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Abstract: A novel four-parameter lifetime Lomax model is presented and investigated within the
scope of this paper. The failure rate of the innovative model can be “monotonically decreasing failure
rate,” “monotonically increasing failure rate,” or “constant failure rate,” and the density of the model
can be “asymmetric right skewed,” “symmetric,” “asymmetric left skewed,” or “uniform density”.
The new density is expressed as a blend of the Lomax densities that have been multiplied by an
exponent. New bivariate Lomax types were created for our research. The maximum likelihood
technique was utilized. We performed simulated experiments for the purpose of evaluating the
finite sample behavior of maximum likelihood estimators, using “biases” and “mean squared errors”
as our primary metrics of analysis. The novel distribution was evaluated based on a number of
pertinent Lomax models, including Lomax extensions that were generated on the basis of odd log-
logistic, Kumaraswamy, beta, gamma, and Topp–Leone families, among others. The newly developed
extension demonstrated its relevance by predicting the service and failure times of datasets pertaining
to aircraft windshields.

Keywords: statistical model; copula; failure analysis; aging; simulation; entropy; Farlie Gumbel
Morgenstern family; estimation
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1. Introduction

Probability distributions are important in the field of statistics because they offer a
wealth of materials to a variety of statistical subfields. The methods and applications
of statistical modeling that are founded on actual data and are utilized in fields such as
insurance, actuarial sciences, engineering, dependability, agriculture, and industry, amongst
other sectors, are some of the most important aspects of these factors. Probability-based
distributions known as heavy-tailed distributions feature probability tails that are more
weighted than those observed in the normal distribution. This suggests that they have a
greater potential of witnessing values that deviate significantly from the norm (also known
as “outliers”) than the normal distribution would indicate for them to have. In contrast,
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there is a low possibility of discovering extreme values in distributions with light tails, like
a normal distribution. The Lomax (Lx) distribution is the most important heavy-tailed
probability-based distribution in the field of mathematical modeling. The distribution of
wealth and income can be modelled with the help of this distribution, which features an
extended tail on the right side of the distribution. Heavy-tailed distributions are essential in
a wide variety of fields, including finance, economics, physics, and engineering, due to the
fact that they more accurately reflect the phenomena that occur in real life. This is because
real-life phenomena are characterized by the occurrence of extreme events more frequently
than would be predicted by a normal distribution. It is common practice to employ
the Lx distribution for modeling datasets with heavy tails, which means that extreme
circumstances occur more frequently than one might assume. The scale and location of the
dispersion are the two parameters that make up the Lx. According to TadiKamalla [1] and
Corbellini et al. [2], this distribution is commonly employed in the financial and insurance
industries to imitate severe occurrences, such as substantial insurance claims or stock
market crashes.

The Lx (Pareto type II) distribution is commonly used in actuarial science due to its
ability to model heavy-tailed data. This distribution is also known as the Lx distribution or
the Pareto distribution of the second kind. It is a continuous probability distribution that is
widely used to model the frequency and severity of rare events, such as large insurance
claims or natural disasters.

The main goal of this article is to provide and apply a new flexible extension of the Lx
distribution called the generalized odd-generalized exponential Lomax (GOGELx) model,
which was derived using the generalized odd-generalized exponential-G (GOGE-G) family
defined by Alizadeh et al. [3]. A random variable (rv) Z has an Lx distribution if it has a
cumulative distribution function (CDF) (for Z > 0) given by

Gτ,σ(z)|(τ>0 and σ>0) = 1−
(

σ−1z + 1
)−τ

, (1)

where τ and σ are the shape and scale parameters, respectively. Then, the corresponding
probability density function (PDF) of (1) can be derived as

gτ,σ(z) =
τ

σ

(
σ−1z + 1

)−(τ+1)
. (2)

The Lx distribution is particularly useful for analyzing the upper tail of a dataset,
where extreme events or outliers are more likely to occur. The Lx distribution is a valuable
tool for analyzing extreme events and tail behavior in big data within the transportation
domain. By utilizing this distribution, transportation planners can gain insights into rare
but impactful events, enabling them to make informed decisions and develop effective
strategies to improve system performance, safety, and resilience (see Schumann et al. [4]
for more details). In transportation, it can be applied to various scenarios, such as:

I. The Lx distribution can be used to model the occurrence of severe traffic congestion
events. By fitting the distribution to historical data on congestion levels or travel
times, transportation planners can estimate the probability of extreme congestion
events. This information helps in designing appropriate mitigation strategies and
optimizing traffic management plans.

II. The Lx distribution can be utilized to model the occurrence of rare but severe acci-
dents. By analyzing historical accident data, transportation agencies can estimate the
probability of extreme accident events, which aids in prioritizing safety interventions
and allocating resources effectively.

III. In transportation systems, extreme weather events can significantly affect operations
and safety. The Lx distribution can be applied to model the occurrence of extreme
weather phenomena, such as heavy rainfall, snowstorms, or high winds. By un-
derstanding the tail behavior of these events, transportation planners can develop
strategies to minimize the impact of adverse weather conditions.
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IV. When analyzing transportation demand, the Lx distribution can be used to model
the tail behavior of high-demand events. This is particularly relevant for scenarios
in which sudden spikes in demand occur, such as during major events, holidays, or
rush hours. By incorporating the Lx distribution into demand forecasting models,
transportation planners can estimate the probability of extreme demand levels and
ensure appropriate resource allocation.

V. The Lx distribution can aid in analyzing the tail behavior of traffic or transporta-
tion infrastructure capacity. By fitting the distribution to the data on infrastructure
utilization, transportation planners can estimate the probability of extreme capac-
ity constraints. This information is valuable for designing infrastructure expansion
projects or optimizing capacity allocation strategies.

The CDF and the PDF of the GOGELx model provided by Alizadeh et al. [3], respec-
tively, are as follows:

FV(z) = (1− exp{W (z; a, τ, σ)})b|(V=a,b,τ,σ), (3)

where W (z; a, τ, σ) =
−
[
1−(σ−1z+1)

−τ
]a

1−
[
1−(σ−1z+1)

−τ
]a and

fV(z) = ab
τ

σ

[
1−

(
σ−1z + 1

)−τ
]a−1

exp{W (z; a, τ, σ)}{
1−

[
1− (σ−1z + 1)−τ

]a}2
(σ−1z + 1)(τ+1)

[1− exp{W (z; a, τ, σ)}]b−1, (4)

where a, b > 0 are two additional shape parameters. Henceforth, Z ∼ GOGELx(V) denotes
a random variable with a density function (4). The reliability function (rf) and hazard rate
function (HRF) of Z are expressed by h(z) = fV(z)/RV(z), where RV(z) = 1− FV(z).
For the purpose of simulating data from this new model, if u ∼ u(0, 1), then

zu = σ


1−

 −log
(

1− u
1
b

)
1− log

(
1− u

1
b

)


1
a


− 1

τ

− 1


has CDF in (3). In fact, the specialist literature contains a significant number of extensions
of the Lx distribution. These extensions were mostly utilized in the mathematical and
statistical modeling procedures, and we will highlight some of them here: the Lx-inverse-
Weibull model by Afify et al. [5], a new generalized Lx model with statistical properties and
applications by Ibrahim and Yousof [6], a new extension of the Lx distribution by Elbiely
and Yousof [7], validation of the Topp–Leone-Lx model by Yadav et al. [8], and a new Lx
distribution for modeling survival times and tax revenue datasets by Elsayed and Yousof [9].
In order to show the wide flexibility of the new model, we have presented Figure 1. The
new PDF can be “right skewed” with a large tail shape or “right skewed” with one peak, as
shown in Figure 1 (the left plot). Either of these two possibilities corresponds to a “right
skewed” distribution. As illustrated in Figure 1 (the right plot), the HRF of the GOGELx
model can be one of four different types: “decreasing-constant HRF,” “monotonically
increasing HRF,” “bathtub HRF,” and “constant HRF”.
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Figure 1. PDF plots (the right panel) and their corresponding HRF plots (the left panel) for selected
parameter values for the GOGELx model.

When modeling data with two or more variables, an essential piece of statistical
software known as a copula is utilized in the process. This function creates a relationship
between the marginal distributions of two or more variables and the joint distribution of
all variables. The marginal distributions of the variables may be independent or dependent
on one another. In recent years, copulas have witnessed a rise in popularity as a result
of their adaptability as well as their capacity to model complex dependence patterns
between variables. This growth in popularity can be attributed to the fact that copulas
are capable of modeling intricate dependency patterns between variables. The capacity
of copulas to depict intricate dependency patterns between variables is likely responsible
for this meteoric rise in popularity. In this investigation, we generate some new bivariate
type GOGELx (BGOGELx) models by employing the Farlie–Gumbel–Morgenstern (FGM)
copula, the modified Farlie–Gumbel–Morgenstern (MFGM) copula, the Clayton copula,
and Renyi’s entropy (for additional information, see Farlie [10], Morgenstern [11] and
Gumbel [12,13]). Customers also have the option to buy a product of a type known as
Multivariate GOGELx (MvGOGELx). On the other hand, it is not out of the question that
further efforts will be made to research these original ideas. Let us start by looking at the
combined CDF of the FGM family, which is made up of the following parts:

Fp(v(.),u(.)) = v(.)u(.)(1 +pv•(.)u•(.))

where v•(.) = 1− v(.), u•(.) = 1− u(.) and the marginal function v = F1 = FV1(z1),
u = F2 = FV2(z2), and p ∈ (−1, 1) are the dependence parameters, and for every
v(.),u(.) ∈ (0, 1), F (v(.), 0) = F (0,u(.)) = 0, which is “grounded minimum”, F (v(.), 1) = v,
and F (1,u(.)) = u, which is “grounded maximum”,

F (v1(.),u1(.)) + F (v2(.),u2(.))− F (v1(.),u2(.))− F (v2(.),u1(.)) ≥ 0,

For more details, see Nelsen (1999). The development of a new GOGELx model did not
become a motivated task in and of itself; hence, it is important to provide some convincing
arguments and practical considerations that highlight the importance, adaptability, and
application of this distribution. In order to accomplish this goal, it is required to present a
number of compelling reasons and practical considerations that highlight the significance,
adaptability, and usefulness of this distribution. The new PDF elasticity and the HRF that
went along with it were both developed as a direct result of these external factors and
forces, which served as the driving forces behind their development. When presenting a
novel distribution, one of the most important practical aspects that should be taken into
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account is the possibility of applying it to statistical modeling. In the following scenarios,
the GOGELx model may prove to be helpful:

• The real datasets whose kernel density is semi-symmetric (slightly skewed to the left
and slightly skewed to the left) and have a bimodal form, as illustrated in Figure 3, are
the ones that are discussed here.

• The real-life datasets, which, as shown in the application Section, do not contain any
observations that fall into the extreme category.

• The GOGELx model is compared to many relevant models, such as the special general-
ized mixture Lx distribution, the Kumaraswamy Lx distribution, beta Lx distribution,
gamma Lx distribution, Transmuted Topp–Leone Lx distribution, reduced Transmuted
Topp–Leone Lx distribution, odd log-logistic Lx distribution, reduced odd log-logistic
Lx distribution, reduced Burr–Hatke Lx distribution, exponentiated Lx distribution,
standard Lx distribution, reduced GOGELx distribution, and proportional reversed
hazard rate Lx distribution in modeling the failure times of aircraft windshield data.

• The GOGELx distribution is compared to many relevant models, such as the odd
log-logistic Lx distribution, the Kumaraswamy Lx distribution, the special generalized
mixture Lx distribution, beta Lx distribution, gamma Lx distribution, Transmuted
Topp–Leone Lx distribution, reduced Transmuted Topp–Leone Lx distribution, re-
duced odd log-logistic Lx distribution, reduced Burr–Hatke Lx distribution, exponen-
tiated Lx distribution, standard Lx distribution, reduced GOGELx distribution, and
proportional reversed hazard rate Lx distribution in modeling the service times of
aircraft windshield data.

• Creating new probability density functions that may take on several beneficial forms,
such as “right skewed” with a heavy tail shape and “right skewed” with one peak.

• Any new model may be used to analyze a variety of environmental datasets because of
the great flexibility of the probability density function. But the new model has shown
flexibility and high efficiency in the statistical and mathematical modeling processes
of different sets of reliability and engineering data.

• Introducing a few new one-of-a-kind models that come with a variety of hazard
rate functions, such as “decreasing constant HRF,” “monotonically increasing HRF,”
“bathtub HRF,” and “constant HRF.” The number of distinct failure rate categories
has a positive correlation with the elasticity of the distribution. These forms make
the work of a wide variety of practitioners, including those who would use the new
distribution in statistical modeling and mathematical analysis, significantly simpler.
The matter of checking the success rate function for this particular endeavor has
received a significant amount of focus and consideration from our team.

• The degree to which the new distribution is flexible can be determined, in part,
by looking at the skew coefficient, the kurtosis coefficient, the failure rate function,
and the variety of the PDF and failure rate functions. In this context, it is of the
utmost importance to give some thought to the accuracy with which the probability
distribution may be modeled statistically, as well as the accuracy with which it can be
employed. As a direct consequence of this, we examined the probability distribution
in great detail. It is essential to emphasize in this piece that the new family has distinct
characteristics, such as the broadening of the skew coefficient and the widening of the
kurtosis coefficient. These are just two of the characteristics that are discussed and two
of the many traits that were noticed during the investigation. The new family has an
advantage over all other connected families in the competition due to the high degree
of flexibility offered by this arrangement. This spreading of the skewness and kurtosis
coefficients is one of the most crucial elements that may be depended upon in order
to assess the extent to which the distribution is elastic. In addition to this, it is one of
the most significant characteristics that can be depended upon in order to discern one
probability distribution from another probability distribution.
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2. Copula

Copulas are a practical method for modeling the interdependence of variables, a key
concept in various subfields of statistics and data science. Copulas make it simpler to
spot intricate connections between variables that cannot be depicted using conventional
correlation indicators because they help us in modeling the combined distribution of
variables while maintaining the marginal distributions of each variable. Thus, we can
depict the aggregate distribution of the variables using copulas. Copulas have been used
in the realm of finance to represent the relationship between the returns on various asset
classes (for more information, check Elgohari and Yousof [14]). This is a requirement for
portfolio optimization, which aims to create an asset mix that maximizes returns while also
lowering risk. We can more accurately evaluate the risk associated with a portfolio and
create portfolios that are more effective by using copulas to model the dependency between
assets (for more information, see Ghosh and Ray [15] and Mansour et al. [16]). Copulas can
be used to assess the likelihood of catastrophic events like the collapse of a market or the
occurrence of natural disasters in addition to their usage in risk management. Copulas can
offer a more precise assessment of the risk that such occurrences will occur by modeling
the relationship of dependence between variables. This is crucial for risk management
and insurance.

2.1. BGOGELx Version via FGM Copula

When modeling the joint distribution of two variables, risk analysis frequently makes
use of the FGM distribution as a modeling tool. For instance, it can be utilized in the
field of finance to represent the joint distribution of stock returns or asset values. Another
application is in the field of linguistics. Analysts can analyze the joint likelihood of extreme
occurrences or generate risk metrics, such as value at risk (VaR) or conditional value at risk
(CVaR), by estimating the parameters of the FGM distribution. Modeling the relationship
between two variables can be performed in a flexible manner using the FGM distribu-
tion. The strength of the reliance and its direction can be determined by the correlation
coefficient. One can model other kinds of reliance structures, such as positive, negative,
or no dependence at all, by modifying the value of the symbol in the equation. Because
of this, the FGM distribution is well suited for examining a wide range of phenomena,
including the relationship between economic variables and environmental factors, to name
just two examples. In the fields of insurance and actuarial science, the FGM distribution
is useful for a number of applications, particularly for modeling the joint distribution
of insurance claims. Actuaries can estimate aggregate loss distributions and evaluate
insurance risk by modeling the dependence between two variables, such as claim sizes
and claim frequencies, using the FGM distribution. Examples of this type of modeling
include insurance claims. The FGM distribution is a useful tool for modeling the joint
distribution of asset returns, which may be applied in portfolio optimization. Analysts can
model various asset return scenarios and optimize portfolio weights to achieve the required
risk-return trade-offs by evaluating the correlation coefficient and marginal parameters.
The FGM distribution makes it possible to capture a wide variety of dependency structures
that exist between assets and makes it possible to diversify a portfolio effectively. In the
field of copula modeling, the FGM distribution is frequently used as a copula function
in a number of applications. Mathematical functions, known as copulas, can be used to
simulate the dependence structure that exists between random variables, regardless of the
marginal distributions of those variables. Modeling the dependence between variables
that have distinct marginal distributions can be performed in a flexible manner using the
FGM copula. The FGM distribution is utilized extensively in copula modeling, which is
utilized frequently in domains like finance, hydrology, and environmental sciences. In
conclusion, the FGM distribution is an effective tool for modeling bivariate datasets, as
well as for conducting analysis on the dependence that exists between two variables. Its
applications range from risk analysis and portfolio optimization to actuarial science, copula
modeling, and insurance. Researchers and practitioners can acquire insights into the joint
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behavior of variables and make educated judgments by utilizing the FGM distribution,
which allows for the estimated parameters and dependence structure to serve as the basis
for these calculations. First and foremost, a copula is continuous in v(.) and u(.), where

|F (v2(.),u2(.))− F (v1(.),u1(.))|≤|v2(.)− v1(.)|+|u2(.)−u1(.)|.

For 0 ≤ v1(.) ≤ v2(.) ≤ 1 and 0 ≤ u1(.) ≤ u2(.) ≤ 1, the following main result can
be obtained:

Pr(v1(.) ≤ U(.) ≤ v2(.),u1(.) ≤W (.) ≤ u2(.)) = F11 + F22 − F12 − F21 ≥ 0.

where
F11 = F (v1(.),u1(.)), F22 = F (v2(.),u2(.)), F12 = F (v1(.),u2(.))

and
F21 = F (v2(.),u1(.))

Therefore, by settingv• = 1− FV1
(z1)|[v•=(1−v)∈(0,1)] andu• = 1− FV2

(z2)|[u•=(1−u)∈(0,1)],
one can derive the joint CDF of the FGM family as follows:

Fp(v(.),u(.)) = v(.)u(.) +pv(.)v•(.)u(.)u•(.).

2.2. BvGOGELx Version via MFGM Copula

The MFGM copula can be expressed either by

Fp(v(.),u(.)) = v(.)u(.)[1 +pϕ(v(.))W (v)]|p∈(−1,1)

or by
Fp(v(.),u(.)) = v(.)u(.) +pTvWu|p∈(−1,1),

where Tv = v(.)T (v), and Wu = u(.)W (v), where T (v), W (v) ∈ (0, 1), and
T (0) = T (1) = W (0) = W (1) = 0.

Let:

ε1(v) = in f
{

Tv :
∂

∂v
Tv|ς1(v)

}
< 0, ε2(v) = sup

{
Tv :

∂

∂v
Tv|ς1(v)

}
< 0,

a1(u) = in f
{

Wu :
∂

∂u
Wu|ς2(u)

}
> 0, a2(u) = sup

{
Wu :

∂

∂u
Wu|ς2(u)

}
> 0.

Then, 1 ≤ min(ε1(v)ε2(v), a1(u)a2(u)) < ∞, where

v
∂

∂v
T (v) =

∂

∂v
Tv − T (v).

2.2.1. Type-I BGOGELx-FGM Model

If we considered the following two functional forms T (v) and W (v), the Type-I
BGOGELx-FGM model can be derived from

Fp(v(.),u(.)) = v(.)u(.) +pTvWu|p∈(−1,1),

where Tv = v(.)
[
1− FV1

(v)
]

and Wu = u(.)
[
1− FV2

(u)
]
.

2.2.2. Type-II BGOGELx-FGM Model

Let T (v) and W (v) be two functional forms that satisfy all the conditions stated and
considered above, where

T (v)•|(p1>0) = (1− v(.))1−p1 [v(.)]p1 ,
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and
W (v)•|(p2>0) = (1−u(.))1−p2 [u(.)]p2 .

Then, the new Type-II BGOGELx-FGM can be obtained from

Fp,p1,p2(v(.),u(.)) =
[
1 +pϕ(v)•W (v)•

]
v(.)u(.).

2.2.3. Type-III BGOGELx-FGM Model

Let
T •(v) = v(.)[log(T (v) + 1)]

and
W •(u) = u(.)[log(W (v) + 1)]

for all T (v) and W (v) that satisfy the main conditions. Then, one can also obtain a new
joint CDF of the Type-III BGOGELx-FGM as

Fp(v(.),u(.)) = vu(1 +pT •(v) W •(u)).

2.2.4. Type-IV BGOGELx-FGM Model

Following Ghosh and Ray [15], the CDF of the Type-IV BGOGELx-FGM model can be
derived from

F (v(.),u(.)) = v(.)F−1
V2

(u) +u(.)F−1
V1

(v)− F−1
V1

(v)F−1
V2

(u)

where F−1
V1

(v) and F−1
V2

(u) can be derived using (13) (see Ghosh and Ray [15]).

2.3. BGOGELx and MvGOGELx Versions via Clayton Copula

BGOGELx version of the GOGELx model via the Clayton copula can be derived from

F (u1(.),u2(.)) = [(1/u1(.))
p + (1/u2(.))

p − 1]−p
−1
|p∈(0,∞).

Setting u1(.) = FW1
(t) and u2(.) = FW2

(z), the BGOGELx version of the GOGELx
model via the Clayton copula can be derived from F (u1(.),u2(.)) = F (FW1

(t), FW2
(z)).

Analogously, the MvGOGELx version of the GOGELx model via the Clayton copula (m-
dimensional MvGOGELx version) can then be derived from

F (uh) =

(
m

∑
h=1

u
−p
h + 1−m

)−p−1

.

2.4. BGOGELx Version of the GOGELx Model via Renyi’s Entropy

Bivariate data can be classified or clustered using the Rényi entropy in one of two
ways. One can successfully group or categorize data points based on their joint distribu-
tion if Rényi entropy-based procedures are applied. Examples of these methods include
Renyi’s entropy-based k-means clustering and entropy-based decision trees. This method
considers the interdependencies between the variables, leading to grouping or classification
conclusions that are more accurate and appropriate. During the feature selection process,
the variables in a bivariate dataset with the greatest amount of informational value can be
found using the Rényi entropy. One may evaluate how much information each variable
adds to the overall system by calculating the Rényi entropy of each variable independently
and the combined distribution of all variables. By highlighting the elements that should
be the focus of additional investigation or modeling, this study helps to decrease the di-
mensionality of the problem and boost computational effectiveness. There are several
different ways to use the Rényi entropy when modeling datasets with two variables. It
can be used to evaluate the quality of the information provided, measure the degree of
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dependence, assist with classification and grouping activities, support feature selection,
and make statistical inferences easier. Researchers and practitioners can improve their anal-
ysis, modeling, and decision-making processes by applying the concepts of Rényi entropy
to acquire insights into the structure and relationships present in bivariate data. These
insights can be obtained by applying the concepts of Rényi entropy. Using the theorem
of Pougaza and Djafari [17], the BGOGELx version of the GOGELx model via Renyi’s
entropy can then be derived from F (v(.),u(.)) = z2v(.) + z1u(.)− z1z2. Or, the associated
BGOGELx version of the GOGELx model via Renyi’s entropy can also be expressed as
F (v(.),u(.)) = F (FV1(z1), FV2(z2)).

3. Statistical Properties
3.1. Stochastic Property

Stochastic properties are important for probability distributions because they de-
termine the behavior of random variables, which are the building blocks of probability
distributions. Random variables are used to represent uncertain or random phenomena,
and they can take on different values with different probabilities. The stochastic properties
of a probability distribution are determined by its PDF or probability mass function (PMF).
These functions describe the probability of a random variable taking on a particular value
or set of values. For example, in a normal distribution, the PDF describes the probability of
a random variable taking on a certain value within a certain range. Let Z1 ∼ GOGELx (V1)
and Z2 ∼ GOGELx (V2). Then, Z1 is stochastically smaller than Z2 if a1 > a2 and b1 > b2.
Note that for any a1 > a2,

Hτ1,σ1(z1) =

(
1
σ1

z1 + 1
)−τ1

and

Hτ2,σ2(z2) =

(
1
σ2

z2 + 1
)−τ2

,

we have
[1− Hτ1,σ1(z1)]

a1 > [1− Hτ2,σ2(z2)]
a2 .

This result is true for integer and fractional values of a1 and a2. Then, the following
results can be obtained:

− [1− Hτ1,σ1(z1)]
a1

1− [1− Hτ1,σ1(z1)]
a1

< − [1− Hτ2,σ2(z2)]
a2

1− [1− Hτ2,σ2(z2)]
a2

,

Then,

→
(

1− exp
{ −[1− Hτ1,σ1(z1)]

a1

1− [1− Hτ1,σ1(z1)]
a1

})b1

>

(
1− exp

{
−[1− Hτ2,σ2(z2)]

a2

1− [1− Hτ2,σ2(z2)]
a2

})b2

,

and,

→ 1−
(

1− exp
{ −[1− Hτ1,σ1(z1)]

a1

1− [1− Hτ1,σ1(z1)]
a1

})b1

< 1−
(

1− exp
{
−[1− Hτ2,σ2(z2)]

a2

1− [1− Hτ2,σ2(z2)]
a2

})b2

.

This completes the proof. In conclusion, it is extremely important to take into ac-
count the stochastic aspects of probability distributions. This is because the behavior of
random variables and stochastic processes is determined by these characteristics. These
characteristics are applied in the modeling and investigation of a wide variety of real-world
occurrences, including but not limited to stock prices, weather patterns, and the behavior
of subatomic particles, amongst other things.
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3.2. Moments

In order to understand probability distributions, it is required to have a strong under-
standing of mathematical properties. Probability distributions are mathematical procedures
that represent the likelihood of various events based on a random variable. Probability
distributions can be found in statistics and applied mathematics. They are essential to the
fields of probability theory and statistics, as well as being employed in a wide variety of
fields, such as kike banking, actuarial science, and engineering, amongst a great many
others. Therefore, in order to make the new PDF and the CDF that goes along with it
easier to understand, we have provided a useful new formulation for (4). Using the series
expansion (

1− c1

c2

)c3−1
=

∞

∑
c4=0

(−1)c4

(
c3 − 1

c4

)(
c1

c2

)c4

,

where
∣∣∣ c1

c2

∣∣∣ < 1 and c3 > 0 are real and non-integer. Then, the power series is used and the
quantity Aa,b,τ,σ(z) isexpanded, where

Aa,b,τ,σ(z) = [1− exp{W (z; a, τ, σ)}]b−1.

Then, we obtain

Aa,b,τ,σ(z) =
∞

∑
i=0

(−1)i
(

b− 1
i

)
exp{iW (z; a, τ, σ)}.

By compiling the expression of Aa,b,τ,σ(z) into (4), the PDF can then be expressed as

fV(z) = ab
τ

σ

[
1−

(
σ−1z + 1

)−τ
]a−1

{
1−

[
1− (σ−1z + 1)−τ

]a}2

∞

∑
i=0

(−1)i
(

b− 1
i

)(
σ−1z + 1

)−(τ+1)
exp{(1 + i)W (z; a, τ, σ)},

Again, by expanding the quantity Bτ,σ(z) = exp{(1 + i)W (z; a, τ, σ)} and by using
the power series, the Bτ,σ(z) can be expressed as

Bτ,σ(z) =
∞

∑
j1=0

(−1)j1 (1 + i)j1

j1!


[
1−

(
σ−1z + 1

)−τ
]aj1

{
1−

[
1− (σ−1z + 1)−τ

]a}j1

.

By compiling the expression of Bτ,σ(z) into fV(z), the fV(z) can then be expressed as

fV(z) = ab
τ

σ

∞

∑
i,j1=0

(−1)i+j1 (1 + i)j1

j1!

(
b− 1

i

)(
σ−1z + 1

)−(τ+1)

[
1−

(
σ−1z + 1

)−τ
]a(j1+1)−1

{
1−

[
1− (σ−1z + 1)−τ

]a}2+j1
,

Finally, by applying the series expansion again to the quantity

B2+j1,τ,σ(z) =
{

1−
[
1−

(
σ−1z + 1

)−τ
]a}2+j1

, we arrive at

fV(z) =
∞

∑
j1,j2=0

wj1,j2 ga• ,τ,σ(z)|(a•=a(j1+j2+1)),

where ga• ,τ,σ(z) refers to the well-known PDF of the standard exp-Lx model but with the
power parameter a•, and

wj1,j2 =
ab(−1)j1+j2

j1!a•

(
−(j1 + 2)

j2

) ∞

∑
i=0

(
b− 1

i

)
(i + 1)j1(−1)i.
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In conclusion, the CDF of the GOGELx model can also be stated as a mixture of the
CDFs produced using the exp-Lx model. This is possible due to the fact that the GOGELx
model is a mixture of other models. We are able to obtain the same representation of the
mixture by integrating Equation (4), which is as follows:

FV(z) =
∞

∑
j1,j2=0

wj1,j2 wj1,j2 Ga• ,τ,σ(z),

where Ga• ,τ,σ(z) is the CDF of the exp-Lx model with the power parameter a•. Using the
result of (5) and the main results of the exp-Lx model, the rth ordinary moment of Z can be
derived as

v′r = ∑∞
j1,j2=0 ∑r

h=0 ∆(r,a•)
j1,j2,hB

(
a•, 1 +

h− r

τ

)
|(τ>r), (5)

where

∆(r,a•)
j1,j2,h = wj1,j2 a•σr(−1)h

(
r

h

)
,

and

B(1 + ∆1, 1 + ∆2) =
∫ 1

0
z∆1(1− z)∆2 dz.

For r = 1 in (5), we obtain the mean/expected value of Z. After that, one may find the
important metrics, such as skewness and kurtosis, both of which are measures of dispersion,
by utilizing (5). Calculating a number of different things, including the moment-generating
function for the new model, can be accomplished by utilizing Equations (4) and (5). This is
just one example of how this may be achieved:

Mz(t) =
∞

∑
j1,j2=0

r

∑
h=0

∞

∑
r=0

∆(r,a•)
j1,j2,h,rB

(
a•, 1 +

h− r

τ

)
|(τ>r),

where
∆(r,a•)
j1,j2,h,r =

tr

r!
∆(r,a•)
j1,j2,h.

A number of factors, including the skew coefficient, the kurtosis coefficient, the failure
rate function, and the variety of the PDF and failure rate functions, are used to determine the
degree to which the new distribution is flexible. The most essential of these criteria are the
skew coefficient and the kurtosis coefficient. In this particular setting, careful consideration
of the extent to which the probability distribution can be accurately implemented and
scientifically defined is of utmost importance. This is due to the fact that this particular
environment contains a large number of moving pieces. After conducting an in-depth
analysis of the cutting-edge PDF, we came to the conclusion that it provided a high degree
of flexibility for usage in other industries as well. This was the result of our efforts. We
carefully examined this probability distribution. It is important to note that in this research
the new family possessed distinctive qualities, such as a broad skew coefficient and an
expanding kurtosis coefficient. The new family has a competitive edge over all other related
families due to its great adaptability. One of the most crucial elements that can be depended
upon to determine the degree of the distribution’s elasticity and to identify one probability
distribution from another is the widening of the skewness and kurtosis coefficients. For
this purpose, we have presented Table 1, which contains many details that highlight the
importance of the new model and the extent of flexibility. Variance (v2), skewness (γ1),
and kurtosis (γ2) can be easily derived from well-known relations. By analyzing v′1, v2,
γ1 and γ2 numerically in Table 1, it is noted that γ1 of the GOGELx distribution can only
be positive. The spread for the γ2 of the GOGELx model ranges from 3.9 to 38056.8. The
following results were obtained:

I. For fixed b, τ, σ, and a = (1,5,10,50,100), v′1 started with 2 and ended with 12,573.89; v2
started with 10 and ended with 28,319,119; γ1 started with 4.869908 and ended with
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2.352625; γ2 started with 48.96 and ended with 9.025842, i.e., skewness was always
positive and kurtosis was greater than three.

II. For fixed a, τ, σ, and b = (0.5,1,20,50,150,500,1500), v′1 started with 27.442188 and ended
with 12,573.89; v2 started with 243.1643 and ended with 6793.388; γ1 started with
6.486595 and ended with 1.849833; γ2 started with 84.35094 and ended with 9.833175,
i.e., skewness was always positive and kurtosis was greater than three.

III. For fixed a, b, σ, and τ = (0.1,0.25,0.5,1), v′1 started with 1580.635 and ended with
31.56381; v2 started with 89,355,253 and ended with 399.7604; γ1 started with 7.129449
and ended with 1.538719; γ2 started with 57.24885 and ended with 6.792048, i.e.,
skewness was always positive and kurtosis was greater than three.

IV. For fixed a, b, τ, and σ = (0.5,1,5,20,100,500,1500), v′1 started with 17,833.71 and ended
with 2.346624; v2 started with 491,455,358 and ended with 193,026.4; γ1 started with
1.680768 and ended with 192.9097; γ2 started with 5.232642 and ended with 38,056.81,
i.e., skewness was always positive and kurtosis was greater than three.

Table 1. v′1, v2, γ1, and γ2 of the GOGELx model.

a b τ σ v′
1 v2 γ1 γ2

1 1 0.5 0.5 2.000000 10.00000 4.869908 48.96000
5 41.69429 4866.206 5.390024 59.50146

10 160.5733 75,199.88 5.47479 61.27429
50 3853.447 42,379,209 4.581347 35.19993
100 12,573.89 28,319,119 2.352625 9.025842

1.5 0.5 0.5 1.5 7.442188 243.1643 6.486595 84.35094
1 12.77717 413.2616 5.051232 52.5969

20 69.81196 2045.452 2.583400 16.34851
50 99.62102 2824.205 2.323810 13.82921
150 142.9996 3920.139 2.113328 11.95878
500 200.0016 5324.653 1.955009 10.65224

1500 260.5952 6793.388 1.849833 9.833175

3.5 2 0.1 5 1580.635 89,355,253 7.129449 57.24885
0.25 13,671.96 426,237,588 2.090623 6.94757
0.5 342.3346 194,485.9 4.268613 38.6757

0.75 70.27614 3256.276 2.226533 11.51443
1 31.56381 399.7604 1.538719 6.792048

5 5 0.25 0.5 17,833.71 491,455,358 1.680768 5.232642
1 20,714.77 614,667,664 1.360643 3.970398
5 17,183.43 732,718,933 1.488382 3.996878
20 7558.414 442,743,284 2.853365 10.08447

100 1203.06 85,555,038 8.177842 71.41334
500 55.60601 4,343,589 39.21416 1589.049
1500 2.346624 193,026.4 192.9097 38,056.81

3.3. Reliability Measures

The forward recurrence time, also known as the residual time, is the amount of time
that passes between a given period and the renewal process’s subsequent epoch in the
theory of renewal processes, a branch of mathematical probability theory. It is additionally
referred to as overshoot in the context of random walks. In the vast majority of real-
life applications of renewal processes, the residual time is crucial; in queueing theory, it
establishes how long a new client in a non-empty queue must wait before being served. It
establishes, for instance, the lifespan of a wireless link upon the arrival of a new packet
in wireless networking. In dependability studies, it models the remaining lifetime of a
component. If something has survived this far, how much longer is it expected to survive
h. That is the question answered by mean residual time. In this section, we have discussed
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some reliability measures, such as the residual life (RSL) and reversed residual life (RRSL)
functions. If the nth moment of the residual life is

mn,Z(t)|n = 1, 2, . . . , Z > t = E[(Z− t)n],

Then,

mn,Z(t)

∣∣∣∣n = 1, 2, . . . , Z > t =
1

R(t)

∫ ∞

t
(z − t)ndF(z).

Finally, the nth moment of the RSL can be expressed as

mn,Z(t) =
1

1− F(t)

∞

∑
j1,j2=0

n

∑
r=0

n

∑
h=0

m(n,a•)
j1,j2,r,h

[
B
(

a•, 1 +
h−n

τ

)
− Bt

(
a•, 1 +

h−n

τ

)]
|(τ>n),

where

m(n,a•)
j1,j2,r,h =

(
n

r

)
(−t)n−rwj1,j2 a•σr(−1)h

(
r

h

)
,

and
B·(1 + ∆1, 1 + ∆2) =

∫ ·
0

z∆1(1− z)∆2 dz.

The nth moment of the RRSL of the new model can then be obtained as

Mn,Z(t) =
1

F(t)

∞

∑
j1,j2=0

n

∑
r=0

n

∑
h=0

M(n,a•)
j1,j2,hBt

(
a•, 1 +

h−n

τ

)
|(τ>n),

where

M(n,a•)
j1,j2,r,h = (−1)r

(
n

r

)
tn−rwj1,j2 a•σr(−1)h

(
r

h

)
.

3.4. Entropies

The idea of entropy, which is commonly utilized in many domains including actuarial
risk analysis, is measured by the Rényi entropy. Entropy metrics are used in actuarial risk
analysis to calculate the degree of uncertainty or unpredictability attached to a set of data
or events. The Rényi entropy is used to quantify the information content or uncertainty
of a probability distribution. It provides an alternative measure to Shannon entropy and
captures different aspects of the distribution’s randomness. Rényi entropy is used in various
data analysis and statistical tasks. It can be employed for feature selection, where variables
with higher entropy are considered more informative. Rényi entropy-based methods also
find application in clustering, classification, and pattern recognition tasks. By quantifying
the diversity or uncertainty within datasets, Rényi entropy aids in uncovering underlying
structures and making data-driven decisions. The Rényi entropy can be derived from

Iξ(Z) =
1

1− ξ
log
∫ ∞

−∞
f (z)ξdz |(ξ>0 and ξ 6=1)

Using the PDF (4), we have

f (z)ξ =
∞

∑
j1,j2=0

Υj1,j2

(
σ−1z + 1

)−ξ(τ+1)
[

1−
(

σ−1z + 1
)−τ

]a(j1+j2+ξ)−ξ

,

where

Υ
(ξ)
j1,j2

=
(

ab
τ

σ

)ξ (−1)j1+j2

j1!

∞

∑
i=0

(−1)i(i + ξ)j1

(
−(j1 + 2)

j2

)(
ξ(b− 1)

i

)
.
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Then,

Iξ(Z) =
1

1− ξ
log

[
∞

∑
j1,j2=0

Υ
(ξ)
j1,j2

I+∞
0 (z)

]
,

where

I+∞
0 (z; ξ) =

∫ ∞

0

(
σ−1z + 1

)−ξ(τ+1)
[

1−
(

σ−1z + 1
)−τ

]a(j1+j2+ξ)−ξ

dz

Rényi entropy is a versatile concept with applications across various domains. It
is employed in information theory, data analysis, image and signal processing, complex
systems, network science, and quantum information theory. By capturing different aspects
of randomness, uncertainty, and diversity in probability distributions, Rényi entropy
provides valuable insights and measures that aid in understanding complex phenomena
and making informed decisions.

3.5. Order Statistics

Let Z1, Z2, . . . , Zn be a certain random sample of size n from the GOGELx model.
Then, let Z1:n, Z2:n, . . . , Zn:n be the corresponding order statistics of our random sample
Z1, Z2, . . . , Zn. Then, the PDF fi:n(z) of the ith order statistic can be written as

fi:n(z) =
1

B(i,n− i + 1)∑
n−i
j=0(−1)j1

(
n− i
j

)
f (z)Fj+i−1(z), (6)

where B(·, ·) refers to the well-known beta function. Then,

f (z)F(z)j+i−1 =
∞

∑
w,m=0

Dw,m ga• ,τ,σ(z)|(a•=a(w+m+1)),

where

Dw,m =
ab(−1)w+m

w!a•
∞

∑
P=0

(−1)P(P + 1)w
(
−(w + 2)

m

)(
b(i +j1)− 1

P

)
.

Then,

fi:n(z) =
n−i

∑
j=0

(−1)j1 1
B(i,n− i + 1)

(
n− i
j

) ∞

∑
w,m=0

Dw,mga• ,τ,σ(z).

4. Estimation

The uncensored maximum likelihood estimation method is a methodology for estimat-
ing the parameters of a probability distribution based on a sample of data. In this method,
none of the data are omitted from observation, therefore the estimation can be as accurate
as possible. The collection of parameter values that maximizes the likelihood function, a
measure of how likely it is that the data will be seen given the parameter values, is known
as the maximum likelihood estimator (MLE). For determining the MLE of V, we first obtain
the log-likelihood function:

l = l(V) = nlog
(
ab τ

σ

)
− (τ + 1)

n

∑
i=1

log
(
σ−1zi + 1

)
−2

n

∑
i=1

log
{

1− [1− Hτ,σ(zi)]
a}+ (a− 1)

n

∑
i=1

log[1− Hτ,σ(zi)]

+(b− 1)
n

∑
i=1

log
[

1− exp
{
−[1− Hτ,σ(zi)]

a

1− [1− Hτ,σ(zi)]
a

}]
+

n

∑
i=1

−[1− Hτ,σ(zi)]
a

1− [1− Hτ,σ(zi)]
a .
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Determining each of the components that make up the score vector is not a difficult
task. The MLE can be found by first establishing the nonlinear system of equations
Ua = Ub = Uτ = Uσ = 0, and then solving both sets of equations simultaneously.
This process can be repeated until the MLE is obtained. Utilizing the unfiltered maximum
likelihood estimation method is one way to complete the task of estimating the features of
a distribution for a manufacturing process in order to guarantee that the finished goods
satisfy specific quality requirements. This can be performed in order to ensure that the final
items meet all the quality requirements. The mean and standard deviation of a distribution
can be estimated using the maximum likelihood technique if, for example, the distribution
of product weights follows a normal distribution. This allows for the estimation method
to be used to estimate both the mean and the standard deviation of the distribution. The
technique of maximum likelihood estimation is utilized in the field of engineering. This
method can be utilized to estimate the parameters of a distribution for the amount of time
it takes for a product or system to break down. After gathering this information, one
can evaluate the reliability of the product or system and make judgments regarding its
maintenance based on their findings. The estimation of the distribution parameters for
population growth or mortality can be accomplished with the use of a technique known
as maximum probability estimation, which is a method that can be utilized in the subject
of ecology. After collecting these data, it is then possible to use them to guide and direct
conservation efforts.

5. Simulation

In the discipline of statistics, simulation studies are becoming an increasingly common
tool for evaluating the performance of a variety of estimating strategies. This is because sim-
ulation studies can replicate real-life conditions more accurately. In recent years, simulation
studies have been increasingly popular due to the fact that they have the capacity to deliver
a controlled and complete evaluation of various estimation approaches under a variety
of different conditions. Because simulation studies can give this form of analysis, their
growing popularity can be related to this capability. This paper makes an effort to highlight
the statistical relevance of simulation studies as well as the driving reasons behind those
studies’ research when it comes to evaluating estimation methodologies in this context
by focusing on both the driving reasons behind those studies’ research and the statistical
relevance of those studies. The mean squared error (MSE) is a performance indicator that
is used extensively in simulation studies to assess the precision of a statistical model or
estimator. Its name comes from the fact that it squares the error. It got its name from
the fact that its value when squared is the same as its value when it was first calculated.
It gets its name from the fact that the value of its squared representation is the same as
that of its initial representation. This is the reason why its squared representation has the
same value as its initial representation. It is an abbreviation that refers for “mean square
error,” and its meaning is as follows: “the average of the squared discrepancies between
the estimated values and the actual values of the parameter being estimated”. MSE is an
acronym that stands for “mean square error.” The mean squared error, also known as MSE,
is favored over measurements of dispersion and biases in simulation studies for a variety
of reasons, some of which include the following: This is an in-depth study that takes into
account everything that was mentioned before. The relative standard error (MSE) takes
into account both the bias and the variability of the estimator. The measures of dispersion,
such as variance and standard deviation, record only the variability of the estimator. The
measures of bias, on the other hand, simply show the difference between the estimated and
the actual values. Measures of error and bias are two different names for the same thing.
Consideration is given to the algorithm that is outlined below:

(1) Generate N = 1000 samples of size n|(n=50,55,...,200) from the GOGELx distribution;
(2) Compute the MLEs for the N = 1000 samples; Compute the SEs of the MLEs for the

1000 samples;
(3) The standard errors (STEs) can be computed by inverting the information matrix;
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(4) Obtain the MSE and for h = a, b, τ, σ and n|(n=50,60,...,200)

The “R” program is used to perform the graphical simulations, where the following
function is considered while drawing the plots; “seq(10,200,by = 10)” and the main code is:

N = NN[i]
cat(“i=”,i,“ n=”,N,‘\n’)
ml = matrix(NA, nr=M, nc=4, byrow=T)
j = 1
while(j <= M){
P = log(1-(runif(N))ˆ(1/b))
Q = ((-P)/(1-P))ˆ(1/a)
x = sigma*((1-(Q)ˆ(-1/tau))-1)
fit = goodness.fit(pdf=pdf_ GOGELx, cdf=cdf_ GOGELx, starts=c(1,1,1,1), data=x, method=“”,
domain=c(0,Inf), mle=NULL)
if(fit$Convergence == 0) {
ml[j,] = fit$mle
j = j + 1}

The plots of the biases against the n values, which range from 50 to 200, may be seen
in the left panels of Figures 2–5. The MSEs for a, b, τ, σ are presented against n values of 50,
60, and 200, respectively, in Figures 2–5. These values can be viewed in the right panels of
those figures. It can be seen how the biases shift depending on the sample size n in the left
panels of Figures 2–5. Figure 5 shows this information graphically. In the panels on the
right side of Figures 2–5, we can observe how the four MSEs shift in response to an increase
or decrease in the total number of samples. As n becomes smaller, the biases for a, b, τ, σ
tend to become negative and increasingly closer to zero, as can be seen in the left panels of
Figures 2–5. As n decreases, it is clear by looking at the right panels of Figures 2–5 that the
MSEs become closer and closer to zero as the number of observations decreases.
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6. Applications

Datasets with heavy tails, in which extreme events occur more frequently than one
would anticipate, are frequently modeled using the Lx distribution. In banking and insur-
ance, this distribution is frequently used to simulate extreme occurrences like significant
insurance claims or stock market crashes. It is crucial to pick a distribution that closely
matches the data when modeling high-value datasets. To achieve this, the data should
be compared to the distribution using statistical tests and visualizations. Once a suitable
distribution is identified, it can be used to forecast upcoming extreme occurrences and
determine the risk involved. In this Section, we analyze two real-life datasets with no
extreme values. The two datasets are used in two applications to illustrate the importance,
applicability, and flexibility of the GOGELx model in dealing with data that has no extreme
values. The fits of the GOGELx are compared to some popular competing models as shown
in Table 2.

Table 2. Competitive models.

Special generalized mixture Lx (SGMLx) Chesneau and Yousof [18]
Kumaraswamy-Lx (KumLx) Lemonte and Cordeiro [19]

Beta-Lx (BLx) Lemonte and Cordeiro [19]
Lx Lomax [20]

Gamma-Lx (GamLx) Cordeiro et al. [21]
Odd-loglogistic-Lx (OLLLx) Altun et al. [22]

Transmute-Topp-Leone Lx (TTLLx) Yousof et al. [23]
Reduced TTLLx (RTTLLx) Yousof et al. [23]

Proportional reversed hazard rate Lx (PRHRLx) New
Reduced GOGELx (RGOGELx) New

Reduced-OLLLx (R-OLLLx) Altun et al. [24]
Exponentiated-Lx (Exp-Lx) Gupta et al. [25]

Reduced-Burr-Hatke-Lx (R-BHLx) Yousof et al. [26]

Real data modeling under a new probability distribution is an important aspect of
statistical analysis and machine learning. It allows us to understand and make predictions
about real-life phenomena that may not follow traditional or well-known distributions.

I. Real-life data often exhibit characteristics that cannot be accurately described using
common probability distributions, such as normal, exponential, or Poisson distribu-
tions. By modeling data under a new probability distribution, we can capture the
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nuances and complexities of the data, leading to a more accurate representation of the
underlying phenomenon.

II. If we attempt to model real-life data using a distribution that does not accurately
capture its characteristics, our predictions and inferences may be misleading or inac-
curate. By utilizing a new probability distribution that closely matches the data, we
can improve the accuracy of the predictions and make more reliable decisions based
on the modeling results.

III. Different domains may have unique characteristics and data patterns that are not
adequately captured by standard probability distributions. For example, financial
data often exhibit heavy-tailed or skewed distributions due to extreme events or
outliers. By tailoring the modeling approach to the specific domain and using a
new probability distribution, we can better understand the underlying processes and
derive insights that are directly applicable to the domain of interest.

IV. Real data modeling under a new probability distribution can reveal previously unseen
patterns, relationships, or anomalies. By exploring alternative distributions, we may
discover new statistical properties or uncover hidden dependencies that were not
apparent using traditional approaches. This can lead to valuable insights, scientific
discoveries, or improved decision making in various fields.

V. Traditional statistical models and machine learning algorithms often assume specific
distributions for simplicity and tractability. However, these assumptions may not
hold in real-life scenarios, leading to biased or unreliable results. Modeling data under
a new probability distribution can enhance the robustness and generalizability of the
analysis, allowing the model to handle a wider range of data and perform well in
different contexts.

VI. Modeling real data under a new probability distribution provides a framework to
quantify and characterize uncertainties. By accurately representing the data distribu-
tion, we can estimate confidence intervals, calculate prediction intervals, or perform
Monte Carlo simulations to capture the inherent uncertainty in the modeling pro-
cess. This information is crucial for decision making and risk assessment in various
applications.

6.1. First Dataset

The statistics on the “failure times” of 84 aircraft windshields are presented in
Murthy et al. [27]. This is the first true dataset, and it is represented by dataset I. The
data are as follows: 1.866, 2.3850, 2.820, 0.0400, 3.00, 4.035, 1.281, 2.0850, 1.876, 2.4810, 3.467,
0.309, 1.8990, 2.610, 3.4780, 0.557, 1.9110, 2.625, 3.5780, 0.943, 1.9120, 2.632, 3.5950, 1.0700,
1.914, 1.2810, 2.038, 1.1240, 2.902, 4.167, 1.4320, 2.097, 2.934, 4.2400, 1.480, 2.135, 2.962, 1.981,
3.699, 3.443, 0.3010, 4.2550, 1.505, 2.154, 2.9640, 4.278, 1.506, 2.190, 3.000, 2.661, 2.890, 4.121,
2.6460, 4.3050, 1.568, 2.1940, 3.103, 4.376, 1.615, 2.2230, 3.114, 4.449, 1.6190, 2.224, 3.1170,
4.485, 1.652, 2.2290, 3.166, 4.570, 1.652, 2.3000, 3.344, 4.602, 1.7570, 3.7790, 1.248, 2.0100,
2.688, 3.9240, 1.3030, 2.089, 2.324, 3.3760, and 4.663. The presentation of the value of failure
times for 84 aircraft windshields by Murthy et al. [27] can be used in a number of ways in
the fields of aviation and reliability engineering. Understanding how long windshields last
is important for figuring out how safe they are and how to handle any risks that come with
running them. By looking at how long it takes for a windshield to break, researchers and
engineers can find patterns or trends that could point to problems with the windshield’s
design, materials, or care. This knowledge can be used to make safety procedures better
and reduce the chances of problems occurring during a flight. The times when windshields
break can give us an idea of how long and how well they are supposed to last. By looking
at how windshields break, maintenance workers can come up with effective maintenance
plans and replacement schedules to ensure that windshields are fixed or changed before
they break dangerously. This preventative method can help prevent unexpected problems
from occurring in the air, cut down on downtime, and reduce maintenance costs. Failure
time data can be used to build reliability models that predict the likelihood of failure
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over time. Researchers can create models that describe how windshields break by fitting
the data with correct statistical distributions. Then, these models can be used to predict
dependability, improve the system design, and figure out what makes aircraft windshields
less reliable. In short, the failure time data for aircraft windshields that Murthy et al. [27]
provided are important for evaluating safety, planning maintenance, modeling reliability,
controlling quality, thinking about insurance, and conducting research and development.
By looking at this data, people in the aviation business can improve safety, streamline
operations, and make aircraft windshields more reliable in general.

6.2. Second Dataset

The second authentic dataset, which is marked by the title “data set II,” includes
information on the “service times” of sixty-three aircraft windshields. This information can
be found in the study by Murthy et al. [27]. The data are as follows: 1.0030, 1.436, 0.1400,
0.2800, 1.7940, 2.819, 2.592, 0.3130, 0.0460, 1.9150, 2.820, 0.3890, 1.9200, 2.878, 3.1020, 0.9520,
2.0650, 3.3040, 0.9960, 2.1170, 3.483, 1.0030, 2.1370, 3.500, 0.487, 1.9630, 2.950, 0.6220, 1.978,
3.0030, 0.9000, 2.0530, 1.0100, 2.141, 3.6220, 1.492, 2.600, 0.150, 1.580, 2.163, 3.6650, 1.092,
2.183, 3.6950, 1.1520, 2.2400, 4.015, 2.670, 0.248, 1.7190, 2.717, 1.085, 1.183, 2.3410, 4.628,
1.2440, 2.435, 4.806, 1.249, 2.4640, 4.881, 1.262, 2.5430, and 5.140. The “service times” of
63 aircraft windshields, as reported by Murthy et al. [27], can provide valuable insights
into the operational aspects and performances of these components. Service times data
allows maintenance personnel to understand the average duration for which an aircraft
windshield remains in service before it requires replacement or repair. By analyzing the
service times, maintenance schedules can be optimized to ensure timely replacement or
maintenance of windshields, minimize the risk of failures during operation, and improve
overall aircraft reliability. Service times data can be used to analyze the reliability of aircraft
windshields. Statistical techniques such as survival analysis can be applied to estimate
the probability of a windshield surviving beyond a certain service time. This analysis
aids in understanding the failure characteristics of windshields and can assist in reliability
prediction and optimization efforts. By analyzing service times, manufacturers can assess
the quality and performance of their windshields. Deviations from expected service times
may indicate variations in the manufacturing process, material quality, or design flaws.
This information can be used to improve quality control measures and identify areas for
process improvement, resulting in higher-quality windshields with longer service lives.

Publications such as Mansour et al. [16], Elbiely and Yousof [7], Ibrahim and Yousof [6],
Aryal et al. [28], Yousof et al. [29,30], Yadav et al. [8], and Goual et al. [31,32] are just a few
examples of studies that include many other useful real-life datasets. A non-parametric
technique called kernel density estimation (KDE) is used to calculate the probability density
function of a random variable from a set of observations. The estimated density of the data
is depicted graphically in the KDE plot. In a KDE plot, a kernel function—typically a bell-
shaped curve centered at the location of the observation—represents each observation in the
data collection. The estimated probability density function is produced by adding the kernel
functions. The KDE plot’s smoothness depends on the kernel’s bandwidth. A smoother
plot can be produced with a wider bandwidth than a more detailed plot with a lower
bandwidth. Making the best bandwidth choice is a crucial stage in the estimation process
because it has an impact on the KDE plot’s precision and clarity. When the underlying
distribution is unknown or the dataset is too small to fit a parametric distribution, the
KDE plot is frequently used in data analysis to visualize the distribution of a dataset. The
distributions of two or more datasets can be compared using KDE plots, and the trends and
abnormalities in the data can be found. KDE charts are sensitive to bandwidth and kernel
selection, which is a key factor to keep in mind while reading them. The nonparametric
KDE is used for investigating the initial form of the real data (see Figure 6). Nonparametric
KDEs are shown in Figure 6.
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The box plot in Figure 7, which was used to explore the extremes, shows that no
extremes were discovered.
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A graphical tool used to compare the distribution of a set of data to a theoretical distri-
bution is called a quantile–quantile plot, or Q-Q plot in short. The quantiles of the dataset
are compared to their corresponding quantiles of the theoretical distribution to produce
the Q-Q plot. In other words, it compares the observed values to the predicted values. The
points on the plot follow a straight line if the two sets of quantiles are comparable. A Q-Q
plot is used to determine visually whether a dataset adheres to a specific distribution, such
as a normal distribution. If the plot’s points are all in a straight line, the chosen distribution
has performed well in simulating the dataset. The Q-Q plot is drawn to verify normality
(see Figure 8). It can be seen in Figure 8 that normalcy was almost present.
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The total time in test (TTT) plot (see Aarset [33]) is presented in Figure 9 to examine
the HRF’s form. According to Figure 9, the HRF is “monotonically increasing” for the two
sets of real-life data.
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The Akaike information criterion (AKIC), the Bayesian information criterion (BYIC),
the consistent Akaike information criterion (C-AKIC), the Hannan–Quinn information
criterion (HNQIC), the Anderson and Darling (ADg), and the Cramér–von Mises (CVMs)
are all used in the process of comparing various competing models. However, many
other information tests can be used due to Aboraya et al. [34], Abdul-Moniem and Abdel-
Hameed [35], Ali et al. [36], Ali et al. [37], Atkinson and Harrison [38], Ansari et al. [39],
Cordeiro et al. [40], Durbey [41], Hamed et al. [42], Harris [43], Hassan and Al-Ghamdi [44],
Gad et al. [45]. In addition to this, the applicable P-value and the Kolmogorov–Smirnova
test are both taken into consideration. When it comes to a general fit of the data, it is
generally accepted that the values of these statistics are a better fit when they are lower.
The analytical results that were derived from the “Failure times” dataset are presented
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in Tables 3 and 4, respectively. The MLEs and STEs for the dataset titled “Failure times”
are shown in Table 3. In Table 4, the values for all goodness-of-fit tests for the dataset
titled “Failure times” are shown. The results of the analyses conducted on the dataset titled
“Service times” are presented in Tables 5 and 6, respectively. Table 5 provides an overview
of the MLEs and STEs that were collected for the “Service times” dataset. Table 6 contains
the results of all of the goodness-of-fit tests conducted on the “Service times” dataset. As
can be observed in Tables 4 and 6, the GOGELx model has the lowest values for the AKIC,
C-AKIC, BYIC, HNQIC, ADg, and CVMs of all the fitted models. This can be attributed to
the fact that the GOGELx model was the most accurate. The fact that the GOGELx model
was selected is evidence of this. It is feasible, in light of all of the factors considered, that
this model will be selected as the model of choice.

Table 3. The MLEs and (STEs) for “failure times” data for all the competing probability models.

Model Estimates (STEs)

GOGELx(a,b,τ,σ) 2.25105 1.10598 6254.02 13,008.31
(1.83474) (0.74238) (1836.7) (573.462)

TTLLx(a,b,τ,σ) −0.807522 2.47663 (15,608.2) (386,228)
(0.13961) (0.54176) (1602.37) (123.943)

KumLx(a,b,τ,σ) 2.615042 100.2760 5.27716 78.6775
(0.38226) (120.488) (9.8117) (186.4111)

BLx(a,b,τ,σ) 3.603603 33.63872 4.83074 118.874
(0.6187) (63.7145) (9.2382) (428.993)

PRHRLx(b,β,ξ) 3.723 × 106 4.71 × 10−1 4.5 × 106

1.312 × 106 (0.00011) 37.1470
RTTLLx(a,b,β) −0.84732 5.520572 1.15678

(0.10010) (1.184791) (0.09592)
SGMLx(a,β,ξ) −1.04 × 10−1 9.831 × 106 1.18 × 107

(0.12223) (4843.33) (501.043)
OLLLx(a,β,ξ) 2.326363 (7.17 × 105) 2.342 × 106)

(2.14 × 10−1) (1.19 × 104) (2.613 × 101)
GamLx(a,β,ξ) 3.587602 52,001.49 37,029.66

(0.51333) (7955.00) (81.16441)
Exp−Lx(a,β,ξ) 3.626101 20074.51 26257.68

(0.623612) (2041.831) (99.74177)
R−OLLLx(a,β) 3.890564 0.5731643

(0.36524) (0.01946)
R−BHLx(β,ξ) 10,801,754 513,670,891

(9,833,192) (2,323,222)
Lx(β,ξ) 51,425.362 131,789.61

(5932.492) (296.0193)

Table 4. Results of the -` and other statistics for “failure times” data for all the competing probabil-
ity models.

Model -` AKIC C-AKIC BYIC HNQIC ADg CVMs KS (p-Value)

GOGELx 129.6054 267.2108 267.7172 276.9341 271.1195 0.6334 0.0705 0.0716 (0.8716)
OLLLx 134.4235 274.8470 275.1470 282.1394 277.7785 0.9407 0.1009 0.0776 (0.7822)
TTLLx 135.5700 279.1400 279.6464 288.8633 283.0487 1.1257 0.1270 0.0799 (0.7201)
GamLx 138.4042 282.8083 283.1046 290.1363 285.7559 1.3666 0.1618 0.0802 (0.7199)

BLx 138.7177 285.4354 285.9354 295.2060 289.3654 1.4084 0.1680 0.0833 (0.7190)
Exp-Lx 141.3997 288.7994 289.0957 296.1273 291.7469 1.7435 0.2194 0.0866 (0.7187)

R-OLLLx 142.8452 289.6904 289.8385 294.5520 291.6447 1.9566 0.2554 0.0900 (0.7182)
SGMLx 143.0874 292.1747 292.4747 299.4672 295.1062 1.3467 0.1578 0.0924 (0.7180)
RTTLLx 153.9809 313.9618 314.2618 321.2542 316.8933 3.7527 0.5592 0.0939 (0.7170)
PRHRLx 162.8770 331.7540 332.0540 339.0464 334.6855 1.3672 0.1609 0.0950 (0.7151)

Lx 164.9884 333.9767 334.1230 338.8620 335.9417 1.3976 0.1665 0.0944 (0.7133)
R-BHLx 168.6040 341.2081 341.3562 346.0697 343.1624 1.6711 0.2069 0.0971 (0.7111)
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Table 5. MLEs and STEs for “service times” data for all the competing probability models.

Model Estimates (STEs)

GOGELx(a,b,τ,σ) 2.546132 0.593723 110.2577 224.6193
(0.62763) (0.09477) (623.014) (450.5222)

BLx(a,b,τ,σ) 1.921811 30.999493 4.968421 168.5724
(0.31842) (316.8218) (50.5281) (330.223)

TTLLx(a,b,τ,σ) (−0.6277) 1.7858821 2122.393 4823.798
(0.21371) (0.415221) (163.9125) (200.219)

KumLx(a,b,τ,σ) 1.669151 60.56752 2.564912 64.06404
(0.25722) (86.0131) (4.75897) (176.599)

PRHRLx(a,β,ξ) 1.6666 × 106 3.899 × 10−1 1.338 × 106

2.112 × 103 0.0014 × 10−1 0.985 × 106

RTTLLx(a,b,β) −0.671425 2.744962 1.012384
(0.187462) (0.669612) (0.114051)

SGMLx(a,β,ξ) −1.04 × 10−1 6.4511 × 106 6.334 × 106

(4.13 × 10−10) (3.2142 × 106) (3.854734)
OLLLx(a,β,ξ) 1.664193 6.348 × 105 2.015 × 106

(1.79 × 10−1) (1.73 × 104) 7.252 × 106

GamLx(a,β,ξ) 1.907323 35,842.433 39,197.557
(0.321323) (6945.073) (151.6553)

Exp-Lx(a,β,ξ) 1.91453 22,971.153 32,881.999
(0.34821) (3209.553) (162.2302)

R-OLLLx(a,β) 2.372331 0.691209
(0.268253) (0.044915)

R-BHLx(β,ξ) 14,055,512 53,203,423
(422.0131) (28.52323)

Lx(β,ξ) 99,269.83 207,019.41
(11,863.52) (301.2374)

Table 6. Results of the -` and other statistics for “service times” data for all the competing probabil-
ity models.

Model -` AKIC C-AKIC BYIC HNQIC ADg CVMs KS (p-Value)

GOGELx 98.92234 205.8447 206.5343 214.4172 209.2163 0.4389 0.0721 0.0995 (0.75531)
KumLx 100.8676 209.7353 210.4249 218.3078 213.1069 0.7391 0.1219 0.1001 (0.73769)
TTLLx 102.4498 212.8996 213.5893 221.4722 216.2713 0.9431 0.1554 0.1002 (0.72560)
GamLx 102.8332 211.6663 212.0730 218.0958 214.1951 1.1120 0.1836 0.1002 (0.71561)
SGMLx 102.8940 211.7881 212.1949 218.2175 214.3168 1.1134 0.1839 0.1002 (0.71500)

BLx 102.9611 213.9223 214.6119 222.4948 217.2939 1.1336 0.1872 0.1002 (0.70206)
Exp-Lx 103.5498 213.0995 213.5063 219.5289 215.6282 1.2331 0.2037 0.1002 (0.70233)
OLLLx 104.9041 215.8082 216.2150 222.2376 218.3369 0.9424 0.1545 0.1003 (0.6978)

PRHRLx 109.2986 224.5973 225.004 231.0267 227.126 1.1264 0.1861 0.1005 (0.6944)
Lx 109.2988 222.5976 222.7976 226.8839 224.2834 1.1265 0.1861 0.1003 (0.6956)

R-OLLLx 110.7287 225.4573 225.6573 229.7436 227.1431 2.3472 0.3908 0.1004 (0.6001)
RTTLLx 112.1855 230.3710 230.7778 236.8004 232.8997 2.6875 0.4532 0.1006 (0.58801)

For “failure times” and “service times,” Figures 10 and 11, respectively, show the
estimated Kaplan–Meier survival (E-KMSF) plot, estimated PDF (E-PDF), estimated CDF
(E-CDF), probability–probability (P-P) plot, and estimated HRF (E-HRF).
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7. Conclusions and Discussion

This study proposed and investigated the generalized new four-parameter lifespan
model called the odd-generalized exponential Lomax (GOGELx) distribution. Asymmetric
right-skewed, symmetric, asymmetric left-skewed, and uniform density are all possible for
the GOGELx density function. The GOGELx model’s failure rate can be either monotoni-
cally decreasing, monotonically increasing, or constant. Most mathematical conclusions and
derivations can be derived using the GOGELx density, which can be stated as a combination
of the exponentiated Lx model. The GOGELx distribution can have either a positive (right
skewness) or negative (left skewness) skewness. Its kurtosis spread ranges from 3.970398
to 38,056.81. We used the Farlie–Gumbel–Morgenstern copula, its modified counterpart,
the Clayton copula, and Renyi’s copula in order to produce a few innovative bivariate
versions of the GOGELx model. These copulas are called the Farlie–Gumbel–Morgenstern
copula, the Clayton copula, and Renyi’s copula. The GOGELx model was utilized in order
to produce these variations. This was performed with the intention of enhancing the math-
ematical component of the investigation that is now being carried out. In addition to that,
the multivariate GOGELx model is demonstrated by employing the Clayton copula as a
means of elucidation in this paper. On the other hand, it is probable that some of the studies
that will be conducted in the future will be dedicated to the new multivariate and bivariate
models. This is further discussed in the next paragraph. The technique of estimating the
GOGELx parameters uses a strategy that maximizes the probability that an event will take
place. This method is called the GOGELx likelihood method. In order to examine the
finite sample behavior of the maximum likelihood estimators, we conducted a range of
simulation experiments. These experiments were carried out using a simulation software.
In this undertaking, the “biases” and the “mean squared errors” functioned as some of the
most important instruments. It is essential to keep in mind that the biases for all parameters
are virtually always negative and approach zero as the value of n approaches infinity. This
is one of the most crucial aspects to keep in mind. On the other hand, when the value of n
grows closer to infinity, the mean squared errors for all the parameters continue to become
increasingly closer to zero.

The GOGELx distribution has a heavy tail, meaning that it assigns a non-negligible
probability to extreme events. This property makes it useful for modeling rare events such
as large losses or extreme values. The GOGELx distribution is used in reliability analysis to
model the timing of a system or component failure, which can be a popular choice because
it is flexible and can handle censored data. In future studies, the GOGELx distribution
can be also used in finance to model extreme events, such as stock market crashes or large
losses. It is often used in risk management to estimate the tail risk of a portfolio or an
investment. The GOGELx distribution may also be used in insurance to model extreme
events such as natural disasters, which can result in large losses. It is used to estimate the
probability of the occurrence of these events and to price insurance policies accordingly.

In potential future studies, some applications of big data in transportation under the
probability distribution theory may be addressed. The application of big data in trans-
portation, coupled with the probability distribution theory, enables advanced analysis,
prediction, and optimization. By leveraging the vast amounts of available data, transporta-
tion planners can make data-driven decisions, improve system efficiency, enhance safety,
and provide better services to travelers. (See Schumann et al. [4]). According to Schumann
et al. [4], the meteoric rise in the popularity of micro-mobility presents considerable issues
in terms of building its systems, assuring its safety, addressing its social repercussions,
and minimizing its negative effects on the environment. In the meantime, micro-mobility
is distinguished by its abundance of big data that are passively generated and possess
significant potential to help solve problems. Although there has been an increase in recent
studies that use data on micro-mobility generated passively, knowledge and discoveries are
scattered, which limits the value of the obtained data. This paper includes a contemporary
analysis of how micro-mobility research and practice have used passively generated big
data and their applications to address the major difficulties associated with micro-mobility.
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The purpose of this paper is to fill this gap that has been identified. Even though it has
obvious benefits in terms of coverage, resolution, and the elimination of human errors,
passively generated big data need to be handled with attention to bias, inaccuracy, and
privacy concerns before they can be used effectively. This paper also brings to light issues
that require additional investigation and offers fresh perspectives on how micro-mobility
may be made safer, more efficient, more ecological, and more equal. The integration of big
data and the probability distribution theory in transportation has the potential to transform
industries and create a more sustainable and intelligent transportation ecosystem. Big
data have transformed various industries, including transportation, by providing valuable
insights and enabling informed decision making. When applying big data in transportation,
probability distribution theory plays a crucial role in analyzing and predicting various
outcomes. Let us delve into the discussion on how big data and probability distribution
theory intersect in the transportation domain.

I. Big data sources, such as traffic sensors, GPS data, and social media feeds, generate
vast amounts of information regarding traffic patterns. By analyzing this data using
probability distribution theory, transportation planners can model and predict traffic
flow. Probability distributions, such as Poisson or Gaussian distributions, can be used
to describe the frequency and duration of traffic congestion, accidents, or other events.
This analysis helps in optimizing traffic management strategies, such as signal timing,
route planning, and congestion mitigation.

II. Transportation systems need to anticipate future demands to optimize operations and
allocate resources efficiently. The probability distribution theory can be employed to
model demand patterns based on historical data. By analyzing big data on factors like
population density, demographics, weather, and events, transportation planners can
develop probabilistic models to forecast travel demands. These models can help in
determining the need for additional infrastructure, adjusting transit schedules, and
optimizing fleet deployment.

III. The probability distribution theory is useful for predicting equipment failures and
optimizing maintenance schedules. By analyzing big data collected from sensors
embedded in vehicles, trains, or infrastructure, probabilistic models can be built to
predict the likelihood and timing of component failures. This enables proactive main-
tenance, reduces unplanned downtime, and improves the overall system reliability.
Probability distributions, such as the Weibull distribution, can help in estimating the
remaining useful life of assets and optimizing maintenance resources.

IV. Big data analytics combined with probability distribution theory can enhance safety
in transportation. By analyzing historical accident data, weather conditions, road
characteristics, and other relevant factors, transportation agencies can model accident
probabilities and severity. These models can identify high-risk areas and support
the development of targeted safety interventions. By understanding the probability
distributions of different types of accidents, transportation planners can allocate
resources effectively to reduce fatalities and injuries.

V. Intelligent transportation systems leverage big data and the probability distribution
theory to improve traffic efficiency and safety. By integrating data from various
sources, such as traffic cameras, vehicle sensors, and weather stations, probabilistic
models can be developed to optimize signal timing, manage adaptive traffic control
systems, and enable real-time incident detection. These models can help predict travel
times, estimate congestion levels, support dynamic route guidance, and enhance the
overall system performance.
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