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Abstract: Shunbei Oilfield is a fractured carbonate reservoir with complex geological structures that
are influenced by fault movements and prone to collapse and leak incidents. Precisely predicting
leakage pressure is crucial for conducting fracturing operations in the later stages of production.
However, current fracture-related leakage pressure prediction models mostly rely on statistical and
mechanical methods, which require the consideration of factors such as fracture aperture and param-
eter selection, thereby leading to limitations in prediction efficiency and accuracy. To enhance the
accuracy of reservoir leakage pressure prediction, this study leverages the advantages of artificial
intelligence methods in dealing with complex nonlinear problems and proposes an optimized Long
Short-Term Memory (LSTM) neural network prediction approach using the Particle Swarm Optimiza-
tion (PSO) algorithm. Firstly, the Spearman correlation coefficient is used to evaluate the correlation
between nine parameter features and leakage pressure. Subsequently, an LSTM network framework
is constructed, and the PSO algorithm is applied to optimize its hyper-parameters, establishing
an optimal model for leakage pressure prediction. Finally, the model’s performance is evaluated
using the Coefficient of Determination (R2), Root Mean Squared Error (RMSE), and Mean Absolute
Percentage Error (MAPE). The evaluation results demonstrate that the PSO-optimized LSTM model
achieved an R2 of 0.828, RMSE of 0.049, and MAPE of 3.2, all of which outperformed the original
model. The optimized LSTM model showed an average accuracy approximately 12.8% higher than
that of the single LSTM model, indicating its higher prediction accuracy. The verification results from
multiple development wells in this block further confirmed that the deep learning model established
in this study surpassed traditional methods in prediction accuracy. Consequently, this approach is
beneficial for drilling engineers and decision-makers to plan drilling operations more effectively and
achieve accurate risk avoidance during the drilling process.

Keywords: fracture leakage; deep learning; Long Short-Term Memory (LSTM) neural network;
Particle Swarm Optimization (PSO) algorithm

1. Introduction

Wellbore leakage refers to a complex downhole situation that occurs during drilling,
cementing, testing, and other operations, in which the working fluid leaks into the forma-
tion due to pressure differentials. Calculating the leakage pressure accurately is challenging
due to factors such as subsurface geological complexity, fluid behavior complexity, and
uncertainty in engineering parameters. When wellbore leakage occurs, it can lead to wasted
drilling time, the loss of drilling fluid and plugging materials, and even damage to the
reservoir, which impacts subsequent oil recovery operations. Therefore, determining the
leakage pressure of the formation is critical for improving the success rate of leak prevention
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and plugging, and it provides crucial guidance in deciding whether reservoir fracturing
operations should be conducted.

The traditional calculation methods commonly used can be classified into empirical
formula calculations and statistical calculation models [1–4]. The mechanical model pri-
marily analyzes from a mechanical perspective. When the mud column pressure increases
during drilling, the radial stress around the wellbore also increases, while the tangential
stress decreases. If the combined radial and tangential stresses cause shear failure in the
formation at the location of the maximum horizontal earth stress, fractures are assumed
to appear around the formation, resulting in formation leakage. At this point, the mud
column pressure is considered as the leakage pressure. However, the results obtained from
this mechanical model tend to be larger than the actual values. This discrepancy arises
mainly because the mechanical model is derived under non-leakage conditions. It relies on
empirical coefficients and existing experimental data, has limited applicability, and may be
inaccurate for complex well leakage situations, lacking in details and precision. Breckels [5]
proposed a method for determining the minimum horizontal principal stress, known as the
minimum envelopment method, to estimate formation leakage pressure during drilling
operations. This method assumes that formation leakage occurs due to wellbore fracturing,
and that the leakage pressure is closely related to the minimum horizontal principal stress.
It has been applied in engineering with reasonable accuracy. However, this method simpli-
fies the assumptions regarding geological and fluid behavior, failing to accurately reflect the
complexity and diversity of actual wellbore leakage behavior. Statistical-based models for
calculating leakage pressure are derived from the analysis of a large amount of field data on
wellbore leakage. Factors such as drilling fluid density, viscosity, and characteristics of the
leakage pathway in the formation influence wellbore fluid loss. The statistical analysis of
leakage rates through porous formations is used to establish a relationship model between
pressure differential and leakage rate. This model, compared to mechanically based leakage
pressure models, is more practical and widely applicable as it better aligns with reality.
However, the parameters in this model are influenced by multiple factors and cannot be
determined with certainty. To achieve more accurate predictions of leakage pressure, recent
studies have focused on developing calculation models specifically tailored for fissured
and permeable formations [6]. Zhai [7] established a dynamic model for leakage pressure
based on parameters such as time, leakage rate, and crack width, controlling variations in
induced fractures to manage leakage pressure. Researchers such as Ozdemirtas, Majidi, and
Shahri [8–15] have investigated drilling fluid leakage models for fissured formations for
different dimensions, flow patterns, and crack smoothness. Each model considers different
perspectives and has a different applicability and range of application. For complex geolog-
ical structures and fluid behavior, more sophisticated models and calculation methods may
be required, posing computational challenges.

With the further development of machine learning in the oil and gas industry, data-
driven methods are revolutionizing the field. Deep learning, as a prominent branch of
machine learning, offers unique advantages in data processing, and researchers have con-
ducted studies in various areas of the oil and gas industry [16–30]. Panja [16] used three
different machine learning methods to predict hydrocarbon production in hydraulic frac-
turing wells, and the results showed that the prediction performance of the least squares
support vector machine was the best. Ahmed [17] established a real-time prediction model
for vertically complex lithological stacking density based on drilling parameters, which can
be applied to the calculation of stacking density for various lithologies. Agin [18] employed
an adaptive neuro-fuzzy inference system (ANFIS), data mining, and experimental design
methods to predict formation leakage. In their comparisons, they found that the results
obtained from the adaptive neuro-fuzzy inference system were accurate. Abdulmalek [22]
used support vector machines based on well logging data and surface drilling parameters
to establish models for predicting formation pore pressure and fracture pressure. These
models can estimate pore pressure without the need for pressure trends and predict fracture
pressure solely based on easily obtainable real-time surface drilling parameters. Wang [25]
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proposed a deep learning method for porosity prediction based on a deep bidirectional
recurrent neural network. The results showed that compared to the fully connected deep
neural network method, this approach not only effectively addressed the issue of spatial
scale in porosity prediction but also compensated for the deficiency of traditional deep
networks in providing contextual information. Consequently, it improved the accuracy and
stability of porosity prediction. Yang [26] used shale gas well production data to establish a
database for training recurrent neural network models. The LSTM model showed good
scientific accuracy and predictive performance in both short-term and long-term forecasts.
It achieved accurate production prediction for neighboring wells and demonstrated high
conformity with actual shale gas production. Luo [27] applied both backpropagation neural
network (BP) and LSTM deep learning networks to intelligently predict formation porosity
pressure. The test results indicated that the LSTM neural network model had superior
predictive performance. Due to the complexity of geological structures, most geological
features exhibit temporal characteristics, and the prediction of leakage pressure demands
high accuracy and adaptability. PENG [28] applied LSTM-based models for energy con-
sumption prediction and compared them with several popular models. The LSTM models
consistently exhibited higher predictive accuracy when compared to other current models.
Considering the above, we choose the Long Short-Term Memory (LSTM) network. LSTM
is an improved and enhanced version of conventional Recurrent Neural Networks (RNN).
It addresses issues such as the vanishing gradient problem in conventional RNNs through
fine-tuning the design of the network’s recurrent body. The most significant difference
in a recurrent neural network lies in the interconnectedness of its hidden layers, where
each hidden unit is not only related to others but is also influenced by the temporal input
received by that hidden unit in the past. This characteristic is especially beneficial for
handling data that are time dependent. By using this approach, the predicted leakage
pressure takes into account the intrinsic relationships between different features and their
changing trends with depth. As a result, it accurately calculates the leakage pressure in
different formations.

However, traditional network prediction models often involve complex computations
and require the manual tuning of hyper-parameter values to achieve optimal training
results, consuming a considerable amount of time. Considering the use of heuristic opti-
mization algorithms to handle hyper-parameters, commonly used heuristic optimization
algorithms include Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Differ-
ential Evolution (DE), etc. Ehsan [31] utilized four machine learning (ML) methods and
two traditional Rate of Penetration (ROP) models to predict drilling speed. They applied
heuristic optimization algorithms and the backpropagation algorithm for ML model predic-
tion, and the results indicated that combining machine learning with heuristic optimization
algorithms achieved the highest prediction accuracy. Wang [32] introduced a novel hybrid
shear wave velocity prediction model that combines the Particle Swarm Optimization (PSO)
algorithm with optimized Long Short-Term Memory (LSTM) recurrent neural networks.
This model incorporates adaptive learning strategies and demonstrates superior prediction
accuracy and robustness compared to traditional methods. One of the key advantages of
the PSO algorithm is its ability to utilize parallel computing resources effectively, which
accelerates the optimization process and makes it suitable for handling large-scale optimiza-
tion problems. In particular, when dealing with a high number of optimization parameters,
PSO can achieve rapid and precise results. In light of these advantages, this paper proposes
an enhanced Long Short-Term Memory (LSTM) model for predicting leakage pressure
using the PSO algorithm. The Particle Swarm Optimization (PSO) algorithm is well-known
for its strong global optimization capabilities and fast convergence speed. By employing
PSO to optimize the hyper-parameters of the LSTM model, the prediction accuracy of the
model can be significantly improved. Moreover, this optimization approach eliminates the
need for laborious and specialized model tuning procedures, making it more user-friendly
for field personnel.
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2. Methods and Principles
2.1. Principles of LSTM Recurrent Neural Networks

LSTM was originally proposed by Hochreiter [33], and in 2000, Schmidhuber et al.
improved the LSTM network by introducing the method of forget gates, which is suitable
for continuous prediction. Subsequently, Grave further improved and extended LSTM in
his book [34–41]. The predecessor of the LSTM neural network is the Recurrent Neural
Network (RNN), which learns sequential patterns through internal loops. RNN has mul-
tiple recurrent loops that allow information to be continuously passed along. Hochreiter
introduced memory cells and gates, which enabled the long-term storage of information
while forgetting unnecessary information. In the LSTM network, a memory cell is used
instead of a neuron. An LSTM cell consists of one memory cell (ct) and three gate structures,
including an input gate (it), a forget gate ( ft), and an output gate (ot). At time step t, xt
represents the input data, and ht represents the hidden state. The equations for LSTM
operations are shown in Equations (1)–(6):

ft = σ(U f xt + W f ht−1 + b f ) (1)

it = σ(Uixt + Wiht−1 + bi) (2)

ut = tanh(Uuxt + Wuht−1 + bu) (3)

ct = ft ∗ ct−1 + it ∗ ut (4)

ot = σ(Uoxt + Woht−1 + bo) (5)

ht = ot ∗ tan h(ct) (6)

In the equations, U and W represent matrix weights, b represents the bias term, the
symbol ‘×’ denotes vector outer product, and the symbol ‘+’ represents addition. σ denotes
the sigmoid activation function, which outputs values in the range [0, 1]. In this range,
0 indicates “completely forgetting all information”, and 1 indicates “completely retaining
all information”. The expression for the sigmoid function is:

sigmoid(x) =
1

1 + e−x (7)

The forget gate calculates the weighted sum of xt and ht−1, and applies the sigmoid
function to obtain ft ( ft ∈ (0, 1)), as shown in Equation (1). ft represents the weight of the
information to be forgotten in the previous memory cell (Ct). In other words, the forget
gate controls the amount of information retained in the previous memory cell, as shown in
Equation (4). The input gate determines how much new information should be received
into the memory cell (Ct), and Ct represents the storage weight of the memory cell. The
original information and the new information are controlled by the forget gate and the
input gate, respectively, to obtain the current memory cell (Ct). Finally, the output gate, as
shown in Equation (5), filters the memory cell (Ct). The updated memory cell obtains the
current hidden state value through Equation (6). Finally, backpropagation is performed to
obtain the LSTM model composed of these storage blocks, as shown in Figure 1.
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2.2. PSO Algorithm

Particle Swarm Optimization (PSO) is a heuristic optimization algorithm proposed by
Kennedy and Eberhart [42]. This algorithm mimics the foraging process of bird flocks to
search for the optimal solution [43–47]. In the PSO process, particles update their positions
and velocities based on individual best and global best. The particle’s position is denoted
as pk

i ; the individual best represents the position of a particle with the lowest error along its
movement trajectory, denoted as p∗i ; and the global best represents the position of a particle
with the lowest error among all particles along their movement trajectories, denoted as g∗.
The particles update their velocities and positions iteratively:

vi
k+1 = ωvi

k + c1r1(p∗i − xi
k) + c2r2(g∗ − xi

k) (8)

pk+1
i = pk

i + vi
k+1 (9)

In the equation, vi
k and xi

k represent the velocity and position of the i-th particle
in the k-th iteration; c1 and c2 are two constants representing individual cognition and
swarm cognition, respectively; r1 and r2 are two random numbers within the range [0, 1].
ω represents the inertia weight, which denotes the degree of influence of the previous
iteration’s velocity. Linear decrement is employed to adjust the inertia weight, ensuring that
it is relatively large during the early stages of global exploration and gradually decreases
with an increase in iteration count. This approach promotes a balance between global
exploration and local convergence.

The particle positions are iteratively updated until the minimum error criterion is
reached or the maximum iteration limit for particle updates is reached.

2.3. Model Building Based on PSO-Optimized LSTM

The traditional LSTM model is a single intelligent prediction technique in which
the parameter values of the model are randomly set, leading to long training time and
low prediction accuracy. The Particle Swarm Optimization (PSO) algorithm has strong
self-learning ability and global search capability for optimal parameters. It has been
widely used to solve complex optimization problems in various fields with significant
optimization effects. By using the PSO algorithm to optimize the hyper-parameters of the
Long Short-Term Memory (LSTM) neural network algorithm model, the computational
burden of parameter optimization in traditional models can be greatly reduced. In machine
learning models, it is common to select hyper-parameters such as the number of hidden
layers (Numhiddenunits), learning rate (Initiallearnrate), number of iterations (Max epoch),
minimum training batch size (Batch size), and activation function. In the context of this
paper, which focuses on solving a data regression problem, we select the initial learning
rate, number of iterations, minimum training batch size, and number of hidden layer
neurons as the hyper-parameters to be optimized.
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The specific process of model construction and computation is presented in a flowchart
as shown in Figure 2. Firstly, the data processing module performs data cleaning and
normalization on the known well logging data. The purpose is to eliminate invalid data
and remove the influence of dimensional differences among parameters. Then, the data are
divided into training data and testing data. The LSTM prediction model is built, and it is
trained using the combination of LSTM model and the hyper-parameters obtained through
PSO optimization. Finally, the optimal parameters are saved, and the resulting model is
considered as the predictive model in this study.
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3. Experiment and Result Analysis
3.1. Correlation Analysis

The training dataset described in this paper consists of 9 input features and 1 output
feature. Using too many input features in the development of neural network models
will slow down the model training process and may lead to overfitting of the dataset.
Therefore, it is necessary to perform feature selection to remove redundant and irrelevant
input features from the dataset. This will improve the computational efficiency of the
model and reduce overfitting. If all well logging curves are directly used to build a linear
or nonlinear model between well logging curves and lost circulation pressure parameters,
it would not only increase the complexity of the model but also result in the loss of useful
information or the introduction of redundant information, leading to a lack of accuracy in
the model. Therefore, selecting the appropriate well logging curves for constructing the
sample data is of great importance. Choosing well logging curves with a high correlation to
reservoir parameters and lost circulation pressure as input features will effectively improve
the performance of the model.

In this study, Spearman’s rank correlation coefficient and Pearson’s correlation coeffi-
cient are used to quantitatively measure the relationship between well logging data and
lost circulation pressure. The relationship is depicted in Figure 3. In the calculation of the
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correlation between well logging curves and lost circulation pressure, certain well logging
curves, such as deep resistivity (RILD), shallow resistivity (RFOC), medium resistivity
(RILM), acoustic transit time (AC), spontaneous potential (SP), well depth (Depth), natural
gamma (GR), and drilling time (DRTM), exhibit high correlation coefficients with lost
circulation pressure. This indicates a strong correlation between these well logging curves
and lost circulation pressure, and these well logging curve data also have an impact on lost
circulation pressure in practice, making them suitable as feature inputs for predicting lost
circulation pressure. Figure 4 displays a heat map of the correlation coefficients determined
by Pearson’s input parameter standards and the network model. The heat map is used to
identify the collinearity among input parameters.
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3.2. Data Normalization

The partial well log curve data of a well in a certain block discussed in this paper are
shown in Table 1. The features in the training dataset have different units, resulting in
different scales. If there is a significant difference in scales, it can affect the results of data
analysis and learning. To eliminate the influence of different scales among parameters, it is
necessary to perform data standardization, which enhances the comparability among pa-
rameters. The standardized features will follow a standard normal distribution, expressed
by the equation:

zij =
xij − µi

δi
(10)

Table 1. Logging curve data table.

S/N Production Parameters Min Max Average STD

1 SP 76.239 76.239 62.99 4.14
2 GR 50.61 258.12 79.90 14.52
3 RILD 0.179 2.20 0.62 0.33
4 RILM 0.21 1.53 0.62 0.27
5 RFOC 0.27 2.10 0.71 0.26
6 AC 63.31 107.54 82.77 7.16
7 CAL 0.02 0.83 0.36 0.17
8 DEVI 1 44 1.45 2.26
9 DRTM 1.02 1.99 1.36 0.17

In the equation, µ and δ represent the mean and standard deviation of each parameter,
i represents different feature parameters, and j represents the sample of each parameter.
The quantized features will be distributed in the range [−1, 1].

First, the training data are standardized and the standardization parameters are
retained. Then, these standardization parameters are used to standardize the test data.
The separate standardization of training and test data ensures their independence. Using
the same standardization parameters as the training data ensures that the test data are
standardized within the distribution range of the training data, making it compatible with
the parameters of the network model for training and prediction. After achieving the
desired performance of the network model, when handling unlabeled data in practical
applications (data without leakage pressure), the data only need to be processed using the
same standardization process as the test data. This allows the trained network model to
predict leakage pressure for unknown data.

4. Case Analysis

The data used in this study is from Block A of the Shunbei Oilfield. The oilfield is
a complex Ordovician carbonate fracture-cave reservoir with a burial depth exceeding
7000 m. The area is characterized by complex geological structures and is influenced
by fault movements, making it prone to fissure-type leakage. Some well sections have
experienced severe and continuous leakage accidents. Through the statistical analysis of
well logging data, this study selects the geological engineering parameters necessary for
interpreting formation conditions as feature values to create the dataset. These parameters
include natural gamma ray, natural potential, deep induction resistivity, medium induction
resistivity, sonic transit time, drilling time, and well depth. These nine feature parameters
are used to predict formation leakage pressure, with the actual leakage measurements in
the field serving as the basis. Before inputting the data into the neural network for training,
the should be divided into a training set and a test set. Based on the available well logging
data, there are a total of 26 wells that can be used for experimentation. The logging curve
for one well is shown in Figure 5; each well has approximately 15,000 samples of leakage
pressure data. Of the consecutive samples, 20% are selected as the test dataset, and the
remaining samples are used as the training dataset.
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Using forward propagation, the training data are input into the network to compute
the output values of the LSTM units. Then, through two fully connected layers, feature ex-
traction is performed layer by layer until reaching the output layer, obtaining the “predicted
estimate” for the current sample data. The error terms of each neuron are then calculated in
reverse. The backpropagation of the LSTM recurrent neural network error terms involves
two directions: one is the backward propagation along the time sequence, starting from
the current time step ω and computing the error term for each time step; the other is the
propagation of the error term to the previous layer. The mean squared error (MSE) is
used as the loss function, and the Adam algorithm with gradient descent is employed to
optimize the weights in the model based on the corresponding error terms. The gradients
of each weight are computed to adjust the model parameters, moving the predicted results
closer to the optimization objective. Early stopping is used to prevent overfitting. In the
LSTM model, the initial values of the parameters are typically set based on experience,
and then continuously adjusted through experimentation to obtain suitable parameter
values. In this study, the parameters lr, u, and batch_size in the LSTM model are optimized
within the ranges shown in Table 2. The PSO algorithm mainly includes parameters such
as the number of particles (pop), dimensionality of the particle swarm (dim), maximum
number of iterations (max_iter), inertia factor (ω), acceleration constants (c1 and c2). Based
on experience, pop is initialized as 20, and dim represents the number of attribute features
input into PSO; thus, dim is set to 7. Through iterative optimization, suitable parameter
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values and hyper-parameter settings are obtained as shown in Table 2, resulting in an LSTM
Recurrent Neural Network prediction model that meets the error requirements.

Table 2. Variable values before and after LSTM network layer function optimization.

Function Parameter Initial Value Optimization Range Optimized Value

Training Options
Max Epochs 40 [40, 200] 100
Learn Rate 0.0001 [0.0001, 0.1] 0.001
Min Batch Size 64 [64, 640, 32] 64

LSTM Layer
Input Size 7 - 7
Hidden layer 10 [10, 100] 20
Bias 32 - 32

Fully Connected LayerPSO
Output Size 1 - 1
Pop 20 -
Dim 7 -

During the training process of a neural network, a loss function is typically used to
measure the model’s ability to fit the training data. The neural network algorithm adjusts
the model parameters (i.e., the weights of the network) through multiple training iterations.
The decreasing trend in the loss function is used to determine whether the algorithm has
achieved an ideal deep neural network model. Figure 6 shows the loss function plot before
and after optimizing the hyper-parameters using PSO. From the loss function plot, it can be
observed that the PSO-LSTM model exhibits good performance, reducing the loss function
value by approximately 8% and improving the prediction accuracy.
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After multiple rounds of training on the data from 20 wells, a set of parameters and
hyper-parameters with the best performance was obtained. These parameters were then
used to validate wells 1–10. Firstly, the LSTM model’s prediction results on the test set
and training set are shown in Figure 7a. It can be observed that there is a relatively good
relationship between the predicted values and the true values in both the training and test
sets. At this point, the error value for the training set is 1.02%, while the error value for the
test set reaches 1.52%. This can be attributed to two factors: First, although the data volume
is relatively large, the small intervals between the data points result in similar data features,
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limiting the network’s ability to extract more distinctive features and leading to increased
prediction errors. Second, it indicates that the traditional LSTM has certain limitations in
prediction and cannot be manually adjusted to the optimal level. Next, the training and
test results obtained using the model optimized with PSO for hyper-parameters are shown
in Figure 7b. At this stage, the accuracy is improved by approximately 12.8% compared to
the single LSTM model.
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For a development well in the same block with a known leakage measurement point,
the leakage pressure is predicted using the aforementioned model. The predicted results
are compared with those obtained from statistical models, empirical calculation models,
and the actual on-site leakage measurement point, as shown in Figure 8. The calculation
formulas for the statistical models and empirical models are as follows:

Q = K · ∆pn (11)

Pl = σh (12)

In the equations: Q represents the leak rate, K is the leak intensity coefficient, ∆p is
the pressure difference,n is a coefficient describing the state of drilling fluid leakage, Pl
represents the leakage pressure, and σh is the minimum horizontal earth stress.

The results obtained from the model proposed in this paper were found to be much
closer to the actual measurement points, providing better on-site guidance. The well section
from 5770 m to 6221 m experienced multiple occurrences of well leakage, and continuous
leakage was observed. For this well section, measures such as leak plugging and leak
prevention should be taken, and fracturing operations should not be conducted in the
sections with continuous leakage.
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Model Evaluation

The leakage pressure prediction model constructed in this paper belongs to a regres-
sion forecasting model, and the accuracy of the model’s predictions is the fundamental basis
for evaluating its performance. In practical research, there are many different evaluation
metrics to assess the model’s performance, but each metric has its own focus. Therefore,
when selecting evaluation metrics for the leakage pressure prediction model, it is essential
to consider both the characteristics of the model itself and the implications represented
by each evaluation metric. The performance evaluation metrics of this model in this
study include Root Mean Squared Error (RMSE), Coefficient of Determination (R2), and
Mean Absolute Percentage Error (MAPE). The calculation formulas for these metrics are
as follows:

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (13)

R2 = 1− RSS
TSS

(14)

MAPE =
1
m∑

(∣∣∣∣ (yi − ŷi)

y

∣∣∣∣) · 100 (15)

In the equations, yi and ŷi represent the actual and predicted values of the leak
pressure, RSS represents the sum of squared residuals, and TSS is the total sum of squares.
Through the analysis and comparison of various error metrics of the network models, it
was observed that the LSTM model based on PSO optimization achieved better prediction
accuracy compared to the original model. The correlation between predicted values and
actual values is shown in Figure 9. The R2 error and Root Mean Squared Error (RMSE)
for training and testing before and after PSO optimization are shown in Table 3. After
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optimization, the R2 error increased by 4.7%, the RMSE decreased by 9.4%, and the MAPE
decreased by 43.85%.
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Table 3. The statistical evaluation metrics results for the model are as follows.

Train Test

Method R2 RMSE MAPE R2 RMSE MAPE

LSTM 0.828 0.049 5.7 0.765 0.060 8.9
PSO-LSTM 0.857 0.041 3.2 0.795 0.051 7.5

5. Conclusions

This paper introduces a novel approach that utilizes the Particle Swarm Optimiza-
tion (PSO) algorithm to automatically optimize the hyper-parameters of a Long Short-
Term Memory (LSTM) neural network model. The model is trained using multi-block oil
and gas data from the Shunbei region. Comparative analysis reveals that our proposed
PSO-optimized LSTM model overcomes the limitations of traditional methods, offering
advantages such as faster convergence, shorter training time, and higher training efficiency
compared to a single model. The evaluation of the model yields impressive results, with
an R2 value of 0.828, RMSE of 0.055, and MAPE of 3.2, demonstrating improved accuracy
and effectiveness compared to the non-optimized model.

Based on the predicted results from a development well with a known leakage mea-
surement point, we observe that the PSO-LSTM model provides results that closely match
the actual leakage measurement point. Its accuracy significantly surpasses that of traditional
empirical and statistical calculation models, offering leakage pressure predictions that align
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better with real on-site conditions. The accurate prediction of leakage pressure serves as a
valuable theoretical basis for post-production reservoir depletion fracturing operations.

The standalone standard LSTM algorithm’s lower efficiency, due to randomly chosen
hyper-parameters, is addressed effectively through combination with the PSO optimization
algorithm (PSO-LSTM). By selecting optimal hyper-parameters for the LSTM model, espe-
cially through rigorous feature selection, the model’s performance is significantly improved.
This approach holds potential for widespread application in predicting leakage pressure in
similar lithological formations. Future research aims to test this model with datasets from
different lithologies and further optimize the method for selecting well logging features in
various geological contexts.
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