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Abstract: The pumping system is a critical component in various industries and consumes 20% of
the world’s energy demand, with 25–50% of that energy used in industrial operations. The primary
goal for users of pumping systems is to minimise maintenance costs and energy consumption. Life
cycle cost (LCC) analysis is a valuable tool for achieving this goal while improving energy efficiency
and minimising waste. This paper aims to compare the LCC of pumping systems in both healthy
and faulty conditions at different flow rates, and to determine the best AI-based machine learning
algorithm for minimising costs after fault detection. The novelty of this research is that it will evaluate
the performance of different machine learning algorithms, such as the hybrid model support vector
machine (SVM) and the hidden Markov model (HMM), based on prediction speed, training time,
and accuracy rate. The results of the study indicate that the hybrid SVM-HMM model can predict
faults in the early stages more effectively than other algorithms, leading to significant reductions in
energy costs.

Keywords: hidden Markov model; life cycle cost; machine learning; pump; support vector machine

1. Introduction

Various industries worldwide depend on pumping systems for their daily operations.
Optimising a pump is challenging across multiple application areas, like irrigation, water
supply for the domestic sector, air conditioning systems, refrigeration, and the oil and gas
industries, etc. [1]. In the world of pumps, two types of horizontal end suction centrifugal
pumps are more widely used than all the others. They are the ANSI pumps designed
and built to the American National Standards Institute standards and the API pump that
meets the American Petroleum Institute standard 610 requirements for general refinery
service. In order to handle high temperature and pressure applications of a more aggressive
character, the API pump is the only option for the oil refinery business. Information on
maintenance, failure, and repair times is provided for both pumps. This information has
been used to demonstrate how precise predictions for life cycle costs for the pumps used in
the hydrocarbon processing businesses may be made.

There is additional discussion of the fundamental ideas of LCC and its uses. In
terms of global pumps, there is a need to apply LCC methodology to pumps, considering
the stages of an LCC analysis, the need to identify the significant cost drivers, and the
advantages of performing an LCC study. When the speed of the motor fluctuates in
applications requiring variable torque, such as pumps, the torque produced by the pump
likewise varies appropriately. An adaptive neuro-fuzzy inference system (ANFIS) is used
in conjunction with DTC to lessen torque sags and enhance the reactivity of the control
algorithm. The suggested ANFIS-based DTC has greatly reduced flux, torque, and stator
current ripples compared to the conventional DTC and the fuzzy logic-based DTC. The
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suggested ANFIS-DTC results are verified using MATLAB simulations, and the system’s
performance is determined to be good when evaluated at various rotational speeds. For
the PMSM to drive centrifugal pumps, a new speed control based on adaptive neuro-fuzzy
direct torque control (ANFIS-DTC) has been proposed in the research [2]. Through the
Matlab Simulink environment, the performance characteristics of the conventional DTC,
DTC with fuzzy logic control, and DTC with ANFIS are compared in terms of stator current,
electromagnetic torque, stator flux, rotor speed, and pump output pressure. Compared to
traditional DTC and DTC with fuzzy logic control, the suggested ANFIS-DTC controller
displays satisfactory results in removing overshoot and ripples in torque, flux, and speed.

Some statistical measurements of the mean time between failures are also provided.
For pumping systems, the Hydraulic Institute presented a life cycle cost model. Initial costs,
installation and commissioning expenses, energy costs, operational costs, maintenance
and repair costs, downtime costs, environmental costs, and decommissioning and disposal
costs are all considered in the model. An example has been used to show how to apply
the methodology. The guidelines developed by Euro-pumps to assist users, consultants,
and design engineers in optimising pumping systems with regard to the whole life cost
were presented in the research, along with an explanation of the significance of life cycle
costs. The optimal operation aims to save electricity expenses, consume maximum energy,
reduce water leakage, prevent wear and tear, etc. [3]. Various optimisation algorithms
are helpful for reducing electricity expenses and saving consumption of energy, such as
the heuristic algorithm [4], PSO [5], ant colony, genetic algorithm [6], etc. However, if the
system requires transient changes, CNN model [7] is required to optimise the system. Due
to the extreme progress of technology, the costs of variable speed drives have significantly
decreased, which is helpful for the pumps used in building conditioning systems. Control
and optimisation of variable speed pump operation is a challenging issue. Control engineers
have a great responsibility to control the robustness of the pump, improve the operating
efficiency, prolong the service life, etc. [8]. An energy-efficient pump scheduling strategy
can reduce maintenance and operating costs. In this way, it is possible to reduce CO2
emissions [9]. Various researchers have conducted extensive studies on pump optimisation
and scheduling. Mixed integer nonlinear programming has been used to solve the structural
optimisation problem, as the problem is not convex. A binary separable program method
has been developed for the optimum global system [10]. The method provides the best
configuration of the pump series. The optimal pump scheduling algorithms have been
introduced for the water distribution system. An energy-efficient pump scheduling strategy
has enormous potential to significantly reduce pump systems’ operational and maintenance
costs [11]. For instance, up to 90% of the electricity used in the water industry is consumed
by pumps. Purchasing decisions for a pump and the associated system components are
often based on the lowest offer rather than considering the system’s cost over its life
cycle [12–15].

To achieve the lowest energy usage and cost, managers must carefully match these
interdependent parameters and ensure they are maintained during working conditions [16].
A pumping system typically lasts 15 to 20 years. Some costs will be incurred initially,
while others may appear at various points throughout the existence of the multiple options
under consideration. Therefore, determining a current or discounted value of the LCC is
conceivable and possibly even necessary to properly evaluate the various alternatives [17].

The LCC procedure forecasts the most economical option; it does not assure a certain
result, but it enables the plant manager or designer to assess several solutions while
considering the limitations of the data at hand [18–20], as in the following Equation (1):

LCC = Cic + Cin + Ce + C0 + Cm + CS + Cenv + Cd (1)

where LCC is life cycle cost, Cic is initial cost means purchase cost, Ce is energy cost,
C0 is operation cost, Cm is maintenance and repair cost, CS is downtime cost, Cenv is an
environmental cost, Cin is commissioning and installation cost, and Cd is disposal cost.
Figure 1 shows the various parts of the costs, which are the combinations of the LCC.
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Figure 1. Various parts of the life cycle cost for industrial pump.

The following consecutive sections will highlight the importance of life cycle cost,
the application of the hidden Markov model [21,22] for LCC prediction, the application of
HMM and machine learning analysis, the proposed method, the results and analysis, and
the conclusion.

2. Background of Related Work

There is a significant body of research on pumping systems’ life cycle cost analysis
(LCCA). This section focuses on the background research on existing works of LCC analysis
of the pumping system. Three distinct pumps have undergone an LCC analysis using
a technique based on dependability and maintainability principles, and the results have
been compared. Two pumps have been chosen from the literature for analysis, and the
information therein is used. The third pump is chosen from a reputable Indian pump
manufacturer, and the necessary information is acquired directly from the supplier. The
idea of the predicted number of failures in a particular time interval has been used to model
the maintenance and repair costs [23]. A methodology for calculating the net present value
(NPV), lifetime costs (LCC), energy use, and greenhouse gas emissions related to a water
distribution system (WDS) pump using a process-based life cycle assessment (LCA) and
an economic input-output LCA (EIO-LCA) model has been described in the research. The
methodology takes into account the stages of production, usage, and end-of-life (EOL)
disposal in addition to less common operations, such as discharge valve throttling, pump
testing, deterioration, refurbishment, and variable speed pumping. A case study presents
the technique, evaluates the effects of various operating scenarios, and establishes the
relative significance of various processes [24]. A study compares and contrasts decentralised
greywater reuse systems’ life cycle costs and anticipated financial gains.

In comparison to the current centralised systems, the extra life cycle expenses and
expected life cycle financial benefits of the groundwater pumping systems and on-site
greywater reuse systems are assessed. Before the wastewater effluent is dumped into the
environment, a sewer network gathers used water for treatment at a centralised wastewater
treatment plant. Centralised systems refer to the traditional form of water delivery where
one centralised treatment plant treats and distributes potable water to a large service
area [25]. The optimal design and rehabilitation of a water distribution network are being
provided using a new multiobjective formulation to minimise life cycle cost and maximise
performance. The initial cost of the pipes, the cost of replacing old pipes with new ones, the
cost of cleaning and lining existing pipes, the anticipated repair cost for pipe breaks, and
the salvage value of the replaced pipes are all included in the life cycle cost. The resilience
index has been modified for use in water distribution networks with multiple sources as the
performance measure suggested in this study. In order to find a solution for the design and
rehabilitation challenge, a new heuristic strategy is suggested [26]. In order to guarantee
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the excellent performance of chilled water pump systems and achieve the lowest annual
total cost while taking input uncertainties and system reliability into account, this research
proposed a reliable, optimal design method that is based on a reduced life-cycle cost. It
is accomplished by optimising the number of chilled water pumps, overall pump flow
capacity, and the pump pressure head [27].

The suggested approach is tested and shown using a case study. The amount of
literature on the life cycle cost of wastewater treatment has significantly increased over the
past two decades. The employment of several frameworks and approaches was caused by
the lack of a generally accepted life cycle costing methodology. Over the past ten years, a
progressive transition from conventional to environmental and societal life cycle costing
has been observed. Techniques and approaches for conducting life cycle cost analysis are
also changing.

Nevertheless, there is still a need for a thorough, systematic assessment of life cycle
costing techniques and methodologies in wastewater treatment. A thorough and systematic
evaluation offers the chance to track recent advancements in the subject and pinpoint areas
that require additional study [28]. In order to effectively assess the long-term treatment
performance and cost under influent fluctuations, this study uses artificial neural networks
(ANNs) as surrogate models for water resource recovery facility (WRRF) models. A current
facility that handles combined domestic and industrial wastewater served as the model for
the five WRRFs. Even though the prediction performance (R-square) somewhat declines
with increasing model complexity, the ANNs satisfactorily capture nonlinear biological
processes for all five WRRFs. By using ANNs trained by simulation data from steady-state
models to simulate long-term (10-year) performance with monthly influent fluctuations,
the application of ANNs in WRRF models is expanded, and their effectiveness in removing
phosphorus (P) and nitrogen (N) is expanded. Because enhanced biological phosphorus
removal and recovery (EBPR) is more susceptible to influent characteristics altered by storm
water inflow, EBPR-S has the greatest resistance. To create adequate working conditions,
mine-dewatering techniques must be used to eliminate water flow into the mining area.
One method of mine dewatering involves the use of pumps. Centrifugal and positive
displacement pumps are primarily employed in mine dewatering operations. The primary
goal of this project is to create a simple decision-support tool for choosing the most cost-
effective pump type. The research approach employed in this study includes a literature
review of the pump-type literature and case scenario data for economic analysis. Graphical
user interfaces (GUI) were integrated into developing a decision support tool so that
decision makers may choose which pump to utilise. Finally, case study data were used to
test the program [29]. For condition-based maintenance (CBM) to increase the reliability
and cost-effectiveness of maintenance, accurate remaining usable life (RUL) prediction of
machines is crucial. In order to improve the precision of the RUL prediction of bearing
failure, this paper suggests using artificial neural networks (ANN) [30].

The ANN model employs time and fitted measurements from its present and prior
points as input, together with Weibull hazard rates for root mean square (RMS) and
kurtosis. The output is chosen to be the normalised life percentage in the meantime.
In doing so, reducing the degradation signal noise from target bearings and raising the
prognosis system accuracy is possible. The feedforward neural network (FFNN) with
the Levenberg–Marquardt training method is used for the ANN RUL prediction [31]. To
reduce catastrophic failure events, the notion of remaining useful life (RUL) is used to
predict the life span of components. It is essential to have a continuous monitoring system
that records and identifies trends, as well as sources of component degradation prior to
failure as customer demand for dynamically regulated systems increases. The goal of the
early warning capacity is to identify, localise, and gauge the severity of defects using fault
propagation and identified machine or component deterioration to forecast RUL. RUL is
typically computed randomly from data on condition and health monitoring that is readily
available. Remanufacturing engineers must consider a device’s RUL when deciding which
parts should be removed from service for remanufacturing. The numerous approaches
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to forecasting a machine’s or component’s RUL are the focus of this review. Using case
studies, some techniques for estimating RUL, including those for automotive components,
rotating equipment, aviation engines, electro-hydraulic servo valves, electronic systems,
low methane compressors, bearings, etc., are examined [32]. Further research has been
carried out based on support vector regression analysis, XGboost, and PSO for pump
performance curve analysis. The performance prediction model has been trained on
428 samples in total, while 107 samples are used to evaluate the model’s capacity to
generalise, and 46 examples are used to confirm the model’s ability to predict outcomes [33].
Some research based on Table 1 describes various investigations into LCC analysis and
RUL application in industrial sectors and their results.

Table 1. Various research based on LCC analysis.

Author Research Technology Aim of the Research Research Outcome

Galagedarage Don, M., and
Khan, F. [11]

Hidden Markov model–
Bayesian networks

To predict and identify
the faults

The suggested method adequately predicts all ten
flaws and isolates eight of the ten defects found.

The maximum acceptable noise levels for the
various flaws were established, and the isolation
accuracy changed depending on the noise level

added to the testing data.

Hofmann, P., and
Tashman, Z. [13] Hidden Markov model To detect the failure events

It is combined with a Markov mixed membership
model (MMMM) and an observable Markov
decision process (POMDP) for each asset to

evaluate the trade-off between the risk of failure
and prolonged operational hours to dynamically

optimise the strategy for when and how to
maintain the asset.

Waghmode, L.Y., et al. [23] Economic input/output
LCC model

To learn when the pump will
end its useful life and how

much energy the water
distribution system uses

Refurbishing and variable speed pumping can
improve a pump’s overall sustainability by

reducing lifetime expenses, particularly in terms of
energy use and GHG emissions.

Jayaram, N., and
Srinivasan, K. [25]

Multiobjective
formulation

To determine the optimal
design and rehabilitation of
water distribution network

As novel multiobjective formulations for the
optimum network design and rehabilitation, the

maximisation of the least modified resilience index
and the minimisation of life cycle cost have been

proposed. The adjusted resilience index measures
the network’s ability to handle uncertainty.

Cheng, Q., et al. [26] Robust optimal design

Calculating the uncertainties
generates the cooling load
distribution and hydraulic

resistance distribution using
Monte Carlo simulation

When uncertainties are taken into account, the
annual average cooling load varies significantly.

The design cooling capacity and chilled water flow
will most likely be large if the design cooling

capacity is designed based on the cooling load
without considering uncertainties. For high
accuracy and quick computing, the Markov

method can be used to obtain the probability
distribution of the system state.

Ilyas, M., et al. [27]
Various conventional

approaches to
LCC analysis

To find out the impact of LCC in
wastewater treatment

The authors examined 66 studies on the LCCA of
pumping systems and discovered that energy cost

was the most significant factor in life cycle cost.
They also found potential cost benefits from using
variable speed drives and high-efficiency pumps.

Li, S., et al. [28] Artificial neural network

Assessing water resource
recovery facilities’ long-term
treatment performance and

nutrient removal costs under
stochastic influence

characteristics

Five different WRRF treatment options’ long-term
nutrient removal efficacy and cost-effectiveness

have been compared using a unique methodology.
Using ANN models for long-term simulation can
significantly reduce the computational load while
maintaining acceptable accuracy, making it easier

to couple complicated process models.
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Table 1. Cont.

Author Research Technology Aim of the Research Research Outcome

Aktaş, Ali Burak [29] Decision support tool

Utilising LCC analysis, this
evaluates centrifugal and

positive displacement pumps in
mine dewatering operations
and creates a program as a

decision assistance tool

Since LCC focuses on overall costs rather than the
initial capital investment cost of the systems, it can

be utilised as a decision-support tool. The total
cost of the centrifugal pump is more than the

positive displacement pump.

Saon, S., and
Hiyama, T. [30] Artificial neural network Predicts the remaining useful

life of rotary machine

CBM prioritises a machine’s precise RUL to boost
dependability and reduce maintenance expenses.

This research recommends utilising ANN to
provide a more accurate estimate RUL of a bearing
failure. In this case, the ANN model’s input is the
Weibull hazard rates of RMS and kurtosis from the
current and prior points. The output, which is the

normalised life percentage, is also chosen.

Salunkhe, T., et al. [31] Various
conventional methods

To predict the remaining useful
life of mechanical components

Model-based approaches are employed when there
is a chance that the system could be

mathematically modelled.
When it is impossible to create a mathematical
model of the system, data-driven approaches

are applied.

3. Importance of Life Cycle Cost

If pumps are utilised for more than 2000 h annually, energy consumption, which is
often one of the most significant cost components, may dominate the LCC. Information
about the output pattern of the system is gathered to calculate energy consumption. If
the output is continuous or nearly so, the calculation is straightforward. A time-based
consumption pattern must be established if the production fluctuates over time [21–29].
Operating costs are the labour expenses related to running a pumping system. Depending
on the complexity and duty of the system, these vary substantially. A pump must be effi-
ciently and routinely serviced to obtain the best performance [34]. Unexpected downtime
and lost production costs account for a sizeable portion of the total LCC and can have an
impact comparable to those of energy and replacement part costs. Most of the time, the
price to dispose of a pumping system will not change substantially based on its design [35].
A life cycle cost analysis (LCCA) is an economic evaluation method used to compare
different alternatives over the life cycle of an asset. In the case of a pumping system, an
LCCA would compare the costs of various pump systems over their expected lifespan,
including initial purchase, maintenance, energy, and replacement costs. The application of
artificial intelligence (AI) in pumps can significantly improve their energy efficiency, reduce
maintenance costs, and prolong their lifespan. It is seen that with AI applications, most
of the costs are reduced, and it becomes possible to save energy. Therefore, in the present
research, machine learning-based AI technology has been implemented for a case study to
analyse the LCC during the faulty condition of the pump.

There can be a distinction when a system includes disposal arrangements as a compo-
nent of its operational arrangements. A total life cycle cost analysis (LCCA) is the method-
ology for evaluating bridge intervention solutions that are presented in the study [35,36].
Life cycle cost (LCC) analysis involves assessing the total cost of owning and operating
a system or equipment throughout its life cycle, including acquisition, operation, main-
tenance, and disposal. Various types of research show in Table 2 that LCC analysis can
be performed to compare the costs associated with using pumps in AI applications and
without AI applications [37,38].
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Table 2. Various results based on LCC analysis.

LCC Analysis Components Pumps in AI Application Pumps without AI Application

Acquisition cost
Due to specialist pumps that are compatible
with AI systems, there could be greater
initial costs.

In AI applications, pumps are compared based
on kind, capacity, and manufacturer.

Operation cost
Due to AI optimisation, there could be
potential energy savings and lower
operating expenses.

Due to a lack of AI optimisation, there will be
greater energy consumption and possibly
higher operating costs.

Maintenance cost
Due to AI-enabled proactive repairs and
predictive maintenance, maintenance
expenditures may be reduced.

Higher maintenance costs due to scheduled
maintenance or reactive repairs without AI.

Efficiency and performance Real-time optimisation and adaptive control
have improved performance and efficiency.

Lower efficiency and suboptimal
performance level.

4. Proposed Method

The recent research is based on a VFD-based cascaded pump system with three pumps
connected. The purpose of the research is to find out the impact of LCC analysis on the
pumping system during a faulty condition, the remaining useful life of the pump after the
fault, and, if an ML-based algorithm is used to detect the fault at an early stage, how the
LCC cost can be reduced. The proposed study is divided into various steps.

Step 1: A case study has been analysed to create various faults in the pump to analyse
the LCC cost.

Step 2: Find out the major fault among all kinds of faults in the pump; it is seen that a
cavitation fault is the major fault in the pumping system in the present case study analysis.

Step 3: Apply various machine learning algorithms to predict the LCC cost analysis
and the remaining useful life of the pump.

Step 4: Identify the remaining useful life of the pump. It is seen that the SVM and
HMM hybrid method is more suitable for reducing the pump’s LCC cost than during a
faulty condition. Then, the analysis was performed based on prediction speed, training
time, and energy cost per hour for the SVM and HMM.

The data were collected during a healthy state and during three faulty conditions,
including cavitation and water hammering. Then, after data collection, all the data were
cleaned in Matlab software. The Matlab classifier learner tool extracted features and
classified data successfully. Then, various ML algorithms were implemented to analyse
which algorithm suits LCC pump analysis during faulty conditions. Furthermore, the
pump’s remaining useful life has also been studied in the present research.

Figure 2 shows the steps of the process of ML algorithms.
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5. Application of the Hidden Markov Model for LCC Prediction

The hidden Markov model (HMM), with its solid statistical foundation and efficient
learning algorithm, enables learning to occur directly from raw sequence data. It supports
variable-length inputs and consistently manages insertion and deletion penalties through
locally learnable algorithms [39]. They are the sequence profiles with the widest range
of generalisation. A few of the various tasks it is capable of include multiple alignments,
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data mining and categorisation, structural analysis, and pattern detection. But only each
state and its accompanying objective function are necessary for HMM to function [40]. In
the case of HMM, predicted function and target function do not match. In this situation,
ML algorithms will take a long time to use with HMM. The accuracy rate of the expected
function will be high, and, more accurately, the machine’s life cycle and the machine’s
remaining useful life can be detected.

Markovian transition employs condition states (CSs) [41], forming a new deterioration
matrix with transition probability for a new element. The hidden Markov model gener-
ally detects the machine’s health and useful life. The hidden Markov model determines
unobservable hidden behaviour and remotely helps to access inaccessible electronic signals
through observable signals [42]. For the purpose of water pumping in rural regions, several
renewable energy resource–technology combinations have undergone a financial study
and comparison. Options include dual-fuel IC engine pump sets powered by biogas, and
producing gas, windmill pumps, and solar photovoltaic pumping systems.

The cost per unit volume of water pumped, the cost incurred per unit of useful
hydraulic energy, and the present value of life cycle costs over a given period of time are
the three figures of merit used to facilitate the comparison of the renewable options with
conventional pumping systems, such as a diesel engine and electric motor pump sets. It
has also been investigated how sensitive one of these figures of merit is to variations in the
values of some of the input factors [43].

6. Application of HMM and Machine Learning for LCC Analysis

State transitions come in a variety of dialects. Each one represents the states, transitions,
and events that can result in each transition. State transitions may also refer to conditions
that govern whether a legal transition is permissible, and actions taken during a transition
or upon entry into a new state. Because a state transition defines a finite-state automaton,
the modelled object can only be in one state at a time. State transitions can be used to define
a software module’s control structure or the modes of operation of large systems. To avoid
the restrictions of HMM, the present study focuses on the hybrid technique where machine
learning algorithms have been applied along with HMM. HMM identifies the machine’s
state, and machine learning (ML) predicts the anomalies in the early stage. Massive tools
for analysing complicated data produced by research into experimental and computational
materials are provided by machine learning, in particular. Predictive maintenance’s main
emphasis is on failure events. In order to predict future failures, it seems sensible to start
by accumulating historical data on the machines’ performance and maintenance history.
An essential indicator of equipment condition is usage history data. Since manufacturing
equipment normally has an operational life of several years, historical data should be
gathered far enough in the past to correctly depict the deteriorating processes of the
equipment. The cost of breakdown includes not only the opportunity loss but also the
machine’s fixed cost. Furthermore, production delays can result in penalties and lost orders.
Other machines are also dependent on the failed machinery. A single breakdown can easily
cost thousands of dollars. This loss will almost never be recovered. Failure probability
can now be estimated using predictive models. This provides two abilities. The first is
the ability to plan maintenance so that loss is minimised. Second, it makes it possible
to improve inventory optimisation. Instead of stockpiling many spare parts, it is now
possible to keep only those needed soon. ML can be used to help with the efforts mentioned
earlier. The decision model created from the intrinsic facts then directs future activity. The
performance of the system can be enhanced by these algorithms’ ability to identify and
decide on optical communications. An average pumping system lasts 15 to 20 years. Some
expenses will be incurred upfront, while others could arise at different times during the
course of the life of the various solutions being considered [44,45]. This lifespan of the
pump may reduce if any fault in the pumping system cannot be identified in the proper
time. In that case, LCC costs also will be high. In this paper, through a case study, it is
shown that if a fault happens, the cost will be high, and how that cost can be reduced
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by identifying the fault through ML and hidden Markov theory. The life cycle regression
model has often been applied for prediction. SVM techniques are preferable to regression
analysis in situations where fault classification is necessary and where it is necessary to
distinguish between fault and no-fault locations with sparse data. The supervised learning
machine includes SVM. It constructs a hyperplane or group of hyperplanes for the high
infinite dimensional space used for classification and regression.

6.1. Application of Support Vector Machine for LCC Analysis

The idea of decision planes, which specify decision boundaries, serves as the foun-
dation for support vector machines. A decision plane distinguishes between a group of
items with various class affiliations. A primary classifier approach called a support vector
machine distinguishes instances of distinct class labels using hyperplanes built in a multidi-
mensional space. SVM, which permits both regression and classification tasks, can handle
many continuous and categorical variables.

6.2. Application of SVM and HMM for Fault Analysis

HMM will help to find the state of the data, and then, based on that prediction, the
lifespan of the pump can be identified. If a sudden fault happens in the pumping system,
the first work is to identify which part of the system has been affected. For this reason,
two states have been chosen: a good state denoted by 0, and a warning state denoted by 1.
HMM should analyse only the warning or fault state. If it is assumed at the beginning of
the experiment that the pump is in good condition, then X0 = 0, and the conversation rate
matrix is shown as follows:

Λ =

−(λ01 + λ02) λ01 λ02
0 −λ12 λ12
0 0 0

 (2)

where λ01, λ02, λ12 are the unknown parameters and should be estimated. Since the
system deterioration occurs from state 0 to state 1, the probability of the faulty state is high.
Before entering failure state 2, the fault in the system should be identified and rectified.

The SVM algorithm can intelligently extract equipment state characteristics from
multiple indicators to determine whether the equipment fails. The critical advantage
of SVM over conventional approaches is its ability to construct a precise mathematical
model for fault diagnosis without having any prior knowledge of the internal relationships
between the indicators. The model developed using the SVM algorithm is capable of
detecting these inaccuracies. Here, the suggested technique takes advantage of hints to
find enhanced accuracy. Here, indicator 1 is used as normal condition state, and indicators
2 to 5 are four different faulty condition states in the pumping system.

Figure 3 shows that historical data are gathered from time t − n to t, with the indication
set at time t. A logical strategy is used to forecast the equipment state at time t. It is also used
to predict when the equipment will break down. The physical data are measured using
the indicators. The short-term tendency is then predictable, as their fluctuating tendency
turns into a continuous curve. The indications on a piece of equipment will fluctuate more
noticeably when it is about to fail. A pump’s remaining useful life (RUL) refers to how long
it can operate effectively before it requires maintenance, repair, or replacement. Life cycle
cost (LCC) analysis of a pump, on the other hand, is a method for comparing the total costs
associated with the operation of the pump over its entire life cycle. The hybrid model aims
to highlight their benefits and minimise their drawbacks. The one-to-rest approach of SVM
was first dropped because of growing challenges in practical application. How to reduce
the invalid outputs was the central area of concern. It is difficult to easily recognise the
fault’s state when various faults occur in the pumping system at a time. In this research,
vibration data have been collected in every fault case to analyse the fault state.
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Along with that, the main parameters of pumping system i.e., flowrate and pressure
value, were also collected for the analysis. Based on time, flow data have been collected.
Now, based on the fault code, the output likelihood of HMM and SVM and condition states
have been recognised. Here, data have been collected by creating a temporary fault in the
pump by sudden valve closing and opening; for this reason, huge vibration and shock
have been generated, and a loss of the bearing of the motor vibration has been created to
check the bearing problem in the pump. The HMM plays a significant role. HMM has
brought defect diagnosis and achieved considerable success. HMM is an excellent choice
for modelling dynamic time series, particularly when the signal has a lot of information
but is non-stationary, repeatable, and poorly reproducible. However, there are still a
number of issues with the fault diagnosis utilising HMM. The user would benefit from
the relative independence of the training of HMMs in different states, but the recognition
accuracy would suffer. The disparity between various HMM outputs is not solely based on
mathematics. Therefore, HMM is a beneficial classification tool for defect diagnosis, but
its modelling skills are its best strength. A family of generalised linear classifiers includes
the SVM. As an example, it concurrently minimises the empirical classification error and
maximises the geometric margin when tackling the small sample, nonlinear, and high
dimensional pattern recognition problems. Typically, SVM is used for binary classification.
SVM uses two standard techniques to split a multiclass problem into numerous binary
classification issues.

One-to-one is the first. Simply put, this method classifies the multiclass using n(n + 1)/2
SVMs, where n is the number of classes, and each SVM represents a hyperplane between
the two classes. One-to-rest is the second strategy. This technique only requires n SVMs. A
binary problem is present in the vectors of state1 and the other vectors while the SVM is
being trained, such as the SVM of state1. Both approaches offer benefits and drawbacks that
are unique to them. The hybrid model aims to highlight their benefits and minimise their
drawbacks. The one-to-rest method of SVM initially suffers because of growing challenges
in its practical application. How to reduce invalid outputs is the central area of concern. It
is interesting to note that the output of the HMM related to the actual state was frequently
the second or third largest as the mistake recognition started to appear.

Table 3 shows model state conditions in different fault states. There are 250 samples
carried out in each fault state. It is seen that instead of using only HMM, the hybrid model
of SVM and HMM is more effective for correct fault state identification.

Figure 4 shows how the hybrid model SVM and HMM works after feature extraction
from the raw data.

Figure 5 shows the recognition rate of SVM and HMM which will indicate the effect
of the hybrid model. Due to active methods, SVMs could occasionally be high-speed
machining independently further reinforced without concern of over-strengthening, which
might affect other fault diagnostics.
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Table 3. Fault codes for SVM and HMM for diagnosis.

Fault Code No. of Samples
SVM and HMM HMM

Correct
Samples

Correct
Rate

Correct
Samples

Correct
Rate

110 250 250 100% 200 89%
101 250 250 100% 150 86%
11 250 200 98% 120 85%
1 250 180 95% 100 82%

10 250 150 92% 90 70%
100 250 100 90% 84 75%

0 250 90 90% 80 79%
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There is a direct relationship between the RUL and LCC of a pump. The RUL provides
critical input to the LCC analysis, as it determines the timing and cost of the pump’s
maintenance, repair, or replacement. By estimating the RUL of the pump, it is possible to
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optimise the timing and cost of maintenance, repair, or replacement to minimise the overall
LCC of the pump.

For example, if the RUL of a pump is estimated to be relatively short, it may be more
cost-effective to perform maintenance that is more frequent or to make repairs to extend
the pump’s operating life. On the other hand, if the RUL is estimated to be relatively
long, it may be more cost-effective to continue operating the pump without any significant
maintenance or repair until it reaches the end of its useful life, and then replace it with a
new pump.

In addition to determining the timing and cost of maintenance, repair, or replacement,
the RUL can also affect the energy consumption and efficiency of the pump. As the pump
approaches the end of its useful life, it may become less efficient and consume more energy,
which can increase the overall LCC of the pump.

Therefore, by estimating the RUL of a pump and incorporating it into the LCC analysis,
it is possible to optimise the operating and maintenance strategies of the pump to minimise
its overall life cycle cost. In the present research, after fault creation along with LCC
analysis, it is possible to determine how much remaining useful life is pending for the
pump system that has also been analysed to understand the other costing of the pump.

Figure 6 shows that in the 70 to 75 hours after a fault, the pump can give the best
operating service, after which its working ability will start to reduce. Then, at 82 h, it will
stop working. Based on that, the maintenance and other costs can be calculated, which will
help to analyse the overall LCC cost.

Processes 2023, 11, x FOR PEER REVIEW 13 of 25 
 

 

maintenance or repair until it reaches the end of its useful life, and then replace it with a 
new pump. 

In addition to determining the timing and cost of maintenance, repair, or replacement, 
the RUL can also affect the energy consumption and efficiency of the pump. As the pump 
approaches the end of its useful life, it may become less efficient and consume more en-
ergy, which can increase the overall LCC of the pump. 

Therefore, by estimating the RUL of a pump and incorporating it into the LCC anal-
ysis, it is possible to optimise the operating and maintenance strategies of the pump to 
minimise its overall life cycle cost. In the present research, after fault creation along with 
LCC analysis, it is possible to determine how much remaining useful life is pending for 
the pump system that has also been analysed to understand the other costing of the pump. 

Figure 6 shows that in the 70 to 75 hours after a fault, the pump can give the best 
operating service, after which its working ability will start to reduce. Then, at 82 h, it will 
stop working. Based on that, the maintenance and other costs can be calculated, which 
will help to analyse the overall LCC cost. 

Pr
ed

ic
tio

n 
Er

ro
r

 
Figure 6. Remaining helpful life. 

Figure 7 shows the past data, forecast, and failure threshold. It shows that after 4000 
min the system will fail, and the accuracy rate is 98% for this analysis. 

 
Figure 7. Past, forecast, and failure threshold data. 

Figure 6. Remaining helpful life.

Figure 7 shows the past data, forecast, and failure threshold. It shows that after
4000 min the system will fail, and the accuracy rate is 98% for this analysis.
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After data collection, feature extraction was performed by PCA analysis of SVM. Then,
the scatter plot was placed to identify different faults in the pumping system. Here, it is seen
that the major fault is the cavitation fault. In this research, the authors only concentrated
on the cavitation fault for the case study analysis and implemented the ML algorithms
(Figure 8).
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The hybrid model is used here for fault diagnosis, and LCC analysis of the pump
and a vibration signal has been collected as input through an accelerometer; the sampling
frequency used here is 25 kHz. Both healthy and three faulty condition vibration signals
have been collected. Each failure had several stages, as well as the two states of suddenly
closing and opening the valve.

The recognition rate of HMM is shown in Table 4.

Table 4. The recognition rate of HMM.

Status Fault
Level Position of Valve No. of Samples Correct

Recognition
Recognition
Rate

Healthy
1 Suddenly closed 250 240 92.14%

2 Suddenly open 250 310 67.45%

Bearing fault
1 Suddenly closed 250 120 89.45%

2 Suddenly open 250 69 90.34%

Cavitation
1 Suddenly closed 250 219 96.76%

2 Suddenly open 250 270 81.90%

Water
hammering

1 Suddenly closed 250 340 72.34%

2 Suddenly open 250 290 88.67%

The total no. of samples is 2000, and the average recognition rate is 84.88%.
The table shows that the performance of HMM alone is not good enough.
Now, Table 5 shows the recognition rate of SVM.
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Table 5. The recognition rate of SVM.

Status Fault
Level Position of Valve No. of Samples Correct

Recognition
Recognition
Rate

Healthy
1 Suddenly closed 250 340 98.72%

2 Suddenly open 250 236 89.34%

Bearing fault
1 Suddenly closed 250 260 88.61%

2 Suddenly open 250 89 90.12%

Cavitation
1 Suddenly closed 250 178 95.34%

2 Suddenly open 250 279 94.90%

Water
hammering

1 Suddenly closed 250 289 86.34%

2 Suddenly open 250 210 93.89%

The total no. of samples is 2000, and the average recognition rate is 92.15%.
It is seen that the recognition rate for SVM is better than HMM. However, increasing

the recognition rate with SVM alone proved exceedingly challenging.
The total no. of samples is 2000, and the average recognition rate is 94.33%.
The hybrid model has improved the average recognition rate (Table 6).

Table 6. The recognition rate of the hybrid model.

Status Fault
Level Position of Valve No. of Samples Correct

Recognition
Recognition
Rate

Healthy
1 Suddenly closed 250 480 99.80%

2 Suddenly open 250 389 97.62%

Bearing fault
1 Suddenly closed 250 367 94.56%

2 Suddenly open 250 290 91.90%

Cavitation
1 Suddenly closed 250 345 93.25%

2 Suddenly open 250 460 90.18%

Water
hammering

1 Suddenly closed 250 420 89.93%

2 Suddenly open 250 329 97.42%

7. Energy Cost Analysis during Normal and Faulty Conditions

The proposed approach anticipates an equipment breakdown and trains the prediction
model. A case study resolves the suggested solution and examines how a pumping system
problem affects the LCC cost. The pump was operated in normal conditions to test the LCC
cost, and then the cavitation fault was created manually. All the data have been collected
both in excellent and harmful conditions. It is seen that if the cavitation problem happens,
the flow rate will decrease, and the head value will increase. Thus, the total power and
efficiency also will be affected. The efficiency will also drop during the faulty situation.

Despite the higher initial software, microprocessor, and instrumentation costs, the
installation cost was slightly more than that of a normal pumping system installation of
this size. Common system components including a control valve, an external flow meter, a
separate starter, and pipes for the recirculation line are frequently absent, which leads to
this problem. The design also reduced costs by removing the need for a bigger pump and
motor. Tables 7 and 8 show the energy cost per year in different flow rates of the pumping
system during normal and faulty conditions. If a fault happens, the flow rate will reduce,
the head value will be high, power will decrease, efficiency will decrease, and energy cost
will increase. If the overall LCC cost is calculated during normal and faulty conditions,
installation, maintenance, and other costs will also be considered.
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Table 7. Energy cost calculation and other parameters during normal condition.

Flow Rate (m3/h) Head Value (m) Total Power (Watt) Efficiency (%) Energy Cost per
Year (Rs)

3.5 22.18 340 95 421.16

3.3 22.32 360 92 446.31

3.29 22.33 400 91.5 447.005

3.25 22.36 420 90 452.13

3.2 22.4 440 89.5 455.27

3.15 22.42 460 88 462.21

3.1 22.46 480 86 469.57

3 22.53 500 85.5 485.12

2.8 22.65 502 84 519.664

2.56 22.79 510 84.4 568.26

2.5505 22.8 530 83 569.48

2.5504 22.82 535 81 569.57

2.5503 22.83 560 80 570.04

2.5502 22.84 575 79 570.21

2.55 22.85 580 75 570.26

Table 8. Energy cost calculation and other parameters during faulty condition.

Flow Rate (m3/h) Head Value (m) Total Power (Watt) Efficiency (%) Energy Cost per
Year (Rs)

2 22.80 105 73 724.96

1.98 22.90 110 72 732.14

1.92 22.98 140 70 743.25

1.9 23.11 180 68 751.59

1.88 23.13 250 65 758.88

1.85 23.16 280 64 797.59

1.7 23.189 300 63 816.05

1.65 23.20 320 62 844.16

1.55 23.24 370 60 924.72

1.38 23.295 380 59 1037.78

1.25 23.33 400 56 1143.14

1.08 23.38 480 55 1358.11

0.8 23.43 500 52 1775.29

8. Results and Analysis

Table 9 shows that faulty condition LCC will be higher, as energy and maintenance
costs increase compared to during normal conditions.

Table 9. Life cycle cost in both normal and faulty conditions.

Life Cycle Costs (Rs) Normal Condition (Rs) Faulty Condition (Rs)

Initial cost 6,000,000 6,000,000

Installation cost 4,000,000 4,000,000

Energy cost 600,000 900,000

Pump maintenance costs 300,000 800,000

Other maintenance costs 200,000 400,000

Total 11,100,000 12,100,000
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In comparison to other machine learning algorithms, like random forest (RF), regres-
sion, support vector machine (SVM), K-nearest neighbour (K-NN), and the artificial neural
network (ANN) used in the proposed research, SVM and HMM can predict the fault more
accurately based on accuracy rate, prediction speed, and training time. Due to their ability
to learn from examples, ANN models are frequently used in a variety of academic fields.
Furthermore, ANN models outperform conventional machine learning methods when
dealing with random, fuzzy, and nonlinear data. Systems with complicated, large-scale
structures and ambiguous information best suit ANNs. SVM is a supervised machine
learning method that can perform regression analysis, classification, and pattern recogni-
tion. SVM has been extensively utilised in industrial equipment predictive maintenance to
determine a particular status based on the recorded signal. A network structure called a
decision tree has nodes and branches, with nodes made up of intermediate nodes and root
nodes. The leaf nodes represent a class level, whereas the intermediate nodes represent
a feature.

Random forests are ensembles of regression or classification trees used in nonlinear
regression or classification models. Each tree relies on a random vector produced separately
from the input. Random forests are ensembles of regression or classification trees used in
nonlinear regression or classification models. Each tree relies on a random vector produced
separately from the input. The proximity matrices of random forests are another useful
feature. A closeness estimate for all sites can be made by looking at whether samples report
to the same terminal nodes of all trees. A straightforward and unobtrusive statistical tool for
analysing relationships between continuous variables is linear regression. The dependent
variable (y-axis) and independent variable (x-axis) are shown in linear regression as having
a linear relationship (y-axis). The classifier learner application is now used to analyse and
compare each algorithm’s accuracy rate, prediction speed, and training time.

Figures 9 and 10 show the proposed research’s hardware setup and block diagram.
Figure 9 shows the multistage parallel pump hardware setup from which all the vibration
data, flow rate, and pressure bar data have been collected. Figure 10 shows by flow chart
how ML algorithms have been implemented after data collection and feature extraction are
carried out. Here, training and testing set have been formed to classify the fault state.
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According to Table 10 and Figures 11–14, SVM and HMM perform better than other
ML algorithms in terms of accuracy rate, training time, prediction speed, and annual energy
cost. Most ML algorithms have been compared by accuracy rate, prediction speed and
training time. Based on these three factors, the best-suited algorithm for the particular
experiment has been predicted. In the present research, Figure 11 shows that, based
on accuracy rate, SVM with HMM is better than other ML algorithms for LCC analysis.
Similarly, Figure 12 shows that the training time of SVM and HMM is lesser than different
ML algorithms, and Figure 13 shows the prediction speed in the case of SVM and HMM
is higher than other ML algorithms. Figure 14 shows if the ML algorithms have been
applied for predicting faults in the pumping system in the early stage, and that among all
ML algorithms, SVM and HMM predict the fault more efficiently than other algorithms,
meaning that energy cost per hour will be lower.

Table 10. Comparison of ML algorithms based on accuracy rate, training time, prediction speed, and
energy cost per year.

Algorithms Accuracy Rate (%) Training Time (sec) Prediction Speed (obs/sec) Energy Cost per Year (Rs)

SVM with HMM 98.7% 0.015 450 1452

K-NN 65% 0.147 220 2989

ANN 81% 1.20 340 3512

Linear regression 72% 1.11 280 4879

Decision tree 56% 1.05 310 5690

Logistic regression 80% 1.00 211 7251

Naïve Bayes 57.30% 1.6 250 4561

Linear discriminant 68% 2 130 5390
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HMM finds the state of the matrix, and this procedure is carried out through probabil-
ity distribution. The hidden Markov model analyses attempt to recover the sequence of
states from observed data. The graph shows the state of the faulty situation. Here, seven
nodes are there for faulty conditions. Each node shows the state of the system (Figure 15).
HMM is used for the identification of the recognition state of the machine during healthy
and faulty situations. Seven nodes are used here for the identification of different states.
Among these, only four states are active, as three fault types have been analysed in the
present research, and one is a healthy condition.
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Figure 15. State of the faulty situation directed by graph.

The graph (Figure 16) shows the transition probability. The probability shows the
classes and number of periods and the state of the periods. The graph shows that the
system is aperiodic, concluding that the system has been majorly affected.
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The graph shows the labels of the state; by these labels, the state condition can be
identified (Figure 17).
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Here, for SVM and HMM, seven indicators are used. Among these, four are active,
as three faulty conditions and one normal condition have been indicated. The transient
probability shows each indicator condition (Figure 18).
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9. Conclusions

Industrial pumping systems use a lot of energy and money for maintenance and
operation. Because engineering and procurement procedures frequently consider only the
initial system costs, there are significant opportunities for reducing life cycle system costs
that are not taken advantage of. Life cycle cost analysis is a tried and true technique for
figuring out the least expensive long-term design or retrofit solutions. The present study
shows the importance of LCC cost for the pumping system and its changes due to faulty
conditions. It is seen from the analysis that through SVM and HMM hybrid methods based
on accuracy, the fault can be predicted early, and energy costs can also be reduced by this
method rather than by other ML algorithms. If the energy cost is less, then the life span of
the pumping system will be high. In the future, LCC costs will be calculated in a simpler
way. The application of AI will be further developed to analyse the LCC of the pumping
system and other machinery. Here, SVM is used for the classification of faults and HMM is
used for exact fault state identification.

After faults, the pump gives the best operating service between 70 and 75 h; after 82 h,
it will stop working.

LCC analysis has been performed during normal and faulty conditions. Then, ML
algorithms have been used to identify the faults and reduce the LCC cost of the pump. If
SVM and HMM are combined, the overall cost will be reduced.

The suggested research has some restrictions. It does not function well with vast
amounts of data, such as DL, and occasionally the performances of the classes are subpar
owing to data shortages. The research being used as a case study solely looks at the
industrial pump application and does not compare it to other kinds of pump applications.
The practical application of the proposed study is the detection of anomalies in industrial
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multistage pumps requiring constant water supply. The technique can further be evaluated
on various machines and different forms of pump fault detection. The authors will give
data management greater attention in the near future in order to conduct more studies and
enhance performance.
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articulate the research work for its final depiction as a full research paper. All authors have read and
agreed to the published version of the manuscript.
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