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Abstract: In this study, we conducted a one-step photochemical synthesis to produce silver nanopar-
ticles (AgNPs) with irregular morphology. The synthesis process involved the photoconversion of
Ag nanoseeds into self-assembled Ag nanostructures of various morphologies using a high-pressure
sodium lamp with a wavelength of 589 nm, corresponding to an energy of 2.1 eV. During the syn-
thesis, the color of the colloidal Ag nanoseeds gradually changed as the irradiation time increased,
transitioning from yellow to brown, juniper green, basil green, ocean green, aegean blue, and finally
to true blue. We characterized the morphological evolution of the resulting AgNPs, as well as their
optical properties and aggregation behavior, using transmission electron microscopy, UV-vis spec-
troscopy, and dynamic light scattering. Furthermore, we evaluated the impact of the self-assembled
morphology of the AgNPs on their surface-enhanced Raman scattering efficiency, using R6G as
the target analyte. The results revealed that the colloidal AgNPs synthesized under a visible light
irradiation time of 1 h consisted of circular nanoplates, hexagonal nanoplates, trapezoid nanoplates,
and triangular nanoplates. These colloidal AgNPs exhibited excellent SERS activity when used as an
SERS-active substrate in the form of an aqueous solution, enabling the detection of low concentrations
of R6G down to 10−12 M.

Keywords: silver nanoparticles; photoinduced method; Ostwald ripening; SERS; anisotropic
structures

1. Introduction

Over the last two decades, Raman spectroscopy (RS) has gained widespread recogni-
tion as a reliable and well-established technique for detecting and analyzing both organic
and inorganic compounds in various fields, including food safety, archeology, medical
diagnostics, and pharmaceuticals [1–5] due to its rapid, non-contact, and non-destructive
approach. The analysis result of RS presents in the form of a Raman spectrum, which
exhibits multiple peaks with varying positions and relative intensities. The position of
Raman peaks typically provides molecular fingerprint information regarding vibrational
and rotational molecular modes, representing the molecular composition of the analyte.
Meanwhile, the intensity of Raman peaks is employed for quantitative analysis. Nev-
ertheless, RS has some limitations, including its lower efficiency in capturing inelastic
light scattering compared to elastic scattering, which hampers its ability to detect low
analyte concentrations. Additionally, a strong fluorescence background poses another
challenge [6,7]. To overcome these problems, surface-enhanced Raman scattering (SERS)
is employed to enhance the Raman signal intensity and to quench fluorescence, thereby
improving the signal-to-noise ratio.
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SERS involves an increase in the inelastic light scattering of analytes that are either
adsorbed onto or located near the surface of noble metal nanostructures. Two main
mechanisms contribute to this amplified inelastic light scattering: electromagnetic (EM)
enhancement, which arises from the local electric fields induced near metallic surfaces,
and chemical enhancement, which is attributed to the charge transfer interaction between
the analyte molecule and the metallic surface [8–13]. EM enhancement plays a significant
role in the SERS phenomenon, particularly in situations wherein the molecule is located
within the narrow gap between closely spaced nanostructures [9]. In brief, when incident
light irradiates the metal nanostructures, the collective oscillation of electrons within them
induces a plasma resonance, accompanied by a significant increase in the light-induced
electric field strength inside and around the metal nanostructures. The analyte molecules
adsorbed onto or near the surface of metal nanostructures are stimulated by the combined
effects of the original incident and induced electric fields, resulting in the amplification of
Raman signal intensity. Metal nanostructures serve as platforms to enhance the inelastic
light scattering of analyte molecules, and are widely recognized as SERS-active substrates.

Up to now, many forms of SERS-active substrates have been developed and can be clas-
sified into two main groups: liquid colloidal substrates, consisting of metallic nanoparticles
(NPs) suspended in a solution, and solid substrates comprising periodic ordered arrays of
metallic nanostructures deposited on a flat surface [14–17]. The use of colloidal SERS-active
substrates is widespread due to their easy preparation and handling. Among various types
of noble metal nanoparticles, silver (Ag), gold (Au), and copper (Cu) NPs exhibit strong
localized surface plasmon resonance (LSPR) in the visible and near-infrared region due
to their unique optical properties. However, AgNPs, in particular, provide the highest
SERS intensities due to their interband transitions found in the ultraviolet range, resulting
in minimal absorption in the visible or near-infrared Raman wavelengths [6,18,19]. The
LSPR response of AgNPs exhibits a distinct dependence on their morphology, particularly
with regard to their size and shape [6,8,11,18–20]. Moreover, the distance between adjacent
AgNPs, which influences the generation of intense local electric fields referred to as hot
spots, also exerts a significant impact on SERS enhancement [10,15,21,22]. Consequently,
the controllable size and shape of AgNPs have garnered considerable attention due to their
ability to enhance SERS activity.

Many researchers have dedicated their efforts to synthesize AgNPs with highly curved
surfaces and sharp features, such as triangular nanoplates, hexagonal nanoplates, and quasi-
spherical shapes, aiming to explore their potential in SERS measurements. Mostly, each
specific shape and size of AgNPs has been synthesized using a photochemical method,
wherein a nanoseed dispersion is transformed into different shapes by exposure to spe-
cific light sources such as sunlight, UV light, or visible light, depending on the desired
shape [15,18,19,21,23–27]. However, to date, no studies have investigated the morphology-
dependent SERS performance of AgNPs synthesized using a one-step synthesis method for
driving the growth and formation of different AgNPs morphologies throughout the entire
process.

In this study, we present an alternative approach to synthesizing AgNPs with diverse
morphologies, and examine their impact on SERS activity, which distinguishes our research
from previous works in this field. The various shapes of colloidal AgNPs were self-
assembled from spherical nanoseeds through photoconversion using a single light source,
specifically a high-pressure sodium lamp. The resulting nanoparticles were subsequently
characterized in terms of their optical and physical properties, and their agglomeration
tendencies. The as-prepared AgNPs obtained at different light exposure times were utilized
as a colloidal SERS-active substrate in the form of an aqueous solution, without the need
for paste drop-casting. This approach enabled the differentiation of plasmon coupling from
particle aggregation and plasmon resonance effects [23]. The influence of the self-assembled
AgNPs’ morphology on SERS efficiency was evaluated using rhodamine 6G (R6G) as the
target analyte.
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2. Materials and Methods
2.1. Synthesis of Spherical Ag Nanoseeds

In order to synthesize AgNPs with varying shapes and sizes using the photochemical
method, Ag nanoseeds were employed as the initial building blocks. Colloidal solutions
containing spherical Ag nanoseeds were prepared following a conventional chemical
reduction method with a customized recipe, as described below. The chemical reagents
used in this study, including silver nitrate (AgNO3), trisodium citrate (Na3C6H5O7), and
sodium borohydride (NaBH4) were obtained from the following suppliers: AgNO3 from
POCH (Gliwice, Poland), Na3C6H5O7 from Ajax Finechem (Cherrybrook, NSW, Australia),
and NaBH4 from QReC (Asia) Sdn. Bhd. (Kuala Lumpur, Malaysia). For the synthesis,
0.75 mL of a 10 mM AgNO3 solution and 0.75 mL of a 10 mM Na3C6H5O7 solution were
added to 72 mL of deionized water. The mixture was stirred at a rate of 433 rpm for
30 min. Subsequently, 37.5 µL of an 8 mM NaBH4 solution was slowly added dropwise
to the mixture, and stirring was continued for an additional 2 min. To allow for further
development, the resulting solution was aged at 4 ◦C in the dark for 2 h before being used
as a seed.

2.2. Synthesis of Self-Assembled AgNPs with Varying Morphologies

In this step, 20 mL of colloidal spherical Ag nanoseeds were transferred into a glass
vial and exposed to visible light irradiation at a wavelength of 589 nm for the photoconver-
sion process. Two high-pressure sodium lamps (Luna, SC735, Bangkok, Thailand) were
employed as the light source to facilitate the self-assembly process of AgNPs with diverse
shapes. The photo-transformation was carried out under an irradiance of approximately
130 mW/cm2, measured using a digital power meter (Thorlabs, Inc., PM120D, Newton, NJ,
USA), at a temperature of 39.1 ± 0.6 ◦C. To protect the colloidal solution from unnecessary
irradiation, the vial was positioned between two high-pressure sodium lamps at a distance
of 13 cm from the lamp surfaces, within an opaque box, as illustrated in Figure 1. The
duration of irradiation was varied over different time intervals: 15 min, 30 min, 1 h, 2 h,
3 h, 4 h, and 5 h. Additionally, colloidal spherical Ag nanoseeds without light irradiation
were also observed as a control to confirm the influence of light on shape conversion.
Throughout the process, the morphological evolution and agglomeration of the synthesized
AgNPs were carefully monitored and analyzed.
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2.3. Characterization Methods 

Figure 1. Schematic illustration of the experimental setup for the photoconversion of Ag nanoseeds
into different morphologies.

2.3. Characterization Methods

The optical properties of the colloidal Ag nanoseeds and the photoinduced AgNPs
were analyzed using a UV-visible spectrometer (Avantes, AvaSpec-EDU, Bangkok, Thai-



Processes 2023, 11, 2207 4 of 14

land) with a measurement range of 350–850 nm. The morphology and particle size were
monitored using a transmission electron microscope (TEM; Hitachi High-Tech Corporation,
HT7800, Tokyo, Japan) operating at an acceleration voltage of 120 kV. Additionally, the zeta
potential, which provides information about the surface charge of the nanoparticles, was
measured using dynamic light scattering (DLS) with a Zetasizer (Malvern Panalytical plc,
Nano ZS, Malvern, Worcs, UK).

2.4. Design of Sample Holder for SERS Measurement

In order to reduce any undesired effects arising from drop casting, enhance stability
and reproducibility, improve sensitivity, and enable real-time monitoring, SERS measure-
ments were conducted using aqueous solutions without the use of drop casting. To facilitate
the analysis, a custom-designed sample holder was developed to securely hold solution
samples during SERS measurements. This design aimed to ensure optimal interaction
between the colloidal SERS-active substrate and the analyte molecules.

A cost-effective liquid chamber with dimensions of 3 × 5 × 5 mm3 was fabricated
using 3D printing technology to precisely match the required dimensions. This chamber,
as shown in Figure 2, was securely mounted onto a glass slide covered with aluminum
foil, which served as a reflective surface to enhance the detection of SERS signals. It was
employed as a sample holder for SERS measurement.
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2.5. SERS Experimental Details

The SERS performance of a colloid solution consisting of self-assembled AgNPs was
investigated using R6G as the testing analyte. After synthesizing colloidal AgNPs at
each irradiation time, 200 µL of the resulting solution was collected. Subsequently, it was
mixed thoroughly with a 200 µL solution of 10−4 M R6G (dye content 99%, Sigma-Aldrich,
Bangkok, Thailand) using a vortex mixing method for 10 s to ensure homogeneity. To
explore the optimal conditions for AgNP synthesis, the photochemically synthesized AgNP
solution prepared at different irradiation times was mixed with the R6G at a concentration
of 10−4 M. To investigate the highest SERS performance, the selected AgNP solution
prepared at the best irradiation time was mixed with an R6G solution ranging from 10−4 to
10−12 M.

For SERS characterization, 200 µL of the resulting mixture was transferred to a liq-
uid chamber and subjected to Raman spectrometry analysis. The Raman spectra were
recorded using a Raman spectrometer (Renishaw plc., inVia, Wotton-under-Edge, Glos,
UK) with an excitation wavelength of 785 nm and a maximum output power of 20 mW. The
laser beam was focused on the middle height of the chamber using a 50× objective lens.
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Each measurement was recorded at a single point with a 10 s acquisition time and three
accumulations. The Raman enhancement factor was calculated, and the colloidal AgNPs
synthesized under specific irradiation time that provided the highest SERS performance
were further investigated for their ability to detect R6G in a dilution series.

It is important to emphasize that these experimental details were consistently applied
in all SERS measurements conducted throughout the study, ensuring the comparability
and validity of the obtained results.

3. Results and Discussion
3.1. Formation of Spherical Ag Nanoseeds

The formation of Ag nanoseeds involves the reduction of a silver precursor in the
presence of a reducing agent and a stabilizing agent. In this work, silver nitrate served as a
reducing agent, facilitating the reduction of Ag+ to form AgNPs.

As seen in Figure 3, sodium borohydride reduced Ag+ to silver atoms (Ag0), which
served as nucleation sites for nanoparticle formation. Trisodium citrate subsequently
interacted with Ag0, facilitating the formation of small Ag nanoseeds [21]. The resulting
small Ag nanoseeds, with a diameter of 2–6 nm, acted as both a catalyst for the oxidation
of sodium borohydride and a template for the deposition of additional Ag0, leading to the
formation of larger Ag nanoseeds with a diameter of 6–10 nm [21,28,29].
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Figure 3. Diagram pathway of Ag nanoseeds’ formation.

Figure 4a shows the UV-vis absorption spectrum of the synthesized Ag nanoseeds
solution, displaying a yellow color. The spectrum exhibited a distinct peak around 397 nm,
indicating the presence of the dipole plasmon absorption of the spherical AgNPs [30,31].
This observation was consistent with the TEM result presented in Figure 4b, which showed
that the synthesized Ag nanoseeds were spherical in shape, with a diameter below 10 nm.
The nanoseeds consisted of small and large nanoseeds with diameters of 2.9 ± 0.2 nm and
6.6 ± 0.4 nm, respectively.
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3.2. Morphological Evolution of Photoinduced AgNPs

In photomediated synthesis, the Ag nanoseeds synthesized in the previous section
were exposed to visible light irradiation at a wavelength of 589 nm (energy = 2.1 eV) for
varying durations ranging from 15 min to 5 h. Additionally, the Ag nanoseeds were kept
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in the dark for the same duration without irradiation to investigate the effect of light
irradiation in the photoconversion process.

The results revealed that in the absence of light irradiation, the solution maintained a
consistent light-yellow color, and the absorption spectra exhibited a distinct peak around
397 nm, as illustrated in Figure 5. However, with longer incubation times, there was a slight
increase in the absorption intensity, suggesting a corresponding increase in the number of
nanoseeds [32]. This confirmed that there was no transformation of spherical nanoseeds
into other shapes. In contrast, when the Ag nanoseeds were subjected to irradiation, a
noticeable color change occurred. As shown in Figure 6, as the irradiation time increased, a
gradual change in the color of the Ag nanoseeds was observed, ranging from a light yellow
hue to shades of brown, juniper green, basil green, ocean green, aegean blue, and finally,
true blue. These distinct colors were attributed to the surface plasmon resonance (SPR)
effect, indicating a change in the geometry of AgNPs [21,30]. These findings demonstrate
the significant influence of light irradiation on the photoconversion process, leading to the
observed color changes and potential shape transformations of the Ag nanoseeds.
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Figure 5. Digital images of the Ag nanoseeds at different incubation times without light irradiation,
along with the corresponding time evolution of UV-vis absorption spectra: (a) nanoseeds, (b) 15 min
in the dark, (c) 30 min in the dark, (d) 1 h in the dark, (e) 2 h in the dark, (f) 3 h in the dark, (g) 4 h in
the dark, and (h) 5 h in the dark.

To examine the morphological evolution and corresponding optical properties of the
Ag nanostructure, UV-vis spectroscopy and TEM measurements at various irradiation
times (15 min, 30 min, 1 h, 2 h, 3 h, 4 h, and 5 h) were conducted. These analyses enabled
us to investigate the structural changes, confirm the presence of different nanoparticle
shapes at different irradiation times, and provide additional evidence of the photoinduced
modifications in the synthesized nanoparticles.

Upon examining the UV-vis spectra in Figure 6, we observed that the Ag nanoseeds
irradiated for 15 min exhibited a redshift of the original peak at 397 nm, which was
characteristic of spherical seeds, to approximately 440 nm, with increased intensity. This
redshift was attributed to the growing contribution of higher-order plasmon modes, as
predicted by Mie theory [30]. The observed redshift indicated the transformation of Ag
nanoseeds into larger-sized spherical AgNPs with higher particle concentrations [23,33].
As the irradiation time reached 30 min, the band at 440 nm shifted further to 450 nm with a
gradual increase in intensity. Additionally, a new broad band around 660 nm, attributed
to the in-plane dipole plasmon resonance, emerged with an absorbance intensity less
than twice that of the 450 nm wavelengths. This spectral feature suggested the growth of
spherical AgNPs into larger particles, and the transformation of some particles into circular
nanoplates [34].
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At an irradiation time of 1 h, the intensity of the 450 nm band decreased and split
into two broad bands with maximum intensity at 400 nm and 475 nm, while the band at
660 nm became more prominent. The bands at 400 nm and 475 nm were attributed to the
out-of-plane dipole plasmon resonance, while the bands at 660 nm were associated with
in-plane dipole plasmon resonance [34]. These absorption peaks indicated the shape trans-
formation of AgNPs from circular nanoplates to triangular nanoplates. However, given the
relatively short irradiation time of approximately 1 h, the shape of the AgNPs was in a tran-
sitional stage, potentially resulting in multi-shaped nanoplates, such as circular nanoplates,
hexagonal nanoplates, trapezoid nanoplates, and truncated triangular nanoplates [25].
As the irradiation time exceeded 1 h, the small broad peak around 400 nm diminished,
while the maximum peak around 660 nm continued to significantly increase due to the
formation of more triangular nanoplates [30,35]. These observations demonstrated that the
Ag nanoseeds underwent growth into anisotropic AgNPs with diverse geometries, and the
extent of this transformation was found to be dependent on the irradiation time. The TEM
images in Figure 7 provide visual confirmation of these findings.
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Figure 7 shows TEM images illustrating the presence of small and large nanoseeds in
the Ag sample prior to irradiation, with an overall size of 3.1 ± 0.1 nm. After 15 min of
irradiation, these nanoseeds grew into larger nanoparticles with an approximate diameter
of 12.5 ± 0.2 nm. Subsequently, at 30 min of irradiation, some of these nanoparticles started
to assemble into circular nanoplates, exhibiting a diameter of 18.7 ± 1.6 nm.

At an irradiation time of 1 h, the AgNPs exhibited a variety of highly anisotropic
structures, including circular nanoplates with an average diameter of 19.3 ± 1.5 nm, hexag-
onal nanoplates with an average edge length of 30.7 ± 1.9 nm, trapezoid nanoplates with
an average edge length of 16.0 ± 1.3 nm, and truncated triangular nanoplates with an
average edge length of 27.2 ± 2.1 nm. Furthermore, as the irradiation time exceeded 1 h,
an increased number of triangular nanoplates were observed, and their average size also
increased with longer irradiation periods. The morphology evolution observed through-
out the photoconversion process at different irradiation times is summarized in Table 1,
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and Figure 8 exemplifies the morphology transformation of spherical NPs into triangular
nanoplates during the photoconversion process.

Table 1. The morphology, average size, and percentage population of AgNPs synthesized under
visible light irradiation at a wavelength of 589 nm.

Irradiation Time

Morphology

Spherical
Nanoparticle

Circular
Nanoplate

Hexagonal
Nanoplate

Trapezoid
Nanoplate

Triangular
Nanoplate
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Figure 8. TEM images of the morphology transformation of spherical AgNPs into triangular Ag
nanoplates during the photoconversion process at a wavelength of 589 nm (D represents the diameter,
and EL represents the edge length).

The phenomenon governing the photoconversion of Ag nanoseeds into irregular-
shaped AgNPs is known as Ostwald ripening [19,30]. In this process, Ag+ was initially
induced by sodium borohydride into Ag nanoseeds. Simultaneously, citrate ions produced
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electrons that participated in the reduction of Ag+ under light irradiation. Subsequently,
the nanoseeds bonded with Ag+ to create dimer Ag2

+, which interacted with citrate ion due
to affinity, resulting in growth along the (111) plane and ultimately leading to the formation
of triangular-shaped nanoparticles [24,25,36,37].

For the analysis of nanoparticle aggregation, valuable insights were obtained through
the measurement of zeta potential (ξ) values using a Zetasizer. It was found that the ξ

values of the colloidal Ag nanoseeds and the colloidal AgNPs obtained after irradiation
for 15 min, 30 min, 1 h, 2 h, 3 h, 4 h, and 5 h were −30.93, −35.57, −36.37, −26.77, −29.40,
−29.90, −31.70, and −34.39 mV, respectively. These results indicated that the AgNPs
obtained after 1 h of irradiation occupied the highest degree of aggregation [38].

3.3. The Effect of Morphology on SERS Efficiency

The Ag nanoseeds (without light irradiation) and self-assembled AgNPs synthesized
under visible light irradiation at a wavelength of 589 nm (energy = 2.1 eV) were utilized as
the SERS-active substrate in an aqueous solution without the need for drop casting. For this
study, a custom sample holder, as shown in Figure 2, was exclusively employed to detect
R6G using an excitation wavelength of 785 nm. The Raman band assignments related to
R6G are summarized in Table 2.

Table 2. Assignment of Raman bands in the SERS spectra of R6G.

Raman Shift (cm−1) Band Assignments References

772 (w) C-H out-of-plane bending [39–41]
1087 (w) - [40–42]
1125 (w) C-H in-plane bending in xanthene/phenyl rings [40,41]
1182 (m) C-H in-plane bending in xanthene rings [41]

1311 (w) Hybrid mode
(xanthene/phenyl rings and NHC2H5 group) [41]

1363 (s) C−C stretching in xanthene ring [40,41]
1511 (s) C−C stretching in xanthene ring [40,41]
1575 (s) C−C stretching in phenyl ring [40,41]
1648 (s) C=C stretching in xanthene ring [39–42]

Abbreviations: s = strong peak intensity, m = middle peak intensity, and w = weak peak intensity.

Figure 9a presents the SERS efficiency of all substrates for the detection of the R6G
molecules with a concentration of 10−4 M. It is evident that the characteristic Raman bands
of R6G were too weak to be observed in the absence of an SERS substrate (normal Raman),
including the use of colloidal Ag nanoseeds without irradiation. However, when colloidal
AgNPs synthesized under a 30 min irradiation time were used as the SERS substrate, the
Raman signal of R6G became easily detectable. Notably, the Raman signal intensities of
a strong primary peak at 1363 cm−1, corresponding to the C-C ring stretching vibration,
were observed (Figure 9b). These intensities were utilized to calculate the estimated
enhancement factor (EF) by comparing the SERS spectrum intensity (ISERS) with the normal
Raman intensity (IRaman) [23,43].

Upon analyzing the calculated EF values presented in Table 3, a notable trend emerged.
The EF value demonstrated a rapid increase, reaching its peak at 1961 when utilizing
colloidal AgNPs synthesized under irradiation for a duration of 1 h as the SERS-active
substrate. Following this, a slight decrease was observed, with the EF value registering
at 1720 when colloidal AgNPs synthesized under a 2 h irradiation time were used as the
SERS-active substrate. Subsequently, a sudden and significant decrease in the EF value
was observed. These results indicated that colloidal AgNPs, composed of mixed shapes
including circular nanoplates, hexagonal nanoplates, trapezoid nanoplates, and triangular
nanoplates, exhibited a higher EF value compared to other conditions.
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The presence of triangular nanoplates with appropriate edge lengths, which possess
a high anisotropic structure, was identified as a key feature contributing to the colloidal
AgNPs synthesized under an hour irradiation time exhibiting the highest SERS activity [6].
This was partly due to R6G molecules easily bonding with the abundant (111) faces of
nanoplates [18,23]. In addition, the nanoplates exhibited dipolar vibrations, including
dipolar out-of-plane vibrations observed at 400 nm and 475 nm, as well as dipolar in-plane
vibrations observed at 660 nm. These vibrations facilitated efficient energy transfer between
the incident light and the nanoplates, further enhancing the Raman scattering signal [44].
Furthermore, the highest degree of particle aggregation of colloidal AgNPs irradiated for
1 h (ξ values = −26.67 mV) resulted in the formation of hotspots, which also contributed to
the observed enhancement in the Raman scattering signal.

Then, the colloidal AgNPs synthesized under an irradiation time of 1 h were used
to evaluate the SERS performance with different concentrations of R6G ranging from
10−12 to 10−4 M. The spectral results, depicted in Figure 10, demonstrated the remarkable
capability of the AgNPs synthesized under the 1 h irradiation time to significantly enhance
the Raman signal of R6G, even at low concentrations as low as 10−12 M. Furthermore, a
clear linear correlation was observed between the concentration of R6G and the strong
Raman peak intensities at 1363 and 1511 cm−1, as illustrated in Figure 11. The obtained



Processes 2023, 11, 2207 12 of 14

linear correlation, with a high correlation coefficient (R2) exceeding 0.99, underscored the
reliability and robustness of the SERS measurements. This signified that the SERS technique
utilizing the AgNPs synthesized under the 1 h irradiation time could provide precise and
accurate quantitative measurements of R6G concentrations.
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4. Conclusions

In this research, we have successfully developed self-assembled Ag nanostructures
of different morphologies, including circular nanoplates, hexagonal nanoplates, trapezoid
nanoplates, and triangular nanoplates, using a one-step photosynthesis method. The
Ag nanoseeds, consisting of small and large nanoparticles with a diameter of less than
10 nm, were photoconverted into different morphologies of AgNPs by employing a simple
and affordable high-pressure sodium lamp with a wavelength of 589 nm, corresponding
to an energy of 2.1 eV. Furthermore, this research provides valuable insights into the
morphology evolution of synthesized AgNPs and their impact on SERS performance.
The SERS efficiency of the AgNPs depended on factors such as shape, size, and particle
aggregation. The knowledge gained from this research can guide the detection of target
molecules in trace compound analysis and sensing, using an SERS-active substrate in the
form of an aqueous solution. This approach eliminated the need for complicated methods,
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such as drop casting, which require a waiting time for substrate drying, and managed to
avoid the coffee ring effect.
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