. The basis for data cleaning and
fusion is laid by segmenting the data sources of the digital twin container terminals and
identifying disparities in the data.

As shown in Figure 5, cleaning and fusion are necessary when the data are used be-
cause of the heterogeneity, scale, real time, and complexity of the data. Data cleaning can be
performed by using the Trillium model, the AJAX model, and the Bohn model framework,
as well as dirty data pre-processing, the sorting neighbor method, the Lagrange interpo-
lation method, the multiple traversal data cleaning method, cleaning by using domain
knowledge, and integrated data cleaning by using a database management system. Data
fusion is the organic fusion of DDPE, DDVE, DDSS, and DDIA generated from digital twin
yards. The least squares unbiased estimate approach can be used to perform data fusion in
three different ways: data-level fusion, feature-level fusion, and decision-level fusion.
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When the intelligent agent command is issued, the command operation data generated
by physical space operation and virtual space operation can be fused, so that the difference
can be analyzed and compared to enhance the level of assistance to improve the intelligent
agent, virtual space model consistency, and stability of physical space equipment operation.

Data cleaning and fusion is a necessary step under big data, which is a prerequisite for
decision and data-driven analysis. Through data cleaning and fusion, we need to build a
data warehouse to form an integrated, analysis-oriented data environment to better support
decision-making analysis.

3.2.4. Intelligent Agent Decision Optimization

The majority of the decision difficulties in the operation of container yards currently
rely on manual decision-making. Staff members rely on their work experience for dis-
patching instructions. Manual decision-making has certain limitations, such as insufficient
prediction of site resources, low level of refinement, and no retrospective decision-making.
Therefore, in the digital twin yard, intelligent decision-makers are relied on to dispatch
instructions. The intelligent agent decision is based on the existing container terminal
production base, combined with mathematical algorithms and artificial intelligence, etc.,
to simulate manual decision-making. The intelligent agent has the ability of self-learning
and self-retrospection, and through continuous self-optimization and self-iteration; thus,
manual labor is replaced, and manual participation is reduced. An important advancement
in the digital twin system of the container terminal is the intelligent body self-optimization,
which propels instruction allocation and simulation with the virtual space separately and
realizes the intelligent body self-optimization and upgrading through continuing mutual
feedback. As shown in Figure 6 below, the delivery decision intelligent agent is developed
by the rule sieve algorithm, Monte Carlo tree search algorithm, and neural network. The
real-time operation of the yard combines historical data to make command decisions and
records environmental data, so as to backtrack, learn, and improve the intelligence level.
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Figure 6. The delivery decision intelligent agent.

4. Optimization of the Production Process
4.1. Optimization of the Container Delivery Operation Process

Container terminal delivery operation refers to the process in which the customer
puts the specified container into the yard after the customer’s cargo arrives at the terminal
through shipping.

4.1.1. Existing Container Delivery Process

The workflow for the container delivery industry is comparatively simple at this
stage in the development of container terminals. The existing delivery process is shown
in Figure 7. Typically, the customer makes a delivery reservation through the delivery
reservation platform and selects the delivery time on their own, with a 2 h window for the
reservation. When the user arrives at the terminal gate, the incoming truck will be checked
using either an appointment form or license plate recognition. If the audit is successful,
it will determine if the truck can enter the yard to deliver the container operation based
on the arrival time and the reservation time. The terminal typically decides to let the user
wait in the buffer zone for a while as a punishment mechanism if the arrival time is later
than the reservation time. The site scheduler will then set up the yard crane to execute the
container delivery operation in accordance with the yard’s actual operational status.

From the viewpoint of the current container delivery operation process, the entire
workflow has been initially computerized, and the data can be connected through the
terminal service system. However, there are still certain areas that can be improved. When
a customer makes an appointment to deliver a container, the terminal service decision-
making intelligence can determine the best time to deliver the container and can send
feedback to the customer for confirmation. It can reduce the waiting time for the outer con-
tainer truck by analyzing the operation of the terminal through the terminal service when a
container truck enters the gate and arrange the operation of the yard and bridge through
decision-making intelligence in accordance with the actual operation situation. When out-
bound trucks leave the gates, an analysis of customer delivery business data is performed
to update customer data and assist in optimizing the decision-making intelligence.
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4.1.2. Delivery Operation under a Digital Twin Yard

Based on the digital twin yard system, the container delivery business can have a
new operation mode. As shown in Figure 8, during the delivery reservation stage, the
customer makes a reservation through the DRS system and submits the relevant container
information and external collector card information to the DRS system. The DRS system
generates the reservation result by interfacing with the TOS system, and the TOS system
issues a decision instruction to the delivery decision intelligent agent based on the operation
of the yard and bridge entity in the yard and bridge system. The intelligent agent calculates
the delivery time of this reservation order. The intelligent agent simulates the gate, yard,
and bridge operations in the virtual space by extracting the yard model data, unloading
operations, allocation plan, container history data, loading operations, and other business
data. After the virtual space simulation, the simulation process and simulation results
are saved, and the results are fed back to the intelligent agent. The intelligent agent
judges whether the simulation data is feasible; if not, the intelligent agent recalculates and
simulates; if feasible, it feeds back to the TOS system and DRS system and finally feeds
back to the customer.



Processes 2023, 11, 2223 11 of 14Processes 2023, 11, x FOR PEER REVIEW 11 of 14 
 

 

 

Figure 8. Digital twin yard delivery process. 

In the operation stage, the external collector vehicle booked by the customer enters 

the gate. At this time, the vehicle identification system identifies the data provided by the 

gate and provides the vehicle data to the modeling system, and the modeling system per-

forms dynamic modeling. At the same time, the vehicle information is provided to the 

TOS system, and the TOS system gives instructions to the intelligent decision-making 

agent, which makes decisions and carries out simulation operations in the virtual space 

and stores the simulation process and results. After the simulation is completed, the intel-

ligent agent provides the field and bridge operation instructions to the TOS system. The 

TOS system assigns instructions to the field and bridge system and carries out the opera-

tion. When the vehicle enters the gate, due to the high randomness of the customer’s arri-

val time, it can enter the buffer zone first and wait to see if the operation conditions are 

not met through the TOS system instruction assignment. 

In the departing stage, after the yard operation is completed, the outer truck loads 

the container to the gate, and the license plate recognition system and the container num-

ber recognition system carry out recognition at the same time and provide the result to 

the TOS system, which will confirm whether to release the container. The intelligent agent 

reconfigures and simulates in the virtual space after the overall operation process is com-

plete by fusing and uniting the physical data, business data, and model data. The simula-

tion space then updates the simulation data of the operation process and operation result. 

The virtual space considers the error factor by judging the difference between the actual 

data and the simulated data at the beginning of the job process and the end of the process 

and carries out model iteration optimization if it is due to model error, and strategy opti-

mization by the decision agent if it is due to business error. 
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In the operation stage, the external collector vehicle booked by the customer enters
the gate. At this time, the vehicle identification system identifies the data provided by
the gate and provides the vehicle data to the modeling system, and the modeling system
performs dynamic modeling. At the same time, the vehicle information is provided to the
TOS system, and the TOS system gives instructions to the intelligent decision-making agent,
which makes decisions and carries out simulation operations in the virtual space and stores
the simulation process and results. After the simulation is completed, the intelligent agent
provides the field and bridge operation instructions to the TOS system. The TOS system
assigns instructions to the field and bridge system and carries out the operation. When the
vehicle enters the gate, due to the high randomness of the customer’s arrival time, it can
enter the buffer zone first and wait to see if the operation conditions are not met through
the TOS system instruction assignment.

In the departing stage, after the yard operation is completed, the outer truck loads the
container to the gate, and the license plate recognition system and the container number
recognition system carry out recognition at the same time and provide the result to the TOS
system, which will confirm whether to release the container. The intelligent agent reconfig-
ures and simulates in the virtual space after the overall operation process is complete by
fusing and uniting the physical data, business data, and model data. The simulation space
then updates the simulation data of the operation process and operation result. The virtual
space considers the error factor by judging the difference between the actual data and the
simulated data at the beginning of the job process and the end of the process and carries
out model iteration optimization if it is due to model error, and strategy optimization by
the decision agent if it is due to business error.
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4.2. Digital Twin Loading Operation Process

Based on the digital twin yard, the container terminal has a new operation mode for
container dispatching.

As Shown in Figure 9, when a ship berths, berthing information is transmitted to the
Berth Plan System (BPS). The BPS transmits the corresponding data to the TOS system.
The TOS pushes the acquired ship data to the Crane Assignment Intelligent Agent (CAIA),
which calculates the splitting plan by collecting data in DD and sends the decision result to
a simulation in virtual space. Before the loading operation starts, the TOS system issues
the instruction for the CAIA to calculate the work block and verify it by the virtual space
simulation. When the loading operation is carried out, the TOS issues instructions, the
Instruction Delivery Intelligent Agent (IDIA) calculates the specific instructions, and the
Yard Crane Delivery Intelligent Agent (YCDIA) calculates the specific execution of the
instructions, which is verified by simulation and then fed back to the TOS. After verification
by simulation, it is sent back to the TOS and finally released to the crane system, yard crane
system, and truck system for its execution. After the execution, the system will record
the current yard time state and operation process and feedback to the intelligent agent
and virtual space to achieve self-feedback. After the execution, the system will record the
current yard time state and operation process and provide feedback to the intelligent agent
and virtual space to achieve self-feedback.
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For the above production process, after data tracking in a terminal in Shanghai port,
the vehicle reservation rate increased by 27%. In the original process, the customer’s
delivery time was uncertain when he arrived at the yard after making a reservation, and
the terminal would carry out the delivery operation when it did not affect the operation
of the yard. However, in the current production process, the intelligent agent judged the
suitable delivery time and the customer carried out the delivery according to that time, and
the waiting time was greatly reduced from the original average waiting time of 27 min to
19 min. In the case of other production processes, such as loading and discharging, the rate
of overturned containers in the yard decreased by 1.28%, which also shows that the digital
twin yard is beneficial to the production operation of container terminals.

5. Conclusions

Container terminals lack intelligence, and the impact of intelligent modules is fre-
quently restricted to the professional experiences of staff members who share a certain
personal inclination. While reducing errors caused by manual skill, the digital twin yard
can aid in the advancement of terminal intelligence. The digital twin yard can simultane-
ously identify the production operation bottleneck in the yard and promote the terminal
to increase production effectiveness. The digital twin yard of the container terminal is an
essential pathway for improving terminal intelligence and an essential tool for support-
ing terminal transformation and modernization. The construction of a framework for a
digital twin yard, the development of implementation strategies, and the analysis of the
terminal’s common container delivery and loading operations all serve to demonstrate the
paper’s scientific approach to the design of digital twin architecture for container terminals.
Access to more capable decision-making agents may be advantageous for future terminal
manufacturing. Additionally, it may be considered linked to auxiliary systems that can
follow the movements of departing container truck vehicles in real-time, such as a highway
inspection system. This will make it possible to schedule container delivery operations in
advance, reducing outgoing truck waiting times and improving terminal service efficiency.
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