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Abstract: The modern tram track automatic cleaning car is a crucial equipment in urban rail trans-
portation systems, effectively removing trash, dust, and other debris from the slotted tracks of trams.
However, due to the complex and variable structure of turnouts, the cleaning car often requires assis-
tance in accurately detecting their positions. Consequently, the cleaning car needs help in adequately
cleaning or bypassing turnouts, which adversely affects cleaning effectiveness and track maintenance
quality. This paper presents a novel method for tracking turnout identification called PBE-YOLO
based on the improved yolov5s framework. The algorithm enhances yolov5s by optimizing the
lightweight backbone network, improving feature fusion methods, and optimizing the regression loss
function. The proposed method is trained using a dataset of track turnouts collected through field
shots on modern tram lines. Comparative experiments are conducted to analyze the performance
of the improved lightweight backbone network, as well as performance comparisons and ablation
experiments for the new turnout identification method. Experimental results demonstrate that the
proposed PBE-YOLO method achieves a 52.71% reduction in model parameters, a 4.60% increase in
mAP@0.5(%), and a 3.27% improvement in precision compared to traditional yolov5s. By improving
the track turnout identification method, this paper enables the automatic cleaning car to identify
turnouts’ positions accurately. This enhancement leads to several benefits, including increased au-
tomation levels, improved cleaning efficiency and quality, reduced reliance on manual intervention,
and mitigation of collision risks between the cleaning car and turnouts.

Keywords: track turnout detection; yolov5s; PP-LCNet; BiFPN; EIoU

1. Introduction

The grooves of modern trams are prone to accumulating various types of garbage,
including leaves, mud, sand, and debris, which pose a safety risk to train operations and
passenger comfort. Therefore, cleaning the slotted tracks is crucial for maintaining the
regular operation of trams. In the early stage, the project team developed an automatic
track-cleaning vehicle capable of effectively cleaning the slotted tracks of modern trams [1].
However, the cleaning tool of the automated vehicle is susceptible to damage when passing
through turnouts due to difficulties in identifying them. Hence, it is necessary to research a
highly accurate track turnout identification algorithm, which plays a vital role in achieving
a more automated and efficient track-cleaning process [2].

In recent years, extensive research has been conducted both domestically and interna-
tionally to address the turnout recognition problem. Traditionally, machine vision methods
have been employed for turnout detection. However, these methods have drawbacks
such as poor robustness, low efficiency, and susceptibility to environmental effects. The
widespread application of deep learning in computer vision fields, including image clas-
sification, target detection, and image segmentation [3], has provided a new approach to
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turnout detection. Deep learning can handle nonlinear relationships in data, identify and
classify data, and possesses strong generalization ability and scalability [4]. Several scholars
have attempted to solve the turnout identification problem using deep learning methods.
For instance, OLGA et al. [5] utilized convolutional neural networks to automatically extract
railroad features. Wenqi Liu [6] employed a deep neural network-based learning algorithm
to recognize and predict railroad scene images. The training dataset for this algorithm
consisted of railroad scene images, and accurate recognition and prediction of such images
were achieved by training the deep neural network model through multiple iterations.
Yilmazer M [7] et al. proposed a new method based on yolov4, using the darknet53 back-
bone of the yolov4 network to train railroad data collected with autonomous drones. They
tested the yolov4 network with the darknet53 backbone and applied the model to track
turnout scene recognition. He Sen et al. [8] utilized a line array industrial camera scan
to obtain railroad point cloud information. They designed a residual connected railroad
turnout scene recognition network, employed a tree structure Parzen estimation algorithm
to search for optimal hyperparameters, and utilized a focal loss function to address the
problem of an imbalanced number of samples, achieving accurate and rapid recognition of
railroad turnout scenes. However, this algorithm needs to be retrained for numerous types
of turnouts, necessitating further improvement in its robustness.

In previous studies of yolov5s, the computational limitations of practical application
platforms have often been overlooked in favor of improving the network model’s detection
accuracy. This paper presents an enhanced track turnout detection model called PBE-YOLO,
which is based on yolov5. Firstly, PBE-YOLO replaces the yolov5 backbone network with
PP-LCNet, reducing the number of parameters in the original model. Secondly, BiFPN
technology is incorporated into the head of the baseline model, facilitating the effective fu-
sion of multiscale features to address the accuracy loss caused by the lightweight backbone
network. Lastly, this paper adopts EIoU as a replacement for the original GIoU loss function
in yolov5, aiming to improve the convergence speed of the network. Experimental results
demonstrate that the improved yolov5s model exhibits favorable recognition performance
on the collected track turnout dataset.

2. Materials and Methods

The methodology for track switch recognition, based on the improved yolov5s ar-
chitecture, is depicted in Figure 1. The dataset utilized in this study comprises images
captured by cameras installed on cleaning vehicles. The overall workflow is as follows:
Firstly, real-time captured images undergo preprocessing, which includes dataset partition-
ing and image enhancement operations. These preprocessing steps serve as inputs for the
PBE-YOLO model. Subsequently, yolov5s is improved through the following steps:

• Replacing the yolov5s backbone with PP-LCNet to reduce the parameter count and
achieve lightweight improvement;

• Employing BiFPN for feature fusion, integrating features from different spatial resolu-
tions, and addressing the accuracy loss associated with the lightweight model;

• Utilizing the EIoU loss function instead of the original regression loss function to
address the problem of mismatched predicted and ground-truth bounding boxes and
improve convergence speed.
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Figure 1. Improving the overall flow chart of target recognition of yolov5s.

After initializing the network parameters, the model undergoes training using an
optimized regression loss function to obtain the optimal configuration. This training process
enables the accurate recognition of track switches by the model. Finally, a validation set is
utilized to evaluate the trained model’s effectiveness and generate track switch recognition
results. This process assesses the model’s performance on unseen data, providing an
evaluation of its recognition accuracy.

2.1. Yolov5s Structure Analysis

Yolov5 is a real-time object detection deep learning model that includes four variants:
yolov5s, yolov5m, yolov5l, and yolov5x, representing different model sizes: small, medium,
large, and extra-large, respectively. The yolov5 architecture consists of three main compo-
nents: backbone, neck, and head. The backbone is responsible for feature extraction, while
the neck and head handle object detection. Figure 2 illustrates the network architecture of
yolov5s, and the following explanations focus on the three crucial components in yolov5
using yolov5s as an example.
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Backbone: The backbone module primarily consists of the CSP structure [9] and
the SPPF module [10]. CSP incorporates convolutional layers, residual blocks, and max-
pooling layers, effectively extracting features and maintaining gradient flow. Moreover, the
cross-stage connections in CSP increase the depth and width of the network, enhancing its
performance. At the end of the backbone, the SPP network [11] captures features of various
scales using max-pooling operations with multiple sizes. These features are then fed into
the yolov5s detection head to detect objects of different sizes.

Neck: The neck structure resides between the backbone and head and adopts the
PAN algorithm [12]. The PAN algorithm consists of convolutional and upsampling layers,
aiming to increase feature resolution and fuse features of different scales. Additionally,
PAN combines backbone features of different scales to enhance feature representation
capabilities further.

Head: The head component consists of a sequence of convolutional layers, with the
final prediction layer responsible for object detection. This prediction layer, which is a
convolutional layer, predicts the class probabilities, bounding box coordinates, and object
scores for each anchor box. The head utilizes anchor-based object detection, where each
anchor box detects a specific object. Moreover, the model utilizes the GIoU Loss [13] to
estimate the recognition loss associated with the detected bounding boxes.

2.2. Yolov5s Backbone Network Lightweight Improvements

PP-LCNet [14] is an efficient convolutional neural network designed to be lightweight.
It leverages local connection blocks (LCBlocks) to construct a deep neural network ar-
chitecture. Figure 3 illustrates the LCBlock module comprising two LocalConv layers
and a shortcut connection. Depthwise separable convolutions are utilized within these
modules to reduce model parameters and computational complexity, thereby enhancing
the efficiency and speed of the network. Additionally, PP-LCNet integrates a lightweight
CPU network with MKLDNN acceleration strategy to improve its running speed and
efficiency further.
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Traditional convolutional neural networks often improve object detection performance
by increasing network depth, channel numbers, and image resolution [15]. While these
methods can enhance the network’s expressive power, they also significantly increase the
computational burden, making model training and inference more challenging. In yolov5,
the backbone part adopts the CSP module, which can reduce computational complexity
and improve feature representation capabilities [16]. However, this structure is relatively
complex and needs to perform better in detecting large-scale objects. Additionally, the
lower resolution of the feature maps in CSP may fail to see small objects. On the other
hand, PP-LCNet utilizes local connection blocks to construct an efficient deep neural net-
work and employs depthwise separable convolutions to reduce computational complexity
further and improve model efficiency. Therefore, in this paper, we consider using PP-
LCNet as a replacement for CSPNet in yolov5, referred to as yolov5s_PP-LCNet, in the
following sections.

As shown in Figure 4, the improved backbone structure can be divided into nine
parts (B1 to B9). Among them, B1 is a module that uses 3 × 3 ordinary convolutions
for feature extraction, primarily focused on extracting low-level features from the input
image. B2 to B8 consists of depth separable convolutions (DepthSepConv) to reduce model
parameters and network computation, thereby enhancing computational efficiency. The
DepthSepConv mainly consists of structures such as batch normalization (BN), pointwise
convolution (PW), and squeeze-and-excitation (SE) blocks. B2 to B7, along with the first
convolutional layer of B7, adopt a convolution kernel size of 3 × 3, while the subsequent
five layers of convolution in B5 and all convolutional layers in B7 use a kernel size of
5 × 5. Batch normalization and activation functions are applied to the modules B2 to B7 to
increase the non-linear mapping capability of the network and enable it to capture complex
patterns in the data. The B8 module introduces the SE block to enhance salient features and
suppress unimportant ones, thereby improving its discriminative power. The B9 module
corresponds to the SPPF (spatial pyramid pooling fusion) layer in the original backbone,
which performs pooling operations of four different sizes (1 × 1, 2 × 2, 3 × 3, and 6 × 6)
on the input feature map and concatenates the pooled feature maps together. Based on
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this, the SPPF layer can perceive objects at different scales and retain high-level semantic
information from the feature maps. Compared to CSPNet, the PP-LCNet structure is more
straightforward, easier to train, and performs better in detecting large-scale objects.
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2.3. Improvement of Yolov5s Feature Fusion Method

In the original yolov5s, two feature pyramid networks, PAN (path aggregation net-
work), and FPN (feature pyramid network), are used for feature fusion across layers to
integrate features from different scales. As shown in Figure 5A), FPN integrates feature
maps of varying resolutions by establishing connections from the top to the bottom of the
network. This allows the fusion of high-resolution feature maps from the bottom with
low-resolution feature maps from the top, ultimately enhancing the detection accuracy for
small objects. As depicted in Figure 5B), PAN adopts a bottom-up and top-down feature
fusion approach to restore low-resolution feature maps to the original resolution, but it
requires more computational resources. In the case of railway switch detection, the small
size of the targets necessitates an improvement in the detection accuracy of the original
model. Feature pyramid networks, while beneficial for object detection, may fail to capture
fine-grained details, decreasing detection performance.
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BiFPN (bidirectional feature pyramid network) [17] is an effective method for multi-
scale feature fusion that combines feature pyramid networks with bidirectional connections.
This fusion technique aims to enhance both detection accuracy and efficiency. Feature pyra-
mid networks enhance object detection accuracy by fusing features of different scales [18].
At the same time, bidirectional connections consider information from both high-level and
low-level features, capturing target-specific characteristics more effectively. In BiFPN, each
input feature undergoes two convolution operations and a weighted operation separately
to extract more useful information from different layers and effectively fuse features of
different scales. Furthermore, BiFPN introduces a dynamic weight assignment mechanism
that dynamically adjusts the weights between features based on their performance, better-
utilizing information from different features. During multi-layer bidirectional connections,
BiFPN effectively utilizes information from different levels and facilitates information
exchange between different scales [19].

In order to strike a balance between the accuracy loss caused by the lightweight
backbone network and the need to detect small objects effectively, this paper improves the
original feature fusion method in yolov5s by introducing BiFPN. Specifically, it treats each
feature map as a node and represents their relationships through a bidirectional directed
graph. In the graph, each node is connected to its contextual nodes, and the weights
between each node are learned. For each feature node i, the result of weighted fusion can
be represented as:

yi = ∑n
j=1 wijxj (1)

where xj denotes the other feature nodes connected to node i, n represents the number
of nodes connected to node i, and wij indicates the weight between node i and node j.
BiFPN adopts a learnable weight strategy based on the attention mechanism to enable
effective learning and updating of weights between nodes. Each node i is considered
an attention head, and a weight wij is calculated based on the feature map of its context
node j and implemented by a neural network with an activation function. The above
method allows the weights between nodes to be dynamically adjusted according to the
correlation and information between contextual features, resulting in more accurate and
robust feature fusion results. The core idea of BiFPN is to introduce cross-scale connections
to fuse more feature information while maintaining the exact computational cost. In this
paper, the feature layers of the original yolov5s network were improved. As shown in
Figure 5B), the original network only fused the feature layers from the 3rd to the 5th
layer, neglecting the shallow semantic information from the 2nd layer, which is crucial for
detecting small objects. Based on this, we retained the feature fusion layers of the 2nd and
5th layers and added cross-scale connections between the 3rd and 4th layers to obtain the
improved architecture, as shown in Figure 5C). The size of these feature maps is typically
enlarged to 160 × 160 to enhance object detection accuracy. By introducing the BiFPN layer
and utilizing cross-scale connections, the feature maps at different scales are fused and



Processes 2023, 11, 2123 8 of 17

enhanced, significantly improving object detection performance, particularly in detecting
small objects with higher precision.

Building upon the enhancements to the backbone and head outlined in Sections 2.2 and 2.3,
the improved yolov5s model is derived, featuring the specific structure illustrated in
Figure 6.
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2.4. Yolov5s Regression Loss Function Optimization

The original yolov5s framework employs the GIoU (generalized intersection over
union) loss function, which includes a penalty term compared to the IOU loss function.
The GIoU method evaluates the distance between the predicted and ground truth boxes by
considering their minimum enclosing rectangles. This evaluation incorporates factors such
as the distance between the center points, the variations in width and height, and the area
of the enclosing rectangle [20]. However, GIoU does not consider the aspect ratio of the
target box. Furthermore, GIoU is sensitive to variations in the target scale. Any changes in
scale affect the distances between center points, differences in width and height, and the
area of the bounding rectangle, consequently impacting the GIoU calculation results. This
paper replaces the GIoU loss function with the EIoU (enhanced intersection over union)
loss function to address this issue.

Compared to GIoU, EIoU provides a more accurate measurement of the matching
degree between the predicted bounding box and the ground truth bounding box, especially
in cases where there is a complex overlap between objects. EIoU can better distinguish the
quality of predicted bounding boxes. Additionally, EIoU is more sensitive to the aspect ratio
of the bounding box when measuring the matching degree, allowing for better adaptation
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to bounding boxes with different aspect ratios. Moreover, when calculating the loss for false
positive detections, EIoU sets the IoU metric between the bounding boxes to 0 and considers
both position offset and size offset in the loss calculation. This approach enables better
differentiation between false detection and missed detection, imposing stricter penalties
for false positive detections and improving the accuracy of bounding box regression. The
definition of EIoU is as follows:

LEIoU = LIoU + Ldis + Lasp

= 1 − IoU +
ρ2(b,bgt)

c2 +
ρ2(w,wgt)

C2
w

+
ρ2(w,wgt)

C2
h

(2)

where cw, ch, and ρ are the width, height, and Euclidean distance between b and bgt of the
minimum external box covering the two boxes, respectively, and w, h, wgt, hgt are the box
heights of the predicted and actual boxes, respectively.

3. Results and Discussion
3.1. Datasets and Experimental Platforms

The dataset plays a crucial role in object detection tasks. Factors such as the dataset’s
size, quality, and diversity directly impact the model’s training effectiveness and gener-
alization capability. However, there is a limited availability of comprehensive datasets
specifically for railway turnout detection. This paper uses a dataset of railway turnouts
collected from real-world tramway lines for research purposes. The final dataset consists of
1122 images of railway turnouts along with corresponding annotations in the txt format.
The dataset is divided into a training set and a testing set in an 8:2 ratio. There is only
one recognition object (category) in our dataset, which is the track switch. Furthermore,
cleaning vehicles is usually performed during the daytime and under favorable weather
conditions. Therefore, our dataset does not consider adverse conditions such as nighttime
or rainy weather. Figure 7 displays three sample images from the railway turnout dataset.
Before training, all data undergo preprocessing steps such as Mosaic data augmentation
and normalization.
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3.2. Experimental Data Processing

In yolov5, data augmentation refers to a series of transformations and expansions
applied to the training data to increase its diversity and richness. By employing data
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augmentation techniques such as random transformations like rotation, scaling, translation,
flipping, etc., the model can learn the invariances and variabilities of different objects while
also expanding the size of the dataset.

In addition to the fundamental data augmentation techniques, yolov5 incorporates the
Mosaic data augmentation method. The core concept behind Mosaic data augmentation is
to combine multiple training images into a single composite training image while simul-
taneously adjusting the positions and sizes of the bounding boxes. This unique image is
then used as input for training the object detection model. An example of the Mosaic data
augmented image is shown in Figure 8. Precisely, the Mosaic data augmentation method
consists of the following steps:

1. Randomly select four different training images.
2. Concatenate these four images together in a specific order to form a new training

image. Typically, the four images are divided into two rows, with the left two images
forming the top half and the right two images forming the bottom half.

3. Calculate the width and height of the composite image.
4. Adjust the bounding boxes within the new image. For each bounding box, convert

its coordinates to be relative to the top-left corner of the new image and scale them
according to the scaling factor of the new image.

5. Apply other data augmentation operations, such as random scaling, translation,
flipping, etc.
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Using the Mosaic data augmentation method, the PBE-YOLO model can learn multiple
scenes and objects simultaneously within a single image, thereby increasing the diversity
and complexity of the data. This helps improve the model’s robustness and generalization,
enabling it to better adapt to various scenes and object-detection tasks. Additionally, since
the Mosaic data augmented image is composed of four original images, there is a higher
probability of including small objects in each image, which benefits the performance of
small object detection.
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3.3. Experimental Environment and Evaluation Index

The hardware platform used in the experiments includes:

(1) CPU: Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60 GHz
(2) GPU: NVIDIA A800 PCIe

The workstation uses CUDA 11.4 and cuDNN 11.4 to leverage GPU acceleration.
The chosen deep learning framework is PyTorch, and the operating system is Linux. The
experiments employ stochastic gradient descent (SGD) to optimize the learning rate dur-
ing training. The hyperparameters are configured as follows: weight decay = 0.0005,
momentum = 0.8, batch size = 64, and the number of epochs = 300.

To evaluate the effectiveness of PBE-YOLO, the model’s performance is assessed by
comparing the detection results between the original yolov5s and PBE-YOLO. The selected
evaluation metrics include recall rate (R), precision (P), mean average precision (mAP), pa-
rameter count, GFLOPs, and frames per second (FPS). FPS represents the number of images
the model can process per second and is typically used to measure real-time performance.

The calculation formulas for recall rate, precision, and average precision are as follows:

R =
TP

TP + FN
(3)

P =
TP

TP + FP
(4)

AP =
∫ 1

0
P(R)dR (5)

In the formulas, TP denotes the count of predicted bounding boxes with an IoU greater
than 0.5, belonging to the same class as the ground truth boxes. FP represents the count
of predicted bounding boxes with an IoU less than or equal to 0.5 or an IoU greater than
0.5 but not belonging to the same class as the ground truth boxes. FN denotes the count of
ground truth boxes that are not predicted.

3.4. Loss Function Comparison

Figure 9 illustrates the loss variation during the training process of the original yolov5
and the improved PBE-YOLO model. It is noticeable that the loss value of the PBE-YOLO
model shows a rapid initial decrease with more significant fluctuations. However, as the
number of training epochs increases, the fluctuations gradually decrease, particularly after
approximately 100 epochs. The loss curve of EIoU gradually decreases and stabilizes.
Around 250 epochs, the algorithm’s loss becomes stable, indicating convergence of the
model. Moreover, the loss value of PBE-YOLO is relatively lower compared to GIoU,
indicating better robustness of the PBE-YOLO model.

3.5. Comparative Experimental Analysis of the Performance of Improved Lightweight Networks

To verify the effectiveness of the improved lightweight backbone network in yolov5s_PP-
LCNet, comparative tests were conducted with popular lightweight backbone networks
currently in use, namely EfficientLite [15], MobileNetv3 [21], and ShuffleV2 [22]. Evaluation
metrics such as precision (P), recall (R), mean average precision at IoU 0.5 (mAP@0.5),
number of parameters (parameters), computational complexity (GFLOPs), and frames per
second (FPS) were chosen. The comparative test results are summarized in Table 1.
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Table 1. Comparison results of lightweight models.

Method P (%) R (%) mAP@0.5 (%) Params (M) GFLOPs FPS

yolov5s(baseline) 69.15 63.43 57.42 7.02 15.9 93.46

yolov5s_EfficientLite 67.24 58.35 53.01 3.77 7.4 78.74

yolov5s_MobileNetv3 67.28 59.16 53.64 3.53 6.1 81.30

yolov5s_Shufflev2 66.68 57.50 53.21 3.18 5.9 111.11

yolov5s_PP-
LCNet(improved) 68.90 63.83 55.07 3.32 6.2 99.01

Table 1 illustrates that the improved lightweight network, yolov5s_PP-LCNet, outperforms
other lightweight networks regarding P, R, and mAP@0.5. Compared to yolov5s_Shufflev2,
yolov5s_PP-LCNet achieves a 3.30% improvement in P and an 11.01% improvement in R.
Furthermore, yolov5s_PP-LCNet exhibits advantages in terms of the number of parameters,
GFLOPs, and FPS compared to yolov5s. The number of parameters is reduced by 53.8%,
mAP@0.5 is reduced by approximately 4.10%, and FPS is increased by 5.94%. Therefore,
yolov5s_PP-LCNet demonstrates better computational performance, improving network ef-
ficiency and reducing the computational burden. Although yolov5s_Shufflev2 outperforms
yolov5s_PP-LCNet regarding parameters, GFLOPs, and FPS, it suffers from a high accuracy
loss of 7.33%. Yolov5s_EfficientLite and yolov5s_MobileNetv3 show lower metrics than
the baseline model, with accuracy losses exceeding 6% relative to yolov5s_PP-LCNet, and
lower FPS. Considering the comprehensive comparison, the enhanced lightweight network,
yolov5s_PP-LCNet, successfully reduces the parameter count and computational com-
plexity, resulting in a lightweight improvement compared to yolov5s. This advancement
facilitates the deployment and application of the model on resource-constrained devices.

3.6. Performance Comparison Experiments of Different Models

To further validate the effectiveness of the PBE-YOLO method in track switch recog-
nition, a comparative analysis was conducted with several other object detection models,
namely yolov5s, yolov3, yolov3_tiny, yolov4, and yolov4_tiny. The experimental results
are presented in Table 2.
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Table 2. Performance comparison results of different models.

Method P (%) R (%) mAP@0.5 (%) Params (M) GFLOPs FPS

yolov5s(baseline) 69.15 63.43 57.42 7.02 15.9 93.46

PBE-YOLO(Ours) 71.41 65.54 60.06 3.24 6.2 99.15

Yolov3 65.18 55.20 51.86 61.52 155.3 74.63

Yolov3-tiny 63.54 53.20 50.49 8.67 12.99 212.77

Yolov4 66.05 58.35 52.90 60.43 131.6 54.95

Yolov4-tiny 62.72 58.35 51.45 3.06 6.409 169.49

Table 2 shows that the PBE-YOLO model exhibits higher performance in terms of
precision and mAP@0.5, reaching 71.41% and 60.06%, respectively, which are 3.27% and
4.60% higher than the baseline model. Compared to other object detection models, PBE-
YOLO also demonstrates superior performance. Particularly in terms of mAP@0.5, PBE-
YOLO outperforms yolov3, yolov3_tiny, yolov4, and yolov4_tiny by 15.81%, 18.95%, 13.53%,
and 16.73%, respectively.

Regarding recall, the PBE-YOLO model achieves 65.54%, slightly higher than the
63.43% of yolov5s. Compared to other models, it performs better, significantly outperform-
ing yolov3_tiny and yolov3 by 23.20% and 18.73%, respectively.

Regarding model parameters and computational complexity, the PBE-YOLO model
has 3.24 million parameters and 6.2 GFLOPs of computational complexity, smaller than
yolov5s with 7.02 million parameters and 15.9 GFLOPs. Moreover, compared to other object
detection models, the parameter and computational complexity of the PBE-YOLO model
are also significantly smaller. Specifically, compared to yolov3 and yolov4, the parameter
reduction is 94.73% and 94.64%, respectively, while the computational complexity reduction
is 96.01% and 95.29%, respectively. Thus, the improved PBE-YOLO model optimizes model
size and parameter count while improving detection accuracy, providing greater flexibility
for model deployment on application devices.

Regarding detection speed, PBE-YOLO achieves a frame rate of 99.15, demonstrating
its computational efficiency. Its performance surpasses other algorithms, such as yolov3,
yolov4, and yolov4_tiny, with frame rates of 74.63, 54.95, and 169.49, respectively. Although
yolov3_tiny achieves a peak FPS of 212.77, its performance in terms of P and recall is
significantly lower than that of PBE-YOLO. Therefore, PBE-YOLO balances accuracy and
computational efficiency, delivering competitive FPS while maintaining high precision.

3.7. Ablation Experiments

To better validate the impact of the three improvement modules—lightweight back-
bone network, feature fusion method, and regression loss function optimization—proposed
in PBE-YOLO on the recognition performance, this section will break down the model
and conduct ablation experiments by gradually incorporating the improvement modules.
After the experiments, the effects of each module on the model will be analyzed, and the
changes in accuracy for each model will be compared. Table 3 displays the results of the
ablation experiments.

Table 3. Comparison of ablation experiment results.

Methods P (%) mAP@0.5 (%) Params (M)

yolov5s(baseline) 69.15 57.42 7.02

yolov5s + PP-LCNet 68.90 55.07 3.32

yolov5s + PP-LCNet + BiFPN 70.89 58.15 3.24

yolov5s + PP-LCNet + BiFPN +
EIoU(PBE-YOLO) 71.41 60.06 3.24
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Table 3 reveals that by replacing the backbone network of yolov5s with the proposed
PP-LCNet, the parameter count decreases from 7.02 million to 3.32 million, resulting in a
significant reduction of 52.71% compared to the original model. However, the mAP@0.5
metric decreases by 4.09%. Therefore, directly applying the PP-LCNet network results
in lightweight characteristics but sacrifices a significant amount of accuracy, making it
unsuitable for direct use.

Building upon the lightweight backbone network, improving the structure of the
FPN by using BiFPN, compared to the lightweight model, the P increases by 2.89% to
70.89%, and the mAP@0.5 increases by 5.59% to 58.15%. The notable improvement in
parameter reduction is attributed to the practical feature map fusion ability of BiFPN,
which enables the capture of semantic information from objects at various scales. Through
bidirectional propagation, BiFPN can transfer information between different levels, guiding
and complementing low-level features with high-level features. Thus, it can improve the
model’s accuracy while reducing parameter count and computational complexity.

Finally, replacing the original yolov5s’ regression loss function GIoU with EIoU sig-
nificantly impacts detection accuracy. The final P of the model is 71.41%, an increase of
0.73%, and the mAP@0.5 is 60.06%, an increase of 3.28%. Therefore, the improved EIoU
enhances the accuracy of the network, making it more sensitive to track switch objects and
receiving more attention without increasing the parameter count. Thus, it is more suitable
for a lightweight model.

3.8. Experimental Analysis of the Application Effect Verification of the New Method of
Turnout Identification

Finally, in this study, a validation dataset was collected that did not appear in the
model training process. The best models trained using the original yolov5s and PBE-
YOLO were used to detect images from this validation dataset, as shown in Figure 10.
Through the experiments, it was found that the original yolov5s algorithm already achieved
high accuracy during the training process. However, there is still significant room for
improvement in performance in real-world detection scenarios. As shown in Figure 10a, it
is evident that the baseline model yolov5s has missed detections. On the other hand, in
Figure 10b, it is apparent that the improved yolov5s can accurately detect more miniature
track switches. In Figure 10c, although the original yolov5s model can detect track switches
in the image, the confidence scores for the detected objects are relatively low, ranging from
0.65 to 0.75. In contrast, the improved yolov5s model shows higher confidence scores
(Figure 10d), ranging from 0.70 to 0.85, indicating that the improved yolov5s performs
better in detecting track switches.
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4. Conclusions

This paper proposes a new method called PBE-YOLO for track switch object recogni-
tion based on the improved yolov5s architecture. The objective is to address the challenge
of accurately identifying the position of track switches for existing track-cleaning vehicles.
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The proposed method encompasses several enhancements, namely replacing the backbone
with PP-LCNet to reduce parameter count and computational complexity, integrating
BiFPN feature fusion to address accuracy loss in the lightweight design, and utilizing the
EIoU loss function to improve convergence. These enhancements collectively contribute
to the improved performance of the method. Experimental results demonstrate that PBE-
YOLO achieves improved detection accuracy while maintaining lightweight characteristics,
providing theoretical and technical support for the automatic recognition of track switches.
Compared to the original yolov5s and other models, PBE-YOLO demonstrates superior
detection accuracy and fewer model parameters when evaluated on the track turnouts
dataset. Therefore, the application of PBE-YOLO is expected to play a crucial role in prac-
tical track-cleaning vehicle projects, enhancing cleaning efficiency and quality, reducing
manual intervention, and mitigating the risk of collisions between cleaning vehicles and
track switches. Future research can further explore incorporating attention mechanisms and
other operations to improve model accuracy and facilitate its deployment and application
on track-cleaning vehicle hardware platforms.
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